首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Using improved analytical techniques, which reduce the Re blanks by factors of 8 to 10, we report new Re-Os data on low Re and low PGE pallasites (PAL-anom) and IIIAB irons. The new pallasite samples nearly double the observed range in Re/Os for pallasites and allow the determination of an isochron of slope 0.0775 ± 0.0008 (T = 4.50 ± 0.04 Ga, using the adjusted λ187Re = 1.66 × 10−11 a−1) and initial (187Os/188Os)0 = 0.09599 ± 0.00046. If the data on different groups of pallasites (including the “anomalous” pallasites) are considered to define a whole-rock isochron, their formation would appear to be distinctly younger than for the iron meteorites by ∼60 Ma. Five IIIAB irons (Acuna, Bella Roca, Chupaderos, Grant, and Bear Creek), with Re contents ranging from 0.9 to 2.8 ppb, show limited Re/Os fractionation and plot within errors on the IIAB iron meteorite isochron of slope 0.07848 ± 0.00018 (T = 4.56 ± 0.01 Ga) and initial (187Os/188Os)0 = 0.09563 ± 0.00011. Many of the meteorites were analyzed also for Pd-Ag and show 107Ag enrichments correlated with Pd/Ag, requiring early formation and fractionation of the FeNi metal, in a narrow time interval, after injection of live 107Pd (t1/2 = 6.5 Ma) into the solar nebula. Based on Pd-Ag, the typical range in relative ages of these meteorites is ≤10 Ma. The Pd-Ag results suggest early formation and preservation of the 107Pd-107Ag systematics, both for IIIAB irons and for pallasites, while the younger Re-Os apparent age for pallasites suggests that the Re-Os system in pallasites was subject to re-equilibration. The low Re and low PGE pallasites show significant Re/Os fractionation (higher Re/Os) as the Re and PGE contents decrease. By contrast, the IIIAB irons show a restricted range in Re/Os, even for samples with extremely low Re and PGE contents. There is a good correlation of Re and Ir contents. The correlation of Re and Os contents for IIIAB irons shows a similar complex pattern as observed for IIAB irons (Morgan et al., 1995), and neither can be ascribed to a continuous fractional crystallization process with uniform solid-metal/liquid-metal distribution coefficients.  相似文献   

2.
Group IIAB is the third largest group of iron meteorites and the second largest group that formed by fractional crystallization; many of these irons formed from the P-rich portion of a magma consisting of two-immiscible liquids. We report neutron-activation data for 78 IIAB irons. These confirm earlier studies showing that the group has the largest known range in Ir concentrations (a factor of 4000) and that slopes are steeply negative on plots of Ir vs. Au or As (or Ni). High negative slopes imply relatively high distribution coefficients for Ir, Au, and As (but, with rare exceptions, remaining less than unity for the latter). IIAB appears to have had the highest S contents of any magmatic group of iron meteorites, consistent with its high contents of other volatile siderophiles, particularly Ga and Ge. Large fractions of trapped melt were present in the IIAB irons with the highest Au and As and lowest Ir contents. As a result, when these irons crystallized, the DAu and DAs values can, with moderate accuracy, be estimated to have been roughly 0.53 and 0.46, respectively. These low values imply that the initial nonmetal (S + P) content of the magma was much lower than 170 mg/g, as estimated in earlier studies; our estimate is 75 mg/g. Our results are consistent with an initial P/S ratio of 0.25, similar to the ratio estimated for other magmatic groups. There is little doubt that incompatible S-rich and P-rich metallic liquids were involved during the formation of group IIAB. After 20% crystallization of our assumed starting composition the two-liquid boundary is encountered (at 72 mg/g S and 18 mg/g P). Initially the volume of S-rich liquid is very small, but continued crystallization increased the volume of this phase and decreased its P/S ratio while increasing this ratio in the P-rich liquid. Most crystallization of the IIAB magma would have occurred in the lower, P-rich portion of the core. However, metal was still a liquidus phase at the top of the core and, because both the immiscible liquids would have convected, they may have approached equilibrium throughout the very limited crystallization of the magma recorded in group IIAB. All IIAB irons contain trapped melt, and this melt will have had very different compositions depending on whether the liquid is S-rich (at the outer solid/liquid interface) or P-rich (at the inner interface). The P/S ratio in the melt trapped in the Santa Luzia iron is about 0.6 g/g, consistent with our modeling of Ir-Au and Ir-As trends implying that Santa Luzia formed in the lower, P-rich portion of the core after about 48% crystallization of the magma. Because the liquids were in equilibrium, the point at which immiscibility first occurred is not recorded by a dramatic change in the trends on element-Au diagrams; the main compositional effect is recorded in the P/S ratio of the trapped melt. The high-Au (>0.8 μg/g) irons for which large sections are available all contain skeletal schreibersite implying a relatively high (>0.3 g/g) P/S ratio; none of these irons could have crystallized from the S-rich upper layer of the core.  相似文献   

