首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single crystals of two novel calcium oxotellurate(IV) nitrates were grown under hydrothermal conditions and were structurally characterized by X-ray diffraction. Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ [ $Cc$ , $Z=4$ , $a=25.258(3)$ Å, $b=5.7289(7)$ Å, $c=17.0066(19)$ Å, $\beta =124.377(2)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 4083 $F^2$ data, 281 parameters] can be described as a non-classic order/disorder (OD) structure, which fulfills the basic principle of OD theory, viz. local equivalence of polytypes, but does not strictly follow the vicinity condition (VC) of OD theory. The structure is made up from an alternating stacking of non-polar layers composed of isolated [TeO $_3$ ] units and Ca $^{2+}$ ions and polar layers containing NO $_3^-$ ions and water molecules. The electron lone-pairs of the [TeO $_3$ ] units protrude into the free space of the anion/water layers. The crystal under investigation was a non-classic OD-twin of domains of a maximum degree of order (MDO). At the twin plane a fragment of the second MDO polytype is located. The main building blocks of Ca $_6$ Te $_5\text {O}_{15}$ (NO $_3$ ) $_2$ [ $P2_1/c$ , $Z=4$ , $a=15.494(2)$ Å, $b=5.6145(7)$ Å, $c=39.338(4)$ Å, $\beta =142.480(5)^{\circ}$ , $R[F^2 > 2\sigma (F^2)]=0.043$ , 3026 $F^2$ data, 307 parameters] are isolated [TeO $_3$ ] units and Ca $^{2+}$ ions which are connected to a three-dimensional framework perforated by channels in which the N atoms of the nitrate anions are located and the electron lone-pairs of the [TeO $_3$ ] units protrude. The structure can topologically be derived from the structure of Ca $_5$ Te $_4\text {O}_{12}$ (NO $_3$ ) $_2$ (H $_2$ O) $_2$ by removing the water molecules and connecting the CaTeO $_3$ layers with additional [TeO $_3$ ] units and Ca $^{2+}$ ions.  相似文献   

2.
Approximately 125 hydrothermal annealing experiments have been carried out in an attempt to bracket the stability fields of different ordered structures within the plagioclase feldspar solid solution. Natural crystals were used for the experiments and were subjected to temperatures of ~650°C to ~1,000°C for times of up to 370 days at \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =600 bars, or \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) =1,200 bars. The structural states of both parent and product materials were characterised by electron diffraction, with special attention being paid to the nature of type e and type b reflections (at h+k=(2n+1), l=(2n+1) positions). Structural changes of the type C \(\bar 1\) I \(\bar 1\) , C \(\bar 1\) → “e” structure, I \(\bar 1\) → “e” and “e” structure → I \(\bar 1\) have been followed. There are marked differences between the ordering behaviour of crystals with compositions on either side of the C \(\bar 1\) ? I \(\bar 1\) transition line. In the composition range ~ An50 to ~ An70 the e structure appears to have a true field of stability relative to I \(\bar 1\) ordering, and a transformation of the type I \(\bar 1\) ? e has been reversed. It is suggested that the e structure is the more stable ordered state at temperatures of ~ 800°C and below. For compositions more albite-rich than ~ An50 the upper temperature limit for long range e ordering is lower than ~ 750°C, and there is no evidence for any I \(\bar 1\) ordering. The evidence for a true stability field for “e” plagioclase, which is also consistent with calorimetric data, necessitates reanalysis both of the ordering behaviour of plagioclase crystals in nature and of the equilibrium phase diagram for the albite-anorthite system. Igneous crystals with compositions of ~ An65, for example, probably follow a sequence of structural states C \(\bar 1\) I \(\bar 1\) e during cooling. The peristerite, Bøggild and Huttenlocher miscibility gaps are clearly associated with breaks in the albite, e and I \(\bar 1\) ordering behaviour but their exact topologies will depend on the thermodynamic character of the order/disorder transformations.  相似文献   

