首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global carbon cycle models require a complete understanding of the δ13C variability of the Earth’s C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ13C changes during CO2 loss from degassing magmas requires knowledge of the melt-CO2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 105 bars the change is given by:
(1)  相似文献   

2.
Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO3, CaCl2 and MgCl2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (<8 h), while Mg-calcite was the predominant precipitate (>95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms.The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 103lnαMg-cl-H2O) displayed a strong dependence on the mol% MgCO3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ18O values for the bulk solid, 103lnαMg-cl-H2O increased at a rate of 0.17 ± 0.02 per mol% MgCO3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 103lnαMg-cl-H2O for precipitation rates that ranged from 103.21 to 104.60 μmol · m−2 · h−1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 103lnαMg-cl-H2O due to the heterogeneous nature of the solid.The results of this study suggest that paleotemperatures inferred from the δ18O values of high magnesian calcite (>10 mol% MgCO3) may be significantly underestimated. Also, the results underscore the need for additional experiments to accurately characterize the effect of Mg coprecipitation on the isotope systematics of calcite from a chemically homogeneous precipitate or a heterogeneous material that is analyzed at the scale of chemical and isotopic zonation.  相似文献   

3.
The interpretation of stable isotope values hinges on precise, accurate estimates of kinetic isotope effects (α), which are equal to 1k/2k, where 1k and 2k are the reaction rate constants for the two isotopes. Kinetic isotope effects are commonly determined by monitoring the reactant concentration (C) and isotope ratio (R) relative to their initial values (C1 and R1, respectively). Values of α are estimated from the C and R values by using the Rayleigh distillation equation (RDE).
(A)  相似文献   

4.
We present results of a study of the 53Mn-53Cr isotope systematics in the enstatite chondrites and achondrites (aubrites). The goal of this study was to explore the capabilities of this isotope system to obtain chronological information on these important classes of meteorites and to investigate the original distribution in the inner solar system of the short-lived radionuclide 53Mn. Our earlier work (Lugmair and Shukolyukov, 1998; Shukolyukov and Lugmair, 2000a) has shown that the asteroid belt bodies are characterized by essentially the same initial 53Mn abundance. However, we have found the presence of a gradient in the abundance of the radiogenic 53Cr between the earth-moon system, Mars, and the asteroid Vesta. If this gradient is considered as a function of the heliocentric distance a linear radial dependence is indicated. This can be explained either by an early, volatility controlled Mn/Cr fractionation in the nebula or by an original radially heterogeneous distribution of 53Mn. The enstatite chondrites are suggested to form in the inner zones of the solar nebula, much closer to the Sun than the ordinary chondrites. Therefore, their investigation may be an important test on the hypothesis on a radial heterogeneity in the initial 53Mn.We have studied the bulk samples of the EH4-chondrites Indarch and Abee and the EL6-chondrite Khairpur. Although these meteorites have essentially the same Mn/Cr ratio as the ordinary chondrites, the relative abundance of the radiogenic 53Cr is three times smaller than in the ordinary chondrites. Because these meteorites are primitive (undifferentiated) and no Mn/Cr fractionation had occurred within their parent bodies, this difference is a strong argument in favor of an initially heterogeneous distribution of 53Mn in the early inner solar system. This finding is also consistent with formation of the enstatite chondrites in the inner zones of the solar nebula. Using the characteristic 53Cr excess of the enstatite chondrites and the observed gradient, their place of origin falls at about 1.4 AU or somewhat closer to the Sun (i.e. >1.0-1.4 AU).We also present chronological results for the enstatite chondrites and achondrites. The ‘absolute’ 53Mn-53Cr ages of the EH4-chondrites are old: ∼4565 Ma. The EL6-chondrite Khairpur is ∼4.5 Ma younger, which is in good agreement with the 129I-129Xe data from the literature. The age of the aubrite Peña Blanca Spring appears to be similar to those of the enstatite chondrites while that of the aubrite Bishopville is at least ∼10 Ma younger, which is also in agreement with the 129I-129Xe data. The results from bulk samples of aubrites indicate that the last Mn/Cr fractionation in their parent body occurred ∼ 4563 Ma ago and imply an evolution of the Mn-Cr isotope system in an environment with an higher than chondritic Mn/Cr ratio for several millions of years.  相似文献   

