首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluid inclusions approximated by the system H2O-CO2-NaCl are common in many geologic environments. In order to apply microthermometric data from these inclusions to infer P-T (pressure-temperature) trapping conditions, the composition of the inclusions, including the salinity, must be known. Normally, salinities of aqueous inclusions are determined from ice-melting temperatures obtained during microthermometry. However, when CO2-bearing aqueous fluid inclusions are cooled they often form a hydrate that incorporates H2O into the structure, and salinities estimated from ice-melting temperatures are therefore higher than the actual salinity. A technique that combines data from Raman spectroscopic and microthermometric analyses of individual inclusions was developed to determine the salinity of CO2-bearing aqueous inclusions based on measured clathrate melting temperatures and CO2 pressures obtained from Raman analyses. In this study, the pressure within inclusions was determined using Raman spectroscopy based on the splitting of the Fermi diad of CO2, measured at the clathrate melting temperature. The CO2 densities (and pressures) predicted by the equation developed in this study are in relatively good agreement with previously published equations, except for very low densities and correspondingly low pressures. The combined Raman spectroscopy - microthermometry technique thus provides both the temperature and the pressure in the inclusion at clathrate melting. For inclusions in which the clathrate melts in the presence of CO2 liquid, the salinity can be determined with a precision of a few tenths of a wt% NaCl, whereas for inclusions in which clathrate melts in the presence of CO2 vapor the salinity error may be a few wt% NaCl. Applying the method to synthetic fluid inclusions with known salinity suggests that the technique is valid for determining salinity of H2O-CO2-NaCl fluid inclusions in which clathrate melts in the presence of liquid CO2 only or vapor CO2 only.  相似文献   

2.
A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (υ1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 °C, and pressures up to 37 MPa. The results show that the CH4υ1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell.  相似文献   

3.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

4.
This work reports the application of thermodynamic models, including equations of state, to binary (salt-free) CH4-H2O fluid inclusions. A general method is presented to calculate the compositions of CH4-H2O inclusions using the phase volume fractions and dissolution temperatures of CH4 hydrate. To calculate the homogenization pressures and isolines of the CH4-H2O inclusions, an improved activity-fugacity model is developed to predict the vapor-liquid phase equilibrium. The phase equilibrium model can predict methane solubility in the liquid phase and water content in the vapor phase from 273 to 623 K and from 1 to 1000 bar (up to 2000 bar for the liquid phase), within or close to experimental uncertainties. Compared to reliable experimental phase equilibrium data, the average deviation of the water content in the vapor phase and methane solubility in the liquid phase is 4.29% and 3.63%, respectively. In the near-critical region, the predicted composition deviations increase to over 10%. The vapor-liquid phase equilibrium model together with the updated volumetric model of homogenous (single-phase) CH4-H2O fluid mixtures (Mao S., Duan Z., Hu J. and Zhang D. (2010) A model for single-phase PVTx properties of CO2-CH4-C2H6-N2-H2O-NaCl fluid mixtures from 273 to 1273 K and from 1 to 5000 bar. Chem. Geol.275, 148-160), is applied to calculate the isolines, homogenization pressures, homogenization volumes, and isochores at specified homogenization temperatures and compositions. Online calculation is on the website: http://www.geochem-model.org/.  相似文献   

5.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

6.
The enderbites from Tromøy in the central, granulite facies part of the Proterozoic Bamble sector of southern Norway contain dominantly CO2 and N2 fluid inclusions. CO2 from fluid inclusions in quartz segregations in enderbites was extracted by mechanical (crushing) and thermal decrepitation and the δ13C measured. Measurement was also made on samples washed in 10% HCl, oxidized with CuO at high temperatures, and step-wise extracted with progressive heating. Results between the different techniques are systematic. The main results show δ13C of -4.5±1.5% for crushing and -7±2% for thermal decrepitation. δ13C is about constant for CO2 extracted at different temperatures and points to a homogeneous isotopic composition. Due to the presence of carbonate particles and/or induced contaminations for the extraction by thermal decrepitation, the results for the crushing experiments are assumed the most reliable for fluid-inclusion CO2. Very low values of δ13C have not been found in enderbite samples and δ13C combined with δ18O of the host quartzes (8-11%) indicates juvenile values. In addition, the fluid inclusions were examined by microthermometry and Raman analysis and host quartz by acoustic emission and cathodoluminescence. CO2 fluid inclusions have varying densities with a frequency maximum of 0.92 g cm-3 and generally do not concur with trapping densities at granulite conditions. Textures show that CO2 must have been trapped in fluid inclusions in one early event, but transformed to different extents during late isothermal uplift without important fractionation of isotope compositions. The present data support a model of intrusion and crystallization of a CO2-rich enderbitic magma at granuiite conditions.  相似文献   