3.
A 187Re-187Os isochron including data for all twelve IVB irons gives an age of 4579 ± 34 Ma with an initial 187Os/188Os of 0.09531 ± 0.00022, consistent with early solar system crystallization. This result, along with the chemical systematics of the highly siderophile elements (HSE) are indicative of closed-system behavior for all of the HSE in the IVB system since crystallization.Abundances of HSE measured in different chunks of individual bulk samples, and in spot analyses of different portions of individual chunks, are homogeneous at the ±10% level or better. Modeling of HSE in the IVB system, therefore, is not impacted by sample heterogeneities. Concentrations of some other elements determined by spot analysis, such as P, Cr and Mn, however, vary by as much as two orders of magnitude and reflect the presence of trace phases.Assuming initial S in the range of 0 to 2 wt.%, the abundances of the HSE Re, Os, Ir, Ru, Pt, Rh, Pd and Au in bulk IVB irons are successfully accounted for via a fractional crystallization model. For these elements, all IVB irons can be interpreted as being representative of equilibrium solids, liquids, or mixtures of equilibrium solids and liquids.Our model includes changes in bulk D values (ratio of concentration in the solid to liquid) for each element in response to expected increases in S and P in the evolving liquid. For this system, the relative D values are as follow: Os > Re > Ir > Ru > Pt > Rh > Pd > Au. Osmium, Re, Ir and Ru were compatible elements (favor the solid) throughout the IVB crystallization sequence; Rh, Pd and Au were incompatible (favor the liquid). Extremely limited variation in Pt concentrations throughout the IVB crystallization sequence requires that D(Pt) remained at unity.In general, D values derived from the slopes of logarithmic plots, compared with those calculated from recent parameterizations of D values for metal systems are similar, but not identical. Application of D values obtained by the parameterization method is problematic for comparisons of the compatible elements with similar partitioning characteristics. The slope-based approach works well for these elements. In contrast, the slope-based approach does not provide viable D values for the incompatible elements Pd and Au, whereas the parameterization method appears to work well. Modeling results suggest that initial S for this system may have been closer to 2% than 0, but the elements modeled do not tightly constrain initial S.Consistent with previous studies, our calculated initial concentrations of HSE in the IVB parent body indicate assembly from materials that were fractionated via high temperature condensation processes. As with some previous studies, depletions in redox sensitive elements and corresponding high concentrations of Re, Os and Ir present in all IVB irons are interpreted as meaning that the IVB core formed in an oxidized parent body. The projected initial composition of the IVB system was characterized by sub-chondritic Re/Os and Pt/Os ratios. The cause of this fractionation remains a mystery. Because of the refractory nature of these elements, it is difficult to envision fractionation of these elements (especially Re-Os) resulting from the volatility effects that evidently affected other elements.  相似文献   