5.
Four vertical profiles of the concentration and isotopic composition of Nd in seawater were obtained in the western North Pacific. Two profiles from the Kuroshio Current regime showed congruently that although the Nd concentration increases gradually with depth, its isotopic composition varies significantly with depth depending upon the water mass occupying the water column. The high-salinity Kuroshio waters originating from the North Pacific Tropical Water (NPTW) carry the least radiogenic Nd (?Nd = −7.4 to −8.7) to this region at ∼250 m from the western margin continental shelves, most likely from the East China Sea. The Nd isotopic compositions in the North Pacific Intermediate Water (NPIW) that occurs at 600 to 1000 m in the subtropical region are fairly uniform at ?Nd = −3.7. The profile data from the ∼38° to 40°N Kuroshio/Oyashio mixed water region off Sanriku of Honshu, Japan, also suggest that the newest NPIW with ?Nd = −3.2 is formed there by the mixing of various source waters, and the radiogenic component of Nd is derived mainly from the Oyashio waters.In the Pacific Deep Water (PDW) below ∼1000 m, the Nd isotopic composition is neither vertically nor horizontally homogeneous, suggesting that it serves as a useful tracer for sluggish deep water circulation as well. Two profiles from the Izu-Ogasawara Trench showed a minimum ?Nd value at ∼2000 m, suggesting that there exists a horizontal advective flow in the vicinity of Honshu, Japan. There is some evidence from other chemical properties to support this observation. The waters below 4000 m including those within the trench in the subtropical region have ?Nd values of around −5, suggesting that the deep waters are fed from the south along the western boundary, ultimately from the Antarctic Bottom Water (AABW) in the South Pacific. This extends up to ∼40°N along the Japanese Islands. In the subarctic region (>∼42°N), the waters have more radiogenic Nd with ?Nd > −4.0 throughout the water column, presumably due to the supply of Nd by weathering in such igneous provinces as the Kuril-Kamchatska-Aleutian Island chain. The lateral inhomogeneity of the Nd isotopic composition in PDW suggests that there may be different circulation and mixing regimes in the North Pacific Basin.  相似文献   

6.
We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.  相似文献   

7.
A series of Cr-substituted goethites with (Cr:Fe molar ratio up to 0.12) were prepared. Thermal analysis of the solids indicates the formation of cation-deficient compounds that are more stable towards the transformation to hematite as the Cr content increases. Powder X-ray diffraction (PXRD) and extended X-ray absorption fine structure (EXAFS) techniques were used to assess the structural characteristics of the whole series of the substituted solids. XRD patterns demonstrate that the order around Fe remains typical of a goethite-like structure. Rietveld refinement of X-ray diffraction data indicates that the incorporation of Cr causes a slight decrease in the cell volume with the c-cell parameter following the Vegard’s law. This decrease is accompanied by changes in opposite directions of the various Me-Me distances. EXAFS spectra at the Fe K-edge indicate that the local order around the Fe atom changes slightly upon Cr substitution: Measurements in the Cr K-edge show that the Cr environment remains unchanged in the whole series. All the observed trends in both average Rietveld and local EXAFS distances can be traced back to the differences in the coordination polyhedra around Cr and Fe. The polyhedron around Cr is more symmetric and can be described as Cr(OH0.5)6 as opposed to the polyhedron around Fe that contains two distinct sets of ligands, FeO3(OH)3. The effects caused by substitution are governed by this difference, rather than by the smaller size of Cr(III) as compared to Fe(III). Simultaneous use of XAS and Rietveld refinement of XRD data permits tracing the trends in the average long range ordering (Me-Me distances) to local changes in distances and angles when Cr3+ substitutes Fe3+ in goethite. Complex changes in the various interatomic distances and angles may result in deceivingly simple long-range trends. These trends are therefore of limited value as probes for the atomic scale changes. On the other hand, XAS provide direct information on the fundamental, atomic-scale changes.  相似文献   