7.
Phase equilibria in the system H2O-NaCl have been determined to 1000°C and 1500 bars using synthetic fluid inclusions formed by healing fractures in inclusion-free Brazilian quartz in the presence of the two coexisting, immiscible H2O-NaCl fluids at various temperatures and pressures. Petrographic and microthermometric analyses indicate that the inclusions trapped one or the other of the two fluids present, or mixtures of the two. Salinities of the two coexisting phases were obtained from heating and freezing studies on those inclusions which trapped only a single, homogeneous fluid phase.Results of the present study are consistent with previously published data on the H2O-NaCl system at lower temperatures and pressures, and indicate that the two-phase field extends well into the P-T range of most shallow magmatic-hydrothermal activity. As a consequence, chloride brines exsolved from many epizonal plutons during the process of “second-boiling” should immediately separate into a high-salinity liquid phase and a lower salinity vapor phase and produce coexisting halite-bearing and vapor-rich fluid inclusions. This observation is consistent with results of numerous fluid inclusion studies of ore deposits associated with shallow intrusions, particularly the porphyry copper deposits, in which halite-bearing and coexisting vapor-rich inclusions are commonly associated with the earliest stages of magmatic-hydrothermal activity.  相似文献   

8.
Optical and analytical studies were performed on 400 N2 + CO2 gas bearing inclusions in dolomites and quartz from Triassic outcrops in northern Tunisia. Other fluids present include brines (NaCl and KCl bearing inclusions) and rare liquid hydrocarbons. At the time of trapping, such fluids were heterogeneous gas + brine mixtures. In hydrocarbon free inclusions the N2(N2+ CO2) mole ratio was determined using two different non-destructive and punctual techniques: Raman microprobe analysis, and optical estimation of the volume ratios of the different phases selected at low temperatures. In the observed range of compositions, the two methods agree reasonably well.The N2 + CO2 inclusions are divided into three classes of composition: (a) N2(N2 + CO2) > 0,57: Liquid nitrogen is always visible at very low temperature and homogenisation occurs in the range ?151°C to ? 147°C (nitrogen critical temperature) dry ice (solid CO2) sublimates between ?75°C and ?60°C; (b) 0,20 < N2(N2 + CO2) ? 0,57: liquid nitrogen is visible at very low temperature but dry ice melts on heating; liquid and gas CO2 homogenise to liquid phase between ?51°C to ?22°C; (c) N2(N2 + CO2) ? 0,20: liquid nitrogen is not visible even at very low temperature (?195°C) and liquid and gas CO2 homogenise to liquid phase between ?22°C and ?15°C. The observed phases changes are used to propose a preliminary phase diagram for the system CO2-N2 at low temperatures.Assuming additivity of partial pressures, isochores for the CO2-N2 inclusions have been computed. The intersection of these isochores with those for brine inclusions in the same samples may give the P and T of trapping of the fluids.  相似文献   

9.
Abstract Natural, pure CO2 inclusions in quartz and olivine (c. Fo90) were exposed to controlled fH2 conditions at T= 718–728°C and Ptotal= 2 kbar; their compositions were monitored (before and after exposures) by microsampling Raman spectroscopy (MRS) and microthermometry. In both minerals exposed at the graphite–methane buffer (fH2= 73 bar), fluid speciations record the diffusion of hydrogen into the inclusions. In quartz, room-temperature products in euhedral isolated (EI type) inclusions are carbonic phases with molar compositions of c. CO2(60) + CH4(40) plus graphite (Gr) and H2O, whereas anhedral inclusions along secondary fractures (AS type) are Gr-free and contain H2O plus carbonic phases with compositions in the range c. CO2(60) + CH4(40) to CO2(10) + CH4(90). EI type inclusions in olivine evolved to c. CO2(90–95) + CH4(5–10) without Gr, whereas AS type inclusions have a range of compositions from CO2(90) + CH4(10) ± Gr to CH4(50) + H2(50) ± Gr; neither H2O nor any hydrous species was detected by optical microscopy or MRS in the olivine-hosted products. Differences in composition between and among the texturally distinct populations of inclusions in both minerals probably arise from variations in initial fluid densities, as all inclusions apparently equilibrated with the ambient fH2. These relations suggest that compositional variability among inclusions in a given natural sample does not require the entrapment of multiple generations of fluids. In addition, the absence of H2O in the olivine-hosted inclusions would require the extraction of oxygen from the fluids, in which case re-equilibration mechanisms may be dependent on the composition and structure of the host mineral. Many of the same samples were re-exposed to identical P–T conditions using Ar as the pressure medium, yielding ambient fH2= 0.06 bar. In most inclusions, the carbonic fluids returned to pure CO2 and graphite persisted in the products. Reversal of the mechanisms from the prior exposure at fH2= 73 bar did not occur in any inclusions but the AS types in olivine, in which minor CO2 was produced at the expense of CH4 and/or graphite. The observed non-reversibility of previous mechanisms may be attributed to: (1) slower fluid–solid reactions compared to reactions in the homogeneous fluid phase; (2) depressed activities of graphite due to poor ordering; and/or (3) low ambient fO2 at the conditions of the second run.  相似文献   