4.
Combined 147Sm-143Nd and 176Lu-176Hf chronology of the martian meteorite Larkman Nunatak (LAR) 06319 indicates an igneous crystallization age of 193 ± 20 Ma (2σ weighted mean). The individual 147Sm-143Nd and 176Lu-176Hf internal isochron ages are 183 ± 12 Ma and 197 ± 29 Ma, respectively, and are concordant with two previously determined 147Sm-143Nd and 87Rb-87Sr internal isochron ages of 190 ± 26 Ma and 207 ± 14 Ma, respectively (Shih et al., 2009). With respect to the 147Sm-143Nd isotope systematics, maskelynite lies above the isochron defined by primary igneous phases and is therefore not in isotopic equilibrium with the other phases in the rock. Non-isochronous maskelynite is interpreted to result from shock-induced reaction between plagioclase and partial melts of pyroxene and phosphate during transformation to maskelynite, which resulted in it having unsupported 143Nd relative to its measured 147Sm/144Nd ratio. The rare earth element (REE) and high field strength element (HFSE) compositions of major constituent minerals can be modeled as the result of progressive crystallization of a single magma with no addition of secondary components. The concordant ages, combined with igneous textures, mineralogy, and trace element systematics indicate that the weighted average of the radiometric ages records the true crystallization age of this rock. The young igneous age for LAR 06319 and other shergottites are in conflict with models that advocate for circa 4.1 Ga crystallization ages of shergottites from Pb isotope compositions, however, they are consistent with updated crater counting statistics indicating that young volcanic activity on Mars is more widespread than previously realized (Neukum et al., 2010).  相似文献   

5.
Re-Os isotopic analyses of a single organic-rich sedimentary rock unit (ORS) of known depositional age, and at three levels of regional hydrocarbon maturity, show that hydrocarbon maturation does not affect the ability the 187Re-187Os chronometer to yield a depositional age for such rocks. We present Re-Os isotope analyses from the Late Devonian Exshaw Formation in the subsurface of the Western Canada Sedimentary Basin, Alberta, and obtain a Re-Os isochron age of 358 ± 10 Ma (2σ, Model 3, λ = 1.666 × 10−11.a−1) for samples ranging from hydrocarbon immature to overmature. This age is within uncertainty of the established absolute age for the Exshaw Formation. Hydrocarbon immature, and mature plus overmature samples show no significant age differences if regressed individually, indicating that hydrocarbon maturation did not greatly disturb the Re-Os isotope system in the Exshaw Formation. As such, we propose that the Re-Os geochronometer may be used as a reliable tool for measuring the depositional ages of ORS regardless of their level of hydrocarbon maturity. We find that minimizing natural variation in the initial 187Os/188Os ratio is more important than avoiding hydrocarbon maturation in obtaining precise Re-Os ages. In particular, the Exshaw Formation appears to contain a nonhydrogenous component of unradiogenic Os, in addition to the hydrogenous Os load. A subset of Exshaw Formation samples with >5% total organic carbon (TOC), which should best reflect the hydrogenous Os load alone, yields a very well-fitted isochron having a depositional age of 358 ± 9 Ma (2σ, λ = 1.666 × 10−11.a−1) with an initial 187Os/188Os ratio of 0.59 ± 0.05 (Model 3, Mean Square of Weighted Deviates (MSWD) = 1.8). The initial 187Os/188Os ratio of this regression may provide an estimate of the Os isotopic composition of local seawater at the time of deposition.  相似文献   

6.
We measured by negative thermal ionization mass spectrometry (NTIMS) Re, Os and 186Os/188Os and 187Os/188Os in 26 samples of 18 Ni-Cu sulfide ores from the Falconbridge, McCreedy West, and Strathcona mines at Sudbury, Ontario. At McCreedy West and Falconbridge, the isochron Re-Os ages are 1835 ± 70 Ma and 1827 ± 340 Ma, and the initial 187Os/188Os ratios 0.514 ± 0.019 and 0.550 ± 0.024, respectively. The ages agree with the canonical value of 1850 ± 1 Ma for the Sudbury Igneous Complex (SIC). For Hangingwall and Deep Zone ores at Strathcona, the age of 1780 ± 7 Ma may reflect resetting by dyke activity. The high initial 187Os/188Os of 0.934 ± 0.005 in these ores is distinct from those at McCreedy West and Falconbridge. Strathcona Deep Copper Zone ores have highly radiogenic Os giving a mean model age of 1883 ± 54 Ma that is similar to ages at McCreedy West and Falconbridge, but distinct from other Strathcona sulfides. Initial 186Os/188Os in two Strathcona ores with low 190Pt/188Os average 0.119 826 ± 0.000 009 (n = 3) and 0.119 827 ± 0.000 004 (n = 3), respectively, with a grand mean of 0.119 827 ± 0.000 003. This ratio may be slightly lower than the chondritic value at that time. Similar ores at Falconbridge and McCreedy West show more scatter, averaging 0.119 855 ± 0.000 008 (n = 6) and 0.119 867 ± 0.000 020 (n = 3), respectively. These values are substantially suprachondritic. The Re-Os isotope systematics of Sudbury ores are clearly of crustal origin and may be derived from a binary mixture of Superior Province and Huronian metasedimentary rocks, with Strathcona, Falconbridge, and McCreedy West ores containing, respectively, 55%, 16%, and 12% of Os from Superior sediments. The suprachondritic 186Os/188Os at McCreedy West and Falconbridge may be due to admixture of Archean or Paleozoic mafic rocks with 190Pt/188Os ≈ 0.1. No trace of the asteroid that produced the Sudbury Structure has been reported. At the Whistle mine S-poor olivine melanorite inclusions with high Ni and Os and low 187Os/188Os may contain the signature of a magmatically fractionated asteroidal core contributing 1 to 2.5 % metal. The S-poor melanorite Ni and Os data are equally well explained by admixture of ≈40% mantle peridotite, however.  相似文献   

