首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

2.
The effect of auroral electrojets on the variations in the low-latitude geomagnetic disturbances and Dst during a strong magnetic storm of November 20–21, 2003, with Dst ≈ ?472 nT has been studied based on the global magnetic observations. It has been indicated that the magnetospheric storm expansive phase with Δt ≈ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 1–2 h results in positive low-latitude disturbances (ΔH) of the same duration and with an amplitude of ~ 30–100 nT in the premidnight-dawn sector. A growth of negative low-latitude ΔH values and Dst is mainly caused by regular convection electrojets with Δt ≥ 10 h, the centers of which shift to latitudes of ~ 50°–55° during the storm development. It has been established that the maximal low-latitude values of the field ΔH component at 1800–2400 MLT are observed when the auroral luminosity equatorward boundary shifts maximally southward during an increase in the negative values of the IMF B z component. It has been assumed that, during this storm, a magnetic field depression at low latitudes was mainly caused by an enhancement of the partially-ring current which closes through field-aligned currents into the ionosphere at the equatorward boundary of the auroral luminosity zone.  相似文献   

3.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

4.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

5.
The dynamics of the magnetospheric magnetic field during the magnetic storms of different intensity has been studied. The magnetic field variations on the Earth’s surface were calculated using the paraboloid model of the magnetosphere, taking into account the induction currents flowing in the diamagnetically conductive Earth. Dst and its components have been calculated for ten magnetic storms. It has been indicated that relative contributions of magnetospheric sources to Dst change depending on the storm power. For weak and moderate storms, the contribution of the magnetotail current sheet can reach values comparable with the ring current contribution and, sometimes, can even exceed this contribution. For strong storms, the ring current field dominates over the tail current field, the absolute value of which does not exceed 150 nT (also achieved during less intense storms). For storms with minimum Dst exceeding-200 nT, the tail current field is saturated, whereas the ring current can continue developing.  相似文献   

6.
We examine the geomagnetic field and space plasma disturbances developing simultaneously in the solar wind, in the inner and outer magnetosphere, and on the ground from 0730 to 2030 UT on April 11, 1997 during the recovery phase of a moderate magnetic storm. The fluctuations of the solar wind density, H-component of the geomagnetic field, and power of Pc1–2 (0.1–5 Hz) waves at middle and low latitudes evolve nearly simultaneously. These fluctuations also match very well with variations of density and flux of the magnetospheric plasma at the geosynchronous orbit, and of the geomagnetic field at the geosynchronous orbit and northern polar cap. The time delay between the occurrence of disturbances in different magnetosphere regions matches the time of fast mode propagation. These disturbances are accompanied by the generation of Pc1–2 waves at mid- and high-latitude observatories in nearly the same frequency range. A scenario of the evolution of wave phenomena in different magnetospheric domains is proposed.  相似文献   

7.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

8.
During an interaction of the Earth’s magnetosphere with the interplanetary magnetic cloud on October 18–19, 1995, a great magnetic storm took place. Extremely intense disturbances of the geomagnetic field and ionosphere were recorded at the midlatitude observatory at Irkutsk (Φ′≈45°, Λ′≈177°, L≈2) in the course of the storm. The most important storm features in the ionosphere and magnetic field are: a significant decrease in the geomagnetic field Z component during the storm main phase; unusually large amplitudes of geomagnetic pulsations in the Pi1 frequency band; extremely low values of critical frequencies of the ionospheric F2-layer; an appearance of intense Es-layers similar to auroral sporadic layers at the end of the recovery phase. These magnetic storm manifestations are typical for auroral and subauroral latitudes but are extremely rare in middle latitudes. We analyze the storm-time midlatitude phenomena and attempt to explore the magnetospheric storm processes using the data of ground observations of geomagnetic pulsations. It is concluded that the dominant mechanism responsible for the development of the October 18–19, 1995 storm is the quasi-stationary transport of plasma sheet particles up to L≈2 shells rather than multiple substorm injections of plasma clouds into the inner magnetosphere.  相似文献   