10.
The Khtada Lake. British Columbia, metamorphic complex consists of high grade amphibolite and metasedimentary units with development of gneiss, migmatite and homogeneous autochthonous plutons. Maximum metamorphic conditions are estimated to have exceeded 5 kbar and 700°C.Fluid inclusions in matrix quartz are highly variable in density and composition, ranging from apparently pure CO2 (gas or liquid or both at room temperature) through CO2 + H2O ± CH4 mixtures to inclusions which are entirely aqueous. They occur along cracks, in groups without planar features and as isolated inclusions. The latter and some which occur in groups, are interpreted to most nearly approximate, in density and composition, the fluids present during the peak of metamorphism.The density and fluid composition data are derived from direct observations of phase changes between ? 180 and + 380°C and from the application of published experimental data in the system CH4-CO2-H2O-NaCl. The most dense, pure CO2 inclusions indicate a pressure of entrapment at 5 kbar, if a temperature of 700°C is assumed. This is in close agreement with the minimum P-T estimates from the mineral assemblages. Methane was positively identified in inclusions in graphite-bearing specimens. Salt content is concluded to be about 5–6 wt% NaCl equivalent in the aqueous phase in both aqueous and CO2 + H2O inclusions. There is evidence of immiscible separation of CO2-rich and H2O-rich fluids at temperatures at least as high as 375°C.  相似文献   

11.
文章运用激光拉曼光谱和显微测温等方法,对赤城县梁家沟铅锌银多金属矿床矿石中的石英流体包裹体进行均一温度、盐度的测试分析。结果表明,矿物中的流体包裹体以气液2相为主,气相成分主要是CO2,液相成分主要是H2O和烃类液体;包裹体的均一温度为80.0~160.0℃,盐度w(NaCl)=2%~12%,说明矿床形成条件为低温低盐度,且富含烃类物质。结合矿床地质特征、矿床的构造位置、产出地层和该矿床中矿(岩)石的常量元素、微量元素和稀土元素的数据研究结果,初步厘定梁家沟铅锌银矿床属于密西西比河谷型(MVT)矿床。  相似文献   

12.
The Zhuanshanzi gold deposit lies in the eastern section of the Xingmeng orogenic belt and the northern section of the Chifeng‐Chaoyang gold belt. The gold veins are strictly controlled by a NW‐oriented shear fault zone. Quartz veins and altered tectonic rock‐type gold veins are the main vein types. The deposits can be divided into four mineralization stages, and the second and third metallogenic stages are the main metallogenic stages. In this paper, based on the detailed field geological surveys, an analysis of the orebody and ore characteristics, microtemperature measurement of fluid inclusions, the Laser Raman spectrum of the inclusions, determination of C? H? O? S? Pb isotopic geochemical characteristics, and so on were carried out to explore the origin of the ore‐forming fluids, ore‐forming materials, and the genesis of the deposits. The results show that the fluid inclusions can be divided into four types: type I – gas–liquid two‐phase inclusions; type II – gas‐rich inclusions; type III– liquid inclusions; and type IV – CO2‐containing three‐phase inclusions. However, they are dominated by type Ib – gas liquid inclusions and type IV – three‐phase inclusions containing CO2. The gas compositions are mainly H2O and CO2, indicating that the metallogenic system is a CO2? H2O? NaCl system. The homogenization temperature of the ore‐forming fluid evolved from a middle temperature to a low temperature, and the temperature of the fluid was further reduced due to meteoric water mixing during the late stage, as well as a lack of CO2 components, and eventually evolved into a simple NaCl? H2O hydrothermal system. C? H? O? S? Pb isotope research proved that the ore‐forming fluids are mainly magmatic water during the early stage, with abundant meteoric water mixed in during the late stage. Ore‐forming materials originated mostly from hypomagma and were possibly influenced by the surrounding rocks, suggesting that the ore‐forming materials were mainly magmatic hydrothermal deposits, with a small amount of crustal component. The fluid immiscibility and the CO2 and CH4 gases in the fluids played an active and important role in the precipitation and enrichment of Au during different metallogenic stages. The deposit is considered a magmatic hydrothermal deposit of middle–low temperature.  相似文献   