7.
An improved computer simulation program has been developed and used to re-measure the metallographic cooling rates of the IIIAB irons, the largest iron meteorite chemical group. The formation of this chemical group is attributed to fractional crystallization of a single molten metallic core during solidification. Group IIIAB irons cooling rates vary by a factor of 6 from 56 to 338 °C/My. The cooling rate variation for each meteorite is much smaller than in previous studies and the uncertainty in the measured cooling rate for each meteorite is greatly reduced. The lack of correction for the orientation of the kamacite-taenite interface in the cooling rate measurement of a given meteorite in previous studies not only leads to large cooling rate variations but also to inaccurate and low cooling rates. The cooling rate variation with Ni content in the IIIAB chemical group measured in this study is attributable, in part, to the variation in nucleation temperature of the Widmanstatten pattern with Ni content and nucleation mechanism. However, the factor of 6 variation in cooling rate of the IIIAB irons is hard to explain unless the IIIAB asteroidal core was exposed or partially exposed in the temperature range in which the Widmanstatten pattern formed. Measurements of the size of the island phase in the cloudy zone of the taenite phase and Re-Os data from the IIIAB irons and the pallasites make it hard to reconcile the idea that pallasites are located at the boundary of the IIIAB asteroid core.  相似文献   

8.
Seven 187Re-187Os ages were determined for molybdenite and pyrite samples from two well-dated Precambrian intrusions in Fennoscandia to examine the sustainability of the Re-Os chronometer in a metamorphic and metasomatic setting. Using a new 187Re decay constant (1.666 × 10−11y−1) with a much improved uncertainty (±0.31%), we determined replicate Re-Os ages for molybdenite and pyrite from the Kuittila and Kivisuo prospects in easternmost Finland and for molybdenite from the Kabeliai prospect in southernmost Lithuania. These two localities contain some of the oldest and youngest plutonic activity in Fennoscandia and are associated with newly discovered economic Au mineralization (Ilomantsi, Finland) and a Cu-Mo prospect (Kabeliai, Lithuania). Two Re-Os ages for vein-hosted Kabeliai molybdenite average 1486 ± 5 Ma, in excellent agreement with a 1505 ± 11 Ma U-Pb zircon age for the hosting Kabeliai granite pluton. The slightly younger age suggests the introduction of Cu-Mo mineralization by a later phase of the Kabeliai magmatic system. Mean Re-Os ages of 2778 ± 8 Ma and 2781 ± 8 Ma for Kuittila and Kivisuo molybdenites, respectively, are in reasonable agreement with a 2753 ± 5 Ma weighted mean U-Pb zircon age for hosting Kuittila tonalite. These Re-Os ages agree well with less precise ages of 2789 ± 290 Ma for a Rb-Sr whole-rock isochron and 2771 ± 75 Ma for the average of six Sm-Nd TDM model ages for Kuittila tonalite. Three Re-Os analyses of a single pyrite mineral separate, from the same sample of Kuittila pluton that yielded a molybdenite separate, provide individual model ages of 2710 ± 27, 2777 ± 28, and 2830 ± 28 Ma (Re = 17.4, 12.1, and 8.4 ppb, respectively), with a mean value of 2770 ± 120 Ma in agreement with the Kuittila molybdenite age. The Re and 187Os abundances in these three pyrite splits are highly correlated (r = 0.9994), and provide a 187Re-187Os isochron age of 2607 ± 47 Ma with an intercept of 21 ppt 187Os (MSWD = 1.1). It appears that the Re-Os isotopic system in pyrite has been reset on the millimeter scale and that the 21 ppt 187Os intercept reflects the in situ decay of 187Re during the ∼160 to 170 m.y. interval from ∼2778 Ma (time of molybdenite ± pyrite deposition) to ∼2607 Ma (time of pyrite resetting). When the Re-Os data for molybdenites from the nearby Kivisuo prospect are plotted together with the Kuittila molybdenite and pyrite data, a well-constrained five-point isochron with an age of 2780 ± 8 Ma and a 187Os intercept (−2.4 ± 3.8 ppt) of essentially zero results (MSWD = 1.5). We suggest that the pyrite isochron age records a regional metamorphic and/or hydrothermal event, possibly the time of Au mineralization. A proposed Re-Os age of ∼2607 Ma for Au mineralization is in good agreement with radiometric ages by other methods that address the timing of Archean Au mineralization in deposits worldwide (so-called “late Au model”). Molybdenite, in contrast, provides a robust Re-Os chronometer, retaining its original formation age of ∼2780 Ma, despite subsequent metamorphic disturbances in Archean and Proterozoic time. Received: 25 September 1996 / Accepted: 27 August 1997  相似文献   

