首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Accepted 1998 January 26. Received 1998 January 26; in original form 1997 August 13This paper presents a stochastic approach to the clustering evolution of dark matter haloes in the Universe. Haloes, identified by a Press–Schechter-type algorithm in Lagrangian space, are described in terms of 'counting fields', acting as non-linear operators on the underlying Gaussian density fluctuations. By ensemble-averaging these counting fields, the standard Press–Schechter mass function as well as analytic expressions for the halo correlation function and corresponding bias factors of linear theory are obtained, extending the recent results by Mo & White. The non-linear evolution of our halo population is then followed by solving the continuity equation, under the sole hypothesis that haloes move by the action of gravity. This leads to an exact and general formula for the bias field of dark matter haloes, defined as the local ratio between their number density contrast and the mass density fluctuation. Besides being a function of position and 'observation' redshift, this random field depends upon the mass and formation epoch of the objects and is both non-linear and non-local. The latter features are expected to leave a detectable imprint on the spatial clustering of galaxies, as described, for instance, by statistics like the bispectrum and the skewness. Our algorithm may have several interesting applications, among which is the possibility of generating mock halo catalogues from low-resolution N -body simulations.  相似文献   

4.
We investigate a number of potential foregrounds for an ambitious goal of future radio telescopes such as the Square Kilometer Array (SKA) and the Low Frequency Array (LOFAR): spatial tomography of neutral gas at high redshift in 21-cm emission. While the expected temperature fluctuations due to unresolved radio point sources is highly uncertain, we point out that free–free emission from the ionizing haloes that reionized the Universe should define a minimal bound. This emission is likely to swamp the expected brightness temperature fluctuations, making proposed detections of the angular patchwork of 21-cm emission across the sky unlikely to be viable. Hα observations with JWST could place an upper bound on the contribution of high-redshift sources to the free–free background. An alternative approach is to discern the topology of reionization from spectral features due to 21-cm emission along a pencil-beam slice. This requires tight control of the frequency-dependence of the beam in order to prevent foreground sources from contributing excessive variance. We also investigate potential contamination by galactic and extragalactic radio recombination lines (RRLs). These are unlikely to be show-stoppers, although little is known about the distribution of RRLs away from the Galactic plane. The mini-halo emission signal is always less than that of the intergalactic medium (IGM), making mini-haloes unlikely to be detectable. If they are seen, it will be only in the very earliest stages of structure formation at high redshift, when the spin temperature of the IGM has not yet decoupled from the cosmic microwave background.  相似文献   

5.
6.
7.
8.
9.
I propose a modification of the spherical infall model for the evolution of density fluctuations with initially Gaussian probability distribution and scale-free power spectra in the Einsteinde Sitter universe as developed by Hoffman & Shaham. I introduce a generalized form of the initial density distribution around an overdense region and cut it off at half the interpeak separation, accounting in this way for the presence of the neighbouring fluctuations. Contrary to the original predictions of Hoffman & Shaham, the resulting density profiles within virial radii no longer have a power-law shape, but their steepness increases with distance. The profiles of haloes of galactic mass are well fitted by the universal profile formula of changing slope obtained as a result of N -body simulations by Navarro, Frenk & White. The trend of steeper profiles for smaller masses and higher spectral indices is also reproduced. The agreement between the model and simulations is better for smaller masses and lower spectral indices, which suggests that galaxies form mainly by accretion, while formation of clusters involves merging.  相似文献   