13.
Previous models of hydrodynamics in contact metamorphic aureoles assumed flow of aqueous fluids, whereas CO2 and other species are also common fluid components in contact metamorphic aureoles. We investigated flow of mixed CO2–H2O fluid and kinetically controlled progress of calc‐silicate reactions using a two‐dimensional, finite‐element model constrained by the geological relations in the Notch Peak aureole, Utah. Results show that CO2 strongly affects fluid‐flow patterns in contact aureoles. Infiltration of magmatic water into a homogeneous aureole containing CO2–H2O sedimentary fluid facilitates upward, thermally driven flow in the inner aureole and causes downward flow of the relatively dense CO2‐poor fluid in the outer aureole. Metamorphic CO2‐rich fluid tends to promote upward flow in the inner aureole and the progress of devolatilization reactions causes local fluid expulsion at reacting fronts. We also tracked the temporal evolution of P‐T‐XCO2conditions of calc‐silicate reactions. The progress of low‐ to medium‐grade (phlogopite‐ to diopside‐forming) reactions is mainly driven by heat as the CO2 concentration and fluid pressure and temperature increase simultaneously. In contrast, the progress of the high‐grade wollastonite‐forming reaction is mainly driven by infiltration of chemically out‐of‐equilibrium, CO2‐poor fluid during late‐stage heating and early cooling of the inner aureole and thus it is significantly enhanced when magmatic water is involved. CO2‐rich fluid dominates in the inner aureole during early heating, whereas CO2‐poor fluid prevails at or after peak temperature is reached. Low‐grade metamorphic rocks are predicted to record the presence of CO2‐rich fluid, and high‐grade rocks reflect the presence of CO2‐poor fluid, consistent with geological observations in many calc‐silicate aureoles. The distribution of mineral assemblages predicted by our model matches those observed in the Notch Peak aureole.  相似文献   

14.
Fluid inclusions have recorded the history of degassing in basalt. Some fluid inclusions in olivine and pyroxene phenocrysts of basalt were analyzed by micro-thermometry and Raman spectroscopy in this paper. The experimental results showed that many inclusions are present almost in a pure CO2 system. The densities of some CO2 inclusions were computed in terms of Raman spectroscopic characteristics of CO2 Fermi resonance at room temperature. Their densities change over a wide range, but mainly between 0.044 g/cm3 and 0.289 g/cm3. Their micro-thermometric measurements showed that the CO2 inclusions examined reached homogenization between 1145.5℃ and 1265℃ . The mean value of homogenization temperatures of CO2 inclusions in basalts is near 1210℃. The trap pressures (depths) of inclusions were computed with the equation of state and computer program. Distribution of the trap depths makes it know that the degassing of magma can happen over a wide pressure (depth) range, but mainly at the depth of 0.48 km to 3.85 km. This implicates that basalt magma experienced intensive degassing and the CO2 gas reservoir from the basalt magma also may be formed in this range of depths. The results of this study showed that the depth of basalt magma degassing can be forecasted from CO2 fluid inclusions, and it is meaningful for understanding the process of magma degassing and constraining the inorganogenic CO2 gas reservoir.  相似文献   