9.
We report 39Ar-40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K-40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ∼12 Ma is also similar to CRE ages for other nakhlites.  相似文献   

10.
会泽超大型铅锌矿是滇东北铅锌多金属成矿域中典型的密西西比河谷型(MVT)或会泽型(HZT)矿床,因其独特的成矿系统以及矿床中富锗而被地质学者熟知,由于该类型矿床成矿温度较低且缺少合适的定年矿物,其成矿时代一直存在较大的争议。本文在会泽铅锌矿麒麟厂矿区1584中段0-11号穿脉坑道块状铅锌硫化物矿石中挑选了9件硫化物样品(黄铁矿、方铅矿和闪锌矿),采用负离子热表面电离质谱法进行Re-Os同位素分析,获得Re-Os等时线年龄为40.7±2.6 Ma(n=9),与模式年龄加权平均值40.0±2.6Ma(n=8)在误差内完全一致,闪锌矿和方铅矿模式年龄分别为38.24±0.41 Ma和36.57±0.40 Ma。上述同位素年龄揭示了会泽超大型铅锌矿的成矿时代可能为始新世。结合滇东北铅锌矿集区NE向逆冲断层和冲断褶皱控矿构造区域构造解析以及断裂、矿体构造-岩相蚀变特征,提出会泽超大型铅锌矿经历了燕山期、喜山期两阶段构造-流体贯入的成矿作用模型。  相似文献   

11.
The Rb-Sr composition of eight melt rock and three basement samples from the East Clearwater impact structure, Quebec, and two basement samples from the West Clearwater structure has been determined. The whole rock 87Sr/86Sr ratios of the melt samples, 0.7167–0.7253, are within the range of the basement samples, 0.7054–0.7322, and provide further evidence that the melt rocks represent shock-melted basement. A mineral isochron obtained from a relatively coarse grained melt rock gives an age of 287±26 Ma for the crystallization age of the melt. This is equivalent to K-Ar whole-rock ages of 285±30 Ma and 300±30 Ma and a Rb-Sr age of 266±15 Ma obtained on melt rocks from West Clearwater and confirms the previously generally held assumption that the East and West Clearwater structures resulted from the simultaneous impact of two bodies at 285–300 Ma ago.Contribution from the Earth Physics Branch No. 909  相似文献   

12.
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1-2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991 ± 14 Ma, with an initial 87Sr/88Sr at the time of crystallization of 0.699836 ± 0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992 ± 85 (initial ε143Nd = +2.9 ± 0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated 147Sm/144Nd source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.  相似文献   