9.
A new type of high-latitude magnetic bays is revealed at geomagnetic latitudes higher than 71°, called ??polar substorms.?? It is shown that polar substorms differ from both classical substorms and high-latitude geomagnetic disturbances of the type of polar boundary intensifications (PBIs). While classical substorms start at latitudes below 67° and then expand poleward, polar substorms start almost simultaneously in the evening-night polar region of the oval. In contrast to PBIs, accompanied by auroral streamers expanding southward, polar substorms are accompanied by auroral arcs quickly traveling northward. It is shown that polar substorms are observed before midnight (20?C22 MLT) under weak geomagnetic activity (Kp ?? 2) during the late recovery phase of a magnetic storm. It is shown that a typical feature of polar substorms is the simultaneous excitation of highly intensive Pi2 and Pi3 geomagnetic pulsations at high latitudes, which exceed the typical amplitude of these pulsations at auroral latitudes by more than an order of magnitude. The duration of pulsations is determined by the substorm duration, and their amplitude decreases sharply at geomagnetic latitudes below ??71°. It is suggested that pulsations reflect fluctuations in ionospheric currents connected with polar substorms.  相似文献   

10.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

11.
The idea of two separate storm time ring currents, a symmetric and an asymmetric one has accepted since the 1960s. The existence of a symmetric equatorial ring current was concluded from Dst. However, the asymmetric development of the low-latitude geomagnetic disturbance field during storms lead to the assumption of the real existence of an asymmetric ring current. I think it is time to inquire whether this conception is correct. Thus, I have investigated the development of the low-latitude geomagnetic field during all the magnetic local times under disturbed and quiet conditions. The storm on February 6–9, 1986 and a statistical analysis of many storms has shown that the asymmetry does not vanish during the storm recovery phase. The ratio between the recovery phase asymmetry and the main phase asymmetry is low only for powerful storms. Storms of moderate intensity show the opposite. The global picture of the field evolution of the February storm shows clear differences at different local times. For instance the main phase and recovery phase start time does not coincide with Dst. Also the ring current decay is not the same at different local times. Therefore, Dst gives an incorrect picture of the field development. Moreover, asymmetry does not disappear during international quiet days as the investigation of the low-latitude geomagnetic field shows. Considering all these observations, I think we must revise our ideas about the ring current. In my opinion only one ring current exists and this is an asymmetric one. This asymmetry increases during storms and develops rather fast to more or less symmetric conditions. However, in no case is itjustified to conclude from Dst that a symmetric ring current exists.  相似文献   

12.
Results of fractal analysis of ultra-low-frequency (ULF) emissions registered at a low-latitude observatory, Guam (geomagnetic coordinates Φm=9°N, Λm=225°), and at a high-latitude drifting station, North Pole-30 (Φm=75°N, Λm=172°), are presented. The first set of data covers a long period of observations (20 months) including the strong (Ms=8) Guam earthquake of 8 August 1993. The second set of data covers a short period of observations (21 days) in April 1989 during the preparation phase of the big magnetic storm of 25 April 1989. Definite peculiarities in the behavior of ULF emission scaling (fractal) characteristics have been found, which are discussed on the basis of the self-organized criticality concept. The principal common peculiarity for magnetosphere–ionosphere and lithosphere systems is detection of flicker noise (β∼1, D0∼2) in a certain frequency range on the preparation phase of strong magnetospheric and seismic events.  相似文献   

13.
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.  相似文献   

14.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

15.
Geomagnetic storms are large disturbances in the Earth's magnetosphere caused by enhanced solar wind–magnetosphere energy transfer. One of the main manifestations of a geomagnetic storm is the ring current enhancement. It is responsible for the decrease in the geomagnetic field observed at ground stations. In this work, we study the ring current dynamics during two different levels of magnetic storms. Thirty-three events are selected during the period 1981–2004. Eighteen out of 33 events are very intense (or super-intense) magnetic storms (Dst ⩽−250 nT) and the remaining are intense magnetic storms (−250<Dst ⩽−100 nT). Interplanetary data from spacecraft in the solar wind near Earth's orbit (ACE, IMP-8, ISEE-3) and geomagnetic indices (Dst and Sym-H) are analyzed. Our aim is to evaluate the interplanetary characteristics (interplanetary dawn–dusk electric field, interplanetary magnetic field component BS), the ε parameter, and the total energy input into the magnetosphere () for these two classes of magnetic storms. Two corrections on the ε energy coupling function are made: the first one is an already known correction in the magnetopause radius to take into account the variation in the solar wind pressure. The second correction on the Akasofu parameter, first proposed in this work, accounts for the reconnection efficiency as a function of the solar wind ram pressure. Geomagnetic data/indices are also employed to study the ring current dynamics and to search for the differences in the storm evolution during these events. Our corrected ε parameter is shown to be more adequate to explain storm energy balance because the energy input and the energy dissipated in the ring current are in better agreement with modern estimates as compared with previous works. For super-intense storms, the correction of the Akasofu ε is on average a scaling factor of 3.7, whilst for intense events, this scaling factor is on average 3.4. The injected energy during the main phase using corrected ε can be considered a criterion to separate intense from very intense storms. Other possibilities of cutoff values based on the energy input are also investigated. A threshold value for the input energy is much more clear when a new classification on Dst=−165 nT is considered. It was found that the energy input during storms with Dst<−165 nT is double of the energy for storms with Dst>−165 nT.  相似文献   