15.
The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.  相似文献   

16.
17.
Phase equilibria in the ternary systems H2O–CO2–NaCl and H2O–CO2–CaCl2 have been determined from the study of synthetic fluid inclusions in quartz at 500 and 800 °C, 0.5 and 0.9 GPa. The crystallographic control on rates of quartz overgrowth on synthetic quartz crystals was exploited to prevent trapping of fluid inclusions prior to attainment of run conditions. Two types of fluid inclusion were found with different density or CO2 homogenisation temperature (Th(CO2)): a CO2-rich phase with low Th(CO2), and a brine with relatively high Th(CO2). The density of CO2 was calibrated using inclusions in the binary system H2O–CO2. Mass balance calculations constrain tie lines and the miscibility gap between brines and CO2-rich fluids in the H2O–CO2–NaCl and H2O–CO2–CaCl2 systems at 500 and 800 °C, and 0.5 and 0.9 GPa. The miscibility gap in the CaCl2 system is larger than in the NaCl system, and solubilities of CO2 are smaller. CaCl2 demonstrates a larger salting-out effect than NaCl at the same P–T conditions. In ternary systems, homogeneous fluids are H2O-rich and of extremely low salinity, but at medium to high concentrations of salts and non-polar gases fluids are unlikely to be homogeneous. The two-phase state of crustal fluids should be common. For low fluid-rock ratios the cation compositions of crustal fluids are buffered by major crustal minerals: feldspars and micas in pelites and granitic rocks, calcite (dolomite) in carbonates, and pyroxenes and amphiboles in metabasites. Fluids in pelitic and granitic rocks are Na-K rich, while for carbonate and metabasic rocks fluids are Ca-Mg-Fe rich. On lithological boundaries between silicate and carbonate rocks, or between pelites and metabasites, diffusive cation exchange of the salt components of the fluid will cause the surfaces of immiscibility to intersect, leading to unmixing in the fluid phase. Dispersion of acoustic energy at critical conditions of the fluid may amplify seismic reflections that result from different fluid densities on lithological boundaries.Editorial responsibility: I. Parsons  相似文献   

18.
对长岭凹陷深层天然气藏储层——营城组火山岩中发育的流体包裹体进行了详细研究,结果表明在火山岩发育的石英、方解石细网脉中均存在较多的碳质流体包裹体,单个包裹体激光拉曼光谱分析结果表明其主要为CO2及CH4两种类型的碳质包裹体。其中方解石细网脉体中发育有原生及次生CH4包裹体,而含CO2包裹体多以原生包裹体产于石英细网脉中。很多含CO2包裹体的石英细脉中发现了含CH4包裹体的方解石脉体的角砾,这就表明石英细脉形成晚于方解石细脉。营城组火山岩储层中CO2及CH4包裹体的产状特征研究表明,松辽盆地深层天然气藏的形成系火山岩成岩后CO2及CH4等气体不同期次充注的结果,CH4气的充注时间早于CO2气,火山岩中发育的原生孔隙及次生裂隙为上述气体的充注和聚集提供了重要通道。  相似文献   

19.
The solvus in the system CO2-H2O-2.6 wt% NaCl-equivalent was determined by measuring temperature of homogenization in fluid inclusions which contained variable CO2H2O but the same amount of salt dissolved in the aqueous phase at room temperature. The critical point of the solvus is at 340 ± 5°C, at pressures between 1 and 2 kbar; this is about 65°C higher than for the pure CO2-H2O system. The solvus is assymetrical, with a steeper H2O-rich limb and with the critical point at mole fraction of water between 0.65 and 0.8.  相似文献   

20.
ABSTRACT The metasedimentary sequence of the Deep Freeze Range (northern Victoria Land, Antarctica) experienced high-T/low-F metamorphism during the Cambro-Ordovician Ross orogeny. The reaction Bt + Sil + Qtz = Grt + Crd + Kfs + melt was responsible for the formation of migmatites. Peak conditions were c. 700–750° C, c. 3.5–5 kbar and xH2Oc. 0.5). Distribution of fluid inclusions is controlled by host rock type: (1) CO2-H2O fluid inclusions occur only in graphite-free leucosomes; (2) CO2–CH4± H2O fluid inclusions are the most common type in leucosomes, and in graphite-bearing mesosomes and gneiss; and (3) CO2–N2–CH4 fluid inclusions are observed only in the gneiss, and subordinately in mesosomes. CO2–H2O mixtures (41% CO2, 58% H2O, 1% Nad mol.%) are interpreted as remnants of a synmig-matization fluid; their composition and density are compatible P–T–aH2O conditions of migmatization (c. 750° C, c. 4 kbar, xH2Oc. 0.5). CO2-H2O fluid in graphite-free leucosomes cannot originate via partial melting of graphite-bearing mesosomes in a closed system; this would have produced a mixed CO2–CH4 fluid in the leucosomes by a reaction such as Bt + Sil + Qtz + C ± H2O = Grt + Crd + Kfs + L + CO2+ CH4. We conclude that an externally derived oxidizing CO2-H2O fluid was present in the middle crust and initiated anatexis. High-density CO2-rich fluid with traces of CH4 characterizes the retrograde evolution of these rocks at high temperatures and support isobaric cooling (P–T anticlockwise path). In unmigmatized gneiss, mixed CO2–N2–CH4 fluid yields isochores compatible with peak metamorphic conditions (c. 700–750° C, c. 4–4.5 kbar); they may represent a peak metamorphic fluid that pre-dated the migmatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号