13.
新疆哈勒尕提铜铁矿床的成矿年代学研究   总被引:3,自引:0,他引:3  
首次采用锆石SHRIMP微区U-Pb测年技术,对新疆西天山哈勒尕提铜铁多金属矿床成矿岩体进行了年代学研究,通过对角闪石黑云母二长花岗岩中单颗粒锆石12个样品点的分析,获得206Pb/238U年龄介于362.7~381.7 Ma,加权平均值为(367.3±2.2)Ma,表明岩体的结晶年龄为晚泥盆世。通过ICP-MS法测定了哈勒尕提铜铁多金属矿床中的辉钼矿Re-Os同位素年龄,获得其模式年龄的加权平均值为(370.1±2.4)Ma,等时线年龄为(371±12)Ma,代表了哈勒尕提铜铁多金属矿床的成矿年龄。两种测年方法获得的年龄在误差范围内基本一致,因此该测试结果表明哈勒尕提铜铁多金属矿床与晚泥盆世角闪石黑云母二长花岗岩侵入作用密切相关,角闪石黑云母二长花岗岩为哈勒尕提铜铁多金属矿床的形成提供了成矿物质和热源。  相似文献   

14.
The addition of two meteorites to the iron meteorite grouplet originally known as the Bellsbank trio brings the population to five, the minimum number for group status. With Ga and Ge contents in the general “II” range, the new group has been designated IIG. The members of this group have low-Ni contents in the metal and large amounts of coarse schreibersite ((Fe,NI)3P); their bulk P contents are 17-21 mg/g, the highest known in iron meteorites. Their S contents are exceptionally low, ranging from 0.2 to 2 mg/g. We report neutron-activation-analysis data for metal samples; the data generally show smooth trends on element-Au diagrams. The low Ir and high Au contents suggest formation during the late crystallization of a magma.Because on element-Au or element-Ni diagrams the IIG fields of the important taxonomic elements Ni, Ga, Ge and As are offset from those of the IIAB irons, past researchers have concluded that the IIG irons could not have formed from the same magma, and thus that the two groups originated on separate parent bodies. However, on most element-Au diagrams the IIG fields plot close to extensions of IIAB trends to higher Au concentrations.There is general agreement that immiscibility led to the formation of an upper S-rich and a lower P-rich magma in the IIAB core. We suggest that the IIG irons formed from the P-rich magma, and that schreibersite was a liquidus phase during the final stages of crystallization. The offsets in Ni and As (and possibly other elements) may result from solid-state elemental redistribution between metal and schreibersite during slow cooling. For example, it is well established that the equilibrium Ni content is >2× higher in late-formed relative to early-formed schreibersite. It is plausible that As substitutes nearly ideally for P in schreibersite at eutectic temperatures but becomes incompatible at low temperatures.[Wasson J. T., Huber, H. and Malvin, D. J. (2007) Formation of IIAB iron meteorites. Geochim. Cosmochim. Acta71, 760-781] argued that, in the most evolved IIAB irons, the amount of trapped melt was high. The high P contents of IIG irons also require high contents of trapped melt but the local geometry seems to have allowed the S-rich immiscible melt to escape as it formed. The escaping melt may have selectively depleted elements such as Au and Ge.  相似文献   

15.
Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/188Os ratios >1 were reset at ∼2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks.Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (DOssolid/liquid) for the Dundonald rocks is ∼3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (γOs = 0.0 ± 0.6) for their well-constrained ∼2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.  相似文献   

16.
The 40Ar/39Ar stepwise crushing technique is applied for the first time to date garnet from ultra-high-pressure metamorphic (UHPM) eclogites. Three garnet samples from the Bixiling eclogites analyzed by 40Ar/39Ar stepwise crushing yield regular, predictable age spectra, and a clear separation between excess 40Ar and concordant plateau and isochron ages. All three age spectra begin with high apparent ages followed by step by step decreasing ages, and finally age plateaux with apparent ages in the range from 427 ± 20 to 444 ± 10 Ma. The data points constituting the age plateaux yield excellent isochrons with radiogenic intercept ages ranging from 448 ± 34 to 459 ± 58 Ma, corresponding to initial 40Ar/36Ar ratios from 292.1 ± 4.5 to 294.5 ± 6.7, statistically indistinguishable from the modern air. The high initial ages are interpreted to derive from secondary fluid inclusions containing excess 40Ar, whereas the plateau ages are attributed to gas from small primary fluid inclusions without significant excess 40Ar. The plateau ages are interpreted to approximate the time of garnet growth during initial UHPM metamorphism. Phengite analyzed by laser stepwise heating yielded a complicated two-saddle age spectrum with a scattered isochron corresponding to age of 463 ± 116 Ma and initial 40Ar/36Ar ratio of 1843 ± 1740 indicative of the presence of extraneous 40Ar within phengite. These concordant isochron ages measured on minerals diagnostic of eclogite grade metamorphism strongly suggest that Dabie UHPM eclogites were first formed in the early Paleozoic, during the same event that caused the Qinling-Northern Qaidam Basin-Altyn Tagh eclogites.  相似文献   