3.
A set of sanidine single crystals were previously deformed at 700° C in a Griggs triaxial press with different crystallographic orientations of the core so as to induce dislocation glide of different slip systems respectively. Deformed crystals have been studied by transmission electron microscopy (TEM) and the activated slip systems have been characterized for two orientations. (010)[001] and (001)1/2[ \(\overline 1 \) 10] systems expected for one orientation (main stress nearly parallel to [012]) are observed, whereas the (001)[100] system expected for the other orientation (main stress nearly parallel to [101]) is never observed. In the latter specimen the deformation is rather difficult and occurs through unexpected systems characterized as (110)1/2[1 \(\overline 1 \) 2] and (1 \(\overline 1 \) 1)1/2[110]. In all the samples studied the deformation is heterogeneous, exhibiting dislocation configurations related to temperature variations.  相似文献   

4.
Spectral ratios of teleseismic P waves for 15 deep (>200 km) earthquakes recorded at 146 High-Sensitivity Seismographic Network stations in the Kanto district and its surrounding area, eastern Japan, were inverted for attenuation parameter $ t_P^{ * } $ . The dataset consisted of good-quality vertical-component seismograms, whose P phases were handpicked. The P wave spectral ratios with high signal-to-noise ratios were calculated up to 1 Hz for all the station pairs, linear regressed, and then inverted for $ t_P^{ * } $ using the technique of least squares . The result showed that the active volcanic areas were clearly characterized by high $ t_P^{ * } $ . In contrast, $ t_P^{ * } $ varied in the nonvolcanic areas. The present result on the $ t_P^{ * } $ distribution was roughly consistent with the shallow part (<30 km) of an attenuation structure, which has been previously obtained based on 3-D tomography by using records of high-frequency (around 5 Hz) P waves from local earthquakes. This suggested that the present method of $ t_P^{ * } $ estimation is valid. The advantage and possible application to other areas were also discussed.  相似文献   

5.
The non-ferroic triclinic to triclinic \(I\bar 1 - P\bar 1\) phase transition in anorthite is described in terms of the spontaneous onset of an order parameter η. A triclinic to triclinic phase transition can be driven by order parameters (representations) arising from the Γ, Z, X, U, V, R, Y, and T points of symmetry of the Brillouin zone. Each point leads to a set of two inequivalent representations and thus there is a total of sixteen inequivalent order parameters. However, only the R 1 + representation is consistent with the change from the body-centered to primitive cell (increase of primitive cell size of two) and also with the origin of the two space groups (inversion center) being at the same position. The R 1 + order parameter of the high symmetry triclinic phase \(P\bar 1_0\) (or equivalently \(I\bar 1\) ) causes a reciprocal lattice change and, in terms of the lower symmetry reciprocal lattice, the order parameter corresponds to the b* point. This is consistent with experimentally observed x-ray diffuse scattering. Using induced representation theory, microscopic distortions compatible with the R 1 + order parameter are obtained. Assuming a distortion in an arbitrary direction at the general 2(i) Wyckoff position (x0,y0,z0) of \(P\bar 1_0\) (the higher symmetry phase) induced representation theory demands an opposite displacement at the position (x0, y0, z0), an opposite displacement at (x0+1,y0+1,z0+1), and the same displacement at ( \(\bar x\) 0+1, \(\bar y\) 0+1, \(\bar z\) 0+1) of \(P\bar 1_0\) . This is also consistent with experiment. The presence of the weak c-type reflections above the transition is attributed to the fluctuating lower symmetry antiphase domains related by the translation (1/2, 1/2, 1/2).  相似文献   

6.
Connectivity patterns of heterogeneous porous media are important in the estimation of groundwater residence time distributions (RTDs). Understanding the connectivity patterns of a hydraulic conductivity ( \(K\) ) field often requires knowledge of the entire aquifer, which is not practical. As such, the method used to estimate unknown \(K\) values using known \(K\) values is important. This study investigates how varying levels of conditioning data and four simulation techniques, one multi-Gaussian and three multi-point, are able to recreate key \(K\) field features and connectivity patterns of a synthetic two-dimensional bimodal distributed ln( \(K\) ) field with highly connected high \(K\) features. These techniques are then assessed in the context of RTD estimation. It was found that the multi-Gaussian technique presented a bias towards earlier travel times with increased conditioning data. This was due to the inability of the method to recreate multiple scales of connecting features. Of the multi-point methods investigated, the facies method was unable to predict early arrival times. The use of a continuous variable training image produced good fits to the observed residence time distribution with a high number of conditioning points. The ability of the methods to predict the shape of residence time distributions appears to be related to their ability to reproduce the connection patterns of higher \(K\) features.  相似文献   