16.
对流电场、场向电流和极光区电集流是磁层一电离层耦合的主要物理过程.它们的演化发展时间分别为几分钟至半小时的量级.本文用100°E和300°E的两个地磁经度链附近各11个台站的1min均值地磁H和Z分量资料,分析了1994年4月16-17日磁暴期间磁层耦合过程对极光区和中低纬区电离层扰动的地磁特征.强磁暴开始时,台站所处的地方时位置不同,则观测到的电离层和地磁响应也完全不同.这是磁层对流和一、二区场向电流共同作用的结果.一般说,扰时极光区的西向电集流变化更为强烈.随着耦合的发展,极光区范围会向南北扩展,电集流中心带则向低纬侧移动.在中低纬区,二区场向电流的建立能屏蔽一区场向电流所产生的扰动,并引起反向的电流及地磁变化.由此,中低纬区夜间有可能出现短时间的东向电场,又可通过EXB的垂直向上漂移作用抬升F层等离子体,并发生同一经度链附近的多站电离层h'F同时突增现象.另一方面,磁赤道附近的台站则更多地受内磁层赤道环电流和电离层赤道电集流的影响.  相似文献   

17.
The X17 solar flare occurred on October 28, 2003, and was followed by the X10 flare on October 29. These flares caused very strong geomagnetic storms (Halloween storms). The aim of the present study is to compare the variations in two main ionospheric parameters (foF2 and hmF2) at two chains of ionosondes located in Europe and North America for the period October 23–28, 2003. This interval began immediately before the storm of October 28 and includes its commencement. Another task of the work is to detect ionospheric precursors of the storm or substorm expansion phase. An analysis is based on SPIDR data. The main results are as follows. The positive peak of δfoF2 (where δ is the difference between disturbed and quiet values) is observed several hours before the magnetic storm or substorm commencement. This peak can serve as a disturbance precursor. The amplitude of δfoF2 values varies from 20 to 100% of the foF2 values. The elements of similarity in the variations in the δfoF2 values at two chains are as follows: (a) the above δfoF2 peak is as a rule observed simultaneously at two chains before the disturbance; (b) the δfoF2 variations are similar at all midlatitude (or, correspondingly, high-latitude) ionosondes of the chain. The differences in the δfoF2 values are as follows: (a) the effect of the main phase and the phase of strong storm recovery at one chain differs from such an effect at another chain; (b) the manifestation of disturbances at high-latitude stations of the chain differ from the manifestations at midlatitude stations. The δhmF2 variations are approximately opposite to the δfoF2 variations, and the δhmF2 values lie in the interval 15–25% of the hmF2 values. The performed study is useful and significant in studying the problems of the space weather, especially in a short-term prediction of ionospheric disturbances caused by magnetospheric storms or substorms.  相似文献   

18.
Based on the model of large-scale high-latitude current systems developed at IZMIRAN (IZMEM model), it has been indicated that auroral electrojets and current systems concentrated in the polar cap were the generators of long-period geomagnetic variations during the BEAR experiment on the electromagnetic field registration at the Scandinavian test site on June 1–July 15, 1998. Precisely circumpolar current systems, prevailing in the high-latitude ionosphere during the periods of a quiet magnetospheric state, which is characterized by the presence of the northern vertical (B z >0) component of the IMF vector in the solar wind, are responsible for the magnetotelluric fields.  相似文献   

19.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

20.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号