17.
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 °C/Myr at the low-Ni end of the group to 100 °C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700-400 °C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history.  相似文献   

18.
Phengites from eclogites and pegmatites (3T, 2M1, coarse-grained and recrystallized) of the Münchberg Massif (Weissenstein and Oberkotzau) have been dated by the 40Ar/39Ar method. 3T-micas from the eclogites yielded plateau and isochron ages of 365±7 Ma. 2M1-micas show disturbed degassing spectra. Micas from pegmatites show a slight excess Ar component, with an isochron age of 353 to 351±3 Ma. An age component of approximately 300 Ma was also detected. In combination with age values from the literature, the cooling history of the Münchberg Massif from eclogite-facies conditions (390 Ma) to cooling below 350°C (350 Ma) is documented. The age component of 300 Ma is attributed to a low-grade stage of mineral growth accompanied by a transitional ductile-brittle deformation. The petrological effects include formation of pumpellyite-prehnite-facies minerals, frequently precipitated in microcraks and cleavage planes of earlier formed minerals. This stage has to be seen in conjunction with the intrusions of the Fichtelgebirge granite.  相似文献   

19.
Besshi-type Cu deposits are strata-bound volcanogenic massive sulfide deposits usually associated with mafic volcanic rocks or their metamorphic equivalents. Although there are numerous Besshi-type deposits in the Sanbagawa metamorphic belt, Japan, their tectonic settings and depositional environments remain controversial because of a lack of depositional age constraints. We report Re-Os data for the Iimori deposit, one of the largest Besshi-type deposits in western Kii Peninsula, in order to examine the robustness of the Re-Os isotope system for dating sulfide minerals in the high-P/T metamorphic belt and to elucidate the primary depositional environment of the Iimori sulfide ores. An 11-point Re-Os isochron plot yields an age of 156.8 ± 3.6 Ma. As this Re-Os isochron age is significantly older than the timing of the Sanbagawa peak metamorphism (110-120 or ∼90 Ma) and a well-defined isochron was obtained, the Re-Os age determined here is most likely the primary depositional age. Despite high-grade metamorphism at up to 520 ± 25 °C and 8-9.5 kbar, the Re-Os isotope system of the Iimori sulfides was not disturbed. Hence, we consider that the whole-rock Re-Os closure temperature for the Iimori sulfide ores was probably higher than 500 °C. As the accretion age of the Sanbagawa metamorphic belt is considered to be 120-130 or 65-90 Ma on the basis of radiolarian and radiometric ages, we estimated the time from the Iimori sulfide deposition on the paleo-seafloor to its accretion at the convergent plate boundary to be greater than 25 Myr. Consequently, the depositional environment of the Iimori sulfide ores was not in the marginal sea, but was truly pelagic.  相似文献   

20.
Eclogites from the deepest structural levels beneath the Semail ophiolite, Oman, record the subduction and later exhumation of the Arabian continental margin. Published ages for this high pressure event reveal large discrepancies between the crystallisation ages of certain eclogite-facies minerals and apparent cooling ages of micas. We present precise U-Pb zircon (78.95 ± 0.13 Ma) and rutile (79.6 ± 1.1 Ma) ages for the eclogites, as well as new U-Pb zircon ages for trondhjemites from the Semail ophiolite (95.3 ± 0.2 Ma) and amphibolites from the metamorphic sole (94.48 ± 0.23 Ma). The new eclogite ages reinforce published U-Pb zircon and Rb-Sr mineral-whole rock isochron ages, yet are inconsistent with published interpretations of older 40Ar/39Ar phengite and Sm-Nd garnet dates. We show that the available U-Pb and Rb-Sr ages, which are in tight agreement, fit better with the available geological evidence, and suggest that peak metamorphism of the continental margin occurred during the later stages of ophiolite emplacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号