7.
The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability $ k $ decreases and the absolute value of non-Darcy flow coefficient $ \beta $ increases. (2) The sandstone coefficients $ k $ and $ \beta $ range from $ 1.03 \times 10^{ - 18} $ to $ 1.53 \times 10^{ - 17} $  m2 and $ - 1.13 \times 10^{17} $ to $ - 2.35 \times 10^{18} $  m?1, respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).  相似文献   

8.
A new experimental model has been designed to simulate the influence of a natural fracture network on the propagation geometry of hydraulic fractures in naturally fractured formations using a tri-axial fracturing system. In this model, a parallel and symmetrical pre-fracture network was created by placing cement plates in a cubic mold and filling the mold with additional cement to create the final testing block. The surface of the plates will thus be weakly cemented and form pre-fractures. The dimension and direction of the pre-fractures can be controlled using the plates. The experiments showed that the horizontal differential stress $\Updelta \sigma$ and the angle $\Updelta \theta$ between the maximum horizontal principal in situ stress and the pre-fracture are the dominating factors for the initiation and propagation of hydraulic fractures. For $\Updelta \theta = 90^\circ$ and $\Updelta \sigma \ge 2{\text{ MPa}}$ or $\Updelta \theta = 60^\circ$ and $\Updelta \sigma \ge 4{\text{ MPa}}$ , the direction of the initiation and propagation of the hydraulic fractures are consistent with or deviate from the normal direction of the pre-fracture. When the hydraulic fractures approach the pre-fractures, the direction of the hydraulic fracture propagation will be consistent with the normal direction of the pre-fracture. Otherwise, the hydraulic fracture will deflect and perpendicularly cross the parallel and symmetric pre-fracture network. For $\Updelta \theta = 90^\circ$ and $\Updelta \sigma < 2{\text{ MPa}},\,\Updelta \theta = 60^\circ$ , and $\Updelta \sigma < 4{\text{ MPa}}$ or $\Updelta \theta = 45^\circ$ and $\Updelta \sigma = 4 - 8{\text{ MPa}}$ , before the hydraulic fracture and the pre-fractures intersect, the direction of the hydraulic fracture propagation remains unchanged, and the pre-fractures open or dilate when the hydraulic fracture propagates to the intersection point, forming a complicated hydraulic fracture network with the propagation region of the overall hydraulic fracture network taking the shape of an ellipse. In this condition, the complexity level of the hydraulic fracture is controlled by the net pressure, the compressive normal stress acting on the pre-fractures, the shearing strength and the cohesion strength of the planes of weakness. The conclusions of this research are inconsistent with the formulation of the approach angle that has been widely accepted by previous studies. The principle of hydraulic fracture propagation is that it follows the least resistance, the most preferential propagation, and the shortest propagation path.  相似文献   

9.
A study on the geochemistry of groundwater was carried out in a river basin of Andhra Pradesh to probe into the spatial controlling processes of groundwater contamination, using principal component analysis (PCA). The PCA transforms the chemical variables, pH, EC, Ca2+, Mg2+, Na+, K+, HCO \(_3^- \) , Cl?, SO \(_4^{2-} \) , NO \(_3^-\) and F?, into two orthogonal principal components (PC1 and PC2), accounting for 75% of the total variance of the data matrix. PC1 has high positive loadings of EC, Na+, Cl?, SO \(_4^{2-} \) , Mg2+ and Ca2+, representing a salinity controlled process of geogenic (mineral dissolution, ion exchange, and evaporation), anthropogenic (agricultural activities and domestic wastewaters), and marine (marine clay) origin. The PC2 loadings are highly positive for HCO \(_3^- \) , F?, pH and NO \(_3^- \) , attributing to the alkalinity and pollution controlled processes of geogenic and anthropogenic origins. The PC scores reflect the change of groundwater quality of geogenic origin from upstream to downstream area with an increase in concentration of chemical variables, which is due to anthropogenic and marine origins with varying topography, soil type, depth of water levels, and water usage. Thus, the groundwater quality shows a variation of chemical facies from Na+ > Ca2+ > Mg2+ > K+: HCO \(_3^- \) > Cl? > SO \(_4^{2-}>\) NO \(_3^- \) > F?at high topography to Na+ > Mg2+ > Ca2+ > K+: Cl? > HCO \(_3^- \) > SO \(_4^{2-}>\) NO \(_3^- \) > F? at low topography. With PCA, an effective tool for the spatial controlling processes of groundwater contamination, a subset of explored wells is indexed for continuous monitoring to optimize the expensive effort.  相似文献   