10.
11.
12.
The effects of merging histories of proto-objects on the angular momentum distributions of the present-time dark matter haloes are analysed. An analytical approach to the analysis of the angular momentum distributions assumes that the haloes are initially homogeneous ellipsoids and that the growth of the angular momentum of the haloes halts at their maximum expansion time. However, the maximum expansion time cannot be determined uniquely, because in the hierarchical clustering scenario each progenitor, or subunit, of the halo has its own maximum expansion time. Therefore the merging history of the halo may be important in estimating its angular momentum. Using the merger tree model by Rodrigues &38; Thomas, which takes into account the spatial correlations of the density fluctuations, we have investigated the effects of the merging histories on the angular momentum distributions of dark matter haloes. It was found that the merger effects, that is, the effects of the inhomogeneity of the maximum expansion times of the progenitors which finally merge together into a halo, do not strongly affect the final angular momentum distributions, so that the homogeneous ellipsoid approximation happens to be good for the estimation of the angular momentum distribution of dark matter haloes. This is because the effect of the different directions of the angular momenta of the progenitors cancels out the effect of the inhomogeneity of the maximum expansion times of the progenitors.   The contribution of the orbital angular momentum to the total angular momentum when two or more pre-existing haloes merge together was also investigated. It is shown that this contribution is more important than that of the angular momentum of diffuse accreting matter to the total angular momentum, especially when the mergers occur many times.  相似文献   

13.
14.
The hierarchical clustering inherent in Λcold dark matter cosmology seems to produce many of the observed characteristics of large-scale structure. But some glaring problems still remain, including the overprediction (by a factor of 10) of the number of dwarf galaxies within the virialized population of the local group. Several secondary effects have already been proposed to resolve this problem. It is still not clear, however, whether the principal solution rests with astrophysical processes, such as early feedback from supernovae, or possibly with as yet undetermined properties of the dark matter itself. In this paper, we carry out a detailed calculation of the dwarf halo evolution incorporating the effects of a hypothesized dark matter decay, D → D'+ l , where D is the unstable particle, D ' is the more massive daughter particle and l is the other, lighter (or possibly massless) daughter particle. This process preferentially heats the smaller haloes, expanding them during their evolution and reducing their present-day circular velocity. We find that this mechanism can account very well for the factor of 4 deficit in the observed number of systems with velocity  10–20 km s−1  compared to those predicted by the numerical simulations, if     , where Δ m is the mass difference between the initial and final states. The corresponding lifetime τ cannot be longer than ∼30 Gyr, but may be as short as just a few Gyr.  相似文献   

15.
Recent results from the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite suggest that the intergalactic medium (IGM) was significantly reionized at redshifts as high as   z ∼ 17  . At this early epoch, the first ionizing sources probably appeared in the shallow potential wells of mini-haloes with virial temperatures   T vir < 104 K  . Once such an ionizing source turns off, its surrounding H ii region Compton cools and recombines. None the less, we show that the 'fossil' H ii regions left behind remain at high adiabats, prohibiting gas accretion and cooling in subsequent generations of mini-haloes. This greatly amplifies feedback effects explored in previous studies, and early star formation is self-limiting. We quantify this effect to show that star formation in mini-haloes cannot account for the bulk of the electron scattering opacity measured by WMAP , which must be due to more massive objects. We argue that gas entropy, rather than IGM metallicity, regulates the evolution of the global ionizing emissivity and impedes full reionization until lower redshifts. We discuss several important consequences of this early entropy floor for reionization. It reduces gas clumping, curtailing the required photon budget for reionization. An entropy floor also prevents H2 formation and cooling, due to reduced gas densities: it greatly enhances feedback from ultraviolet photodissociation of H2. An early X-ray background would also furnish an entropy floor to the entire IGM; thus, X-rays impede rather than enhance H2 formation. Future 21-cm observations may probe the topology of fossil H ii regions.  相似文献   

16.
17.
18.
We present a stochastic approach to the spatial clustering of dark matter haloes in Lagrangian space. Our formalism is based on a local formulation of the 'excursion set' approach by Bond et al., which automatically accounts for the 'cloud-in-cloud' problem in the identification of bound systems. Our method allows us to calculate correlation functions of haloes in Lagrangian space using either a multidimensional Fokker–Planck equation with suitable boundary conditions, or an array of Langevin equations with spatially correlated random forces. We compare the results of our method with theoretical predictions for the halo autocorrelation function considered in the literature, and find good agreement with the results recently obtained within a treatment of halo clustering in terms of 'counting fields' by Catelan et al. Finally, the possible effect of spatial correlations on numerical simulations of halo merger trees is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号