10.
The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980–1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure (P) or volatile pressure ( $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O ) are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature–pressure–melt fraction (T $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O F) space. Our modeled crystals indicate that (1) crystallization starts at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 200–280 MPa at F = 0.65–0.7, (3) crystals are transferred to $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  = 100–130 MPa (often accompanied by 10–20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O  ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled $P_{{{\text{H}}_{ 2} {\text{O}}}}$ P H 2 O , in contrast, can be effected by fluxing the reservoir with CO2-rich vapors that are either released from deeper in the system or transported with the recharge magma. Temperature fluctuations of 20–40 °C, on the other hand, are an inevitable consequence of incremental, or pulsed, assembly of crustal magma bodies wherein each pulse interacts with ancestral, stored magmas. We venture that this “petrological cannibalism” accounts for much of the plagioclase zoning and textural complexity seen not only at Mount St. Helens but also at arc magmas generally. More broadly we suggest that the magma reservoir below Mount St. Helens is dominated by crystal mush and fed by frequent inputs of hotter, but compositionally similar, magma, coupled with episodes of magma ascent from one storage region to another. This view both accords with other independent constraints on the subvolcanic system at Mount St. Helens and supports an emerging view of many active magmatic systems as dominantly super-solidus, rather than subliquidus, bodies.  相似文献   

11.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

12.
Single crystals of sanidine which were experimentally deformed so as to introduce the (010)[100] slip system were examined by transmission electron microscopy (tem). Dislocation glide is mainly manifested in the samples deformed at 700° C, with a strain rate \(\dot \varepsilon = 1 - 2 \times 10^{ - 6} s^{ - 1} \) . In addition to the expected slip system another more important one, (12 \(\bar 1\) )[101], was found. The dislocations lying in (010) present a glissile dissociation. These observations have been discussed in term of the feldspar structure. Models for glissile dissociation in (010) are proposed: [100]=1/2[100]+1/2[100] or 1/2[101]+1/2[10 \(\bar 1\) ] and [101]=1/2[101]+1/2[101].  相似文献   

13.
Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, $ K_{{T_{0} }} $  = 168.4(3) GPa; $ K_{{T_{0} }}^{\prime } $  = 4.48(3) (both at 298 K); $ \partial K_{{T_{0} }} /\partial T $  = ?0.032(3) GPa K?1; α0 = 2.32(2) × 10?5 K?1; α1 = 5.7(4) × 10?9 K?2. The volumetric isothermal Anderson–Grüneisen parameter, δ T , is 7.6(7) at 298 K. $ \partial K_{{T_{0} }} /\partial T $ for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (?0.0085(11) to ?0.024 GPa K?1). We also report axial PVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave $ \partial K_{{aT_{0} }} /\partial T $  = ?0.038(4) GPa K?1; $ \partial K_{{bT_{0} }} /\partial T $  = ?0.021(2) GPa K?1; $ \partial K_{{cT_{0} }} /\partial T $  = ?0.026(5) GPa K?1, with δ T  = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although $ K_{{T_{0} }} $ is lowest for the b-axis, its incompressibility is the least temperature dependent.  相似文献   

14.
Single crystals of quartz, shock-loaded along the a axis to pressures of 22 Gpa, 24 GPa, 26 GPa and 30 GPa were examined by high-voltage transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction. Asymmetric broadenings of X-ray lines indicate spatial inhomogeneity of shock effects. X-ray streaking angles in the reciprocal lattice planes h0 \(\bar h\) l, 0k \(\bar k\) l and hki0 indicate a slight tilting deformation by rotation about [00.1] in (0001). TEM reveals glass lamellae which are mostly in (01 \(\bar 1\) 2) orientation, and are correlated with optical planar elements and with surface steps seen in SEM. No dislocations are found. There are (0001) lamellar features, probably Brazil twins. The (01 \(\bar 1\) 2) glass lamellae develop directly from bands of quartz in which intense deformation has produced a fine-scale lamellar to blocky structure, possibly also originating by twinning. Relics of crystalline structure are found in almost completely vitrified lamellae. Stishovite occurs in heavily deformed parts of the 22 GPa and 24 GPa specimens, in patches of densified glass distinct from the sharply bounded lamellae. The nucleationless, pervasive transformation of lamellae to glass, with preservation of their sharp boundaries, is attributed to defect coalescence analogous to vitrification by radiation damage (metamictization). Some patchy glass may be due to melting.  相似文献   

15.
The flow rule used in the high-cycle accumulation (HCA) model proposed by Niemunis et al. (Comput Geotech 32: 245, 2005) is examined on the basis of the data from approximately 350 drained long-term cyclic triaxial tests (N = 105 cycles) performed on 22 different grain-size distribution curves of a clean quartz sand. In accordance with (Wichtmann et al. in Acta Geotechnica 1: 59, 2006), for all tested materials, the “high-cyclic flow rule (HCFR)”, i.e., the ratio of the volumetric and deviatoric strain accumulation rates \(\dot{\varepsilon}_{\rm{v}}^{{\rm acc}}/\dot{\varepsilon}_{\rm{q}}^{{\rm acc}}\) , was found dependent primarily on the average stress ratio η av = q av/p av and independent of amplitude, soil density and average mean pressure. The experimental HCFR can be fairly well approximated by the flow rule of the modified Cam-clay (MCC) model. Instead of the critical friction angle \(\varphi_{\rm{c}}\) which enters the flow rule for monotonic loading, the HCA model uses the MCC flow rule expression with a slightly different parameter \(\varphi_{\rm{cc}}\) . It should be determined from cyclic tests. \(\varphi_{\rm{cc}}\) and \(\varphi_{\rm{c}}\) are of similar magnitude but not always identical, because they are calibrated from different types of tests. For a simplified calibration in the absence of cyclic test data, \(\varphi_{\rm{cc}}\) may be estimated from the angle of repose \(\varphi_{\rm{r}}\) determined from a pluviated cone of sand (Wichtmann et al. in Acta Geotechnica 1: 59, 2006). However, the paper demonstrates that the MCC flow rule with \(\varphi_{\rm{r}}\) does not fit well the experimentally observed HCFR in the case of coarse or well-graded sands. For an improved simplified calibration procedure, correlations between \(\varphi_{\rm{cc}}\) and parameters of the grain-size distribution curve (d 50,   C u) have been developed on the basis of the present data set. The approximation of the experimental HCFR by the generalized flow rule equations proposed in (Wichtmann et al. in J Geotech Geoenviron Eng ASCE 136: 728, 2010), considering anisotropy, is also discussed in the paper.  相似文献   

16.
Coherency stress and coherency strain energy generated by Na+?K+ ion exchange in alkali feldspars are calculated using an isotropic model, and deformation of single crystals of alkali feldspars exposed to molten alkali chlorides at \(P_{H_2 O} \) < 1 bar is described. Coherency stress in alkali feldspars can reach 10–20 kb. When it is large, partial relaxation by fracture and/or plastic deformation takes place under anhydrous conditions, but temporary build-up of stress is unavoidable even under hydrothermal conditions. Because of coherency strain energy, a thin layer of an end-member alkali feldspar produced by cation exchange on a grain of the other end-member alkali feldspar would be unstable with respect to dissolution. Therefore, under hydrothermal conditions one end-member alkali feldspar replaces the other by dissolution and precipitation. The mechanism of the reaction $$Na_x K_{1 - x} AlSi_3 O_{8_{(feld.)} } + yK^ + \rightleftharpoons Na_{x - y} K_{1 + y - x} AlSi_3 O_{8_{(feld.)} } + yNa^ + $$ is primarily controlled by \(P_{H_2 O} \) and by ΔK/(Na + K), the difference between the equilibrium value and the initial value of the atomic K/(Na + K) ratio of the feldspar. When ¦ΔK/(Na + K)¦ is small, the reaction proceeds by cation exchange. When ¦ΔK/(Na + K)¦ is large, cation exchange still occurs if \(P_{H_2 O} \) is very low, but under hydrothermal conditions replacement by dissolution and precipitation occurs.  相似文献   

17.
Deformation-induced stacking defects in dolomite have been characterised following examination at the cation sublattice level using high-resolution electron microscopy at 500kV. Slip on c (≡{0001}) is observed to produce stacking faults, often de-localised laterally, which are terminated by partial dislocations with Burgers vectors of the form 1/3 [1 \(\overline 1 \) 00]: a model for the faulted dolomite lattice has been constructed which agrees with the image appearance. Slip on f (≡{10 \(\overline 1 \) 2}) produces long planar faults which are established as not being stacking faults, in the normal sense, since there appear to be no offsets of the cation sublattice across the faults, nor any general indication of any terminating partial dislocations: it is proposed that the contrast arises from rotational disorder in CO3 groups which has resulted from the prior passage of partial dislocations during deformation.  相似文献   

18.
Property and behaviour of sand–pile interface are crucial to shaft resistance of piles. Dilation or contraction of the interface soil induces change in normal stress, which in turn influences the shear stress mobilised at the interface. Although previous studies have demonstrated this mechanism by laboratory tests and numerical simulations, the interface responses are not analysed systematically in terms of soil state (i.e. density and stress level). The objective of this study is to understand and quantify any increase in normal stress of different pile–soil interfaces when they are subjected to loading and stress relief. Distinct element modelling was carried out. Input parameters and modelling procedure were verified by experimental data from laboratory element tests. Parametric simulations of shearbox tests were conducted under the constant normal stiffness, constant normal load and constant volume boundary conditions. Key parameters including initial normal stress ( $ \sigma_{{{\text{n}}0}}^{\prime } $ ), initial void ratio (e 0), normal stiffness constraining the interface and loading–unloading stress history were investigated. It is shown that mobilised stress ratio ( $ \tau /\sigma_{\text{n}}^{\prime } $ ) and normal stress increment ( $ \Updelta \sigma_{\text{n}}^{\prime } $ ) on a given interface are governed by $ \sigma_{{{\text{n}}0}}^{\prime } $ and e 0. An increase in $ \sigma_{{{\text{n}}0}}^{\prime } $ from 100 to 400 kPa leads to a 30 % reduction in $ \Updelta \sigma_{\text{n}}^{\prime } $ . An increase in e 0 from 0.18 to 0.30 reduces $ \Updelta \sigma_{\text{n}}^{\prime } $ by more than 90 %, and therefore, shaft resistance is much lower for piles in loose sands. A unique relationship between $ \Updelta \sigma_{\text{n}}^{\prime } $ and normal stiffness is established for different soil states. It can be applied to assess the shaft resistance of piles in soils with different densities and subjected to loading and stress relief. Fairly good agreement is obtained between the calculated shaft resistance based on the proposed relationship and the measured results in centrifuge model tests.  相似文献   

19.
Plagioclase feldspars with mean compositions Ab91,3Or4,7An4,0 and Ab88,7An10,1Or1,2 have been studied by transmission electron microscopy and electron diffraction. The substructure consists of thin lamellae of albite and oligoclase. Two types of orientations of the lamellar planes were observed. The orientation of the more common type was found to change from (08 \(\bar 1\) ) to about ( \(\bar 1\) , 21, \(\bar 2\) ) as a function of the mean potassium content. The plane of the other type was found to be near ( \(\bar 7\) 12). Only the first type of lamellae produces visible Schiller colours.  相似文献   

20.
To determine depth dependence of permeability in various geologic deposits, exponential models have often been proposed. However, spatial variability in hydraulic conductivity, K, rarely fits this trend in coarse alluvial aquifers, where complex stratigraphic sequences follow unique trends due to depositional and post-depositional processes. This paper analyzes K of alluvial-fan gravel deposits in several boreholes, and finds exponential decay in K with depth. Relatively undisturbed gravel cores obtained in the Toyohira River alluvial fan, Sapporo, Japan, are categorized by four levels of fine-sediment packing between gravel grains. Grain size is also analyzed in cores from two boreholes in the mid-fan and one in the fan-toe. Profiles of estimated conductivity, $ \overline{K} $ , are constructed from profiles of core properties through a well-defined relation between slug-test results and core properties. Errors in $ \overline{K} $ are eliminated by a moving-average method, and regression analysis provides the decay exponents of $ \overline{K} $ with depth. Moving-average results show a similar decreasing trend in only the mid-fan above ~30-m depth, and the decay exponent is estimated as ≈0.11 m?1, which is 10- to 1,000-fold that in consolidated rocks. A longitudinal cross section is also generated by using the profiles to establish hydrogeologic boundaries in the fan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号