8.
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate Fe isotopes. Fe isotope fractionations produced by both the enrichment cultures and the Thiodictyon culture were relatively constant at early stages of the reaction progress, where the 56Fe/54Fe ratios of poorly crystalline hydrous ferric oxide (HFO) metabolic products were enriched in the heavier isotope relative to aqueous ferrous iron (Fe[II]aq) by ∼1.5 ± 0.2‰. This fractionation appears to be independent of the rate of photoautotrophic Fe(II)-oxidation, and is comparable to that observed for Fe isotope fractionation by dissimilatory Fe(III)-reducing bacteria. Although there remain a number of uncertainties regarding how the overall measured isotopic fractionation is produced, the most likely mechanisms include (1) an equilibrium effect produced by biological ligands, or (2) a kinetic effect produced by precipitation of HFO overlaid upon equilibrium exchange between Fe(II) and Fe(III) species. The fractionation we observe is similar in direction to that measured for abiotic oxidation of Fe(II)aq by molecular oxygen. This suggests that the use of Fe isotopes to identify phototrophic Fe(II)-oxidation in the rock record may only be possible during time periods in Earth’s history when independent evidence exists for low ambient oxygen contents.  相似文献   

9.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

10.
We present new hydrogen isotope data for separated matrix, hydrated chondrules, and other hydrated coarse silicate fragments from nine carbonaceous chondrites. These data were generated using a micro-analytical method involving stepped combustion of tens to hundreds of micrograms of hydrous solids. We also re-evaluate hydrogen isotope data from previous conventional stepped combustion experiments on these and other carbonaceous chondrites.Hydrogen isotope compositions of matrix and whole-rock samples of CM chondrites are correlated with oxygen isotope indices, major and minor-element abundances, and abundance and isotope ratios of other highly volatile elements. These correlations include a monotonic decrease in δD with increasing extent of aqueous alteration and decreasing abundances of highly volatile elements (including C, N and Ar), between extremes of ∼0‰ (least altered, most volatile rich) and −200‰ (most altered, least volatile rich). In plots involving only abundances and/or isotope ratios of highly volatile elements, CI chondrites fall on the high-δD, volatile rich end of the trends defined by CM chondrites; i.e., CI chondrites resemble the least altered CM chondrites in these respects. These trends suggest the protoliths of the CM chondrites (i.e., before aqueous alteration) contained an assemblage of volatiles having many things in common with those in the CI chondrites. If so, then the volatile-element inventory of the CI chondrites was a more widespread component of early solar system objects than suggested by the scarcity of recognized CI meteorites. Differences in volatile-element chemistry between the CI and average CM chondrites can be attributed to aqueous alteration of the latter.Previous models of carbonaceous chondrite aqueous alteration have suggested: (1) the protoliths of the CM chondrites are volatile poor objects like the CO or CV chondrites; and (2) the CI chondrites are more altered products of the same process producing the CM chondrites. Both suggestions appear to be inconsistent with hydrogen isotope data and other aspects of the volatile-element geochemistry of these rocks. We present a model for aqueous alteration of the CM chondrites that reconciles these inconsistencies and suggests revised relationships among the major subtypes of carbonaceous chondrites. Our model requires, among other things, that the water infiltrating CM chondrites had a δD value of ∼−158‰, consistent with initial accretion of CM parent bodies at ∼4 AU.  相似文献   

11.
This study attempts to provide a theoretical evaluation of coprecipitation and fundamental data of binary mixing properties in the barite isostructural family. Mixing properties of binary solid solutions in the barite isostructural family were derived from evaluation of coprecipitation experiments and partitioning coefficients reported in the literature. The Margules parameters, W, for these binary systems correlate well through the relationship,
  相似文献   

12.
Using molecular dynamics simulations and electronic structure methods, we postulate a mechanism to explain the complicated reactivity trends that are observed for oxygen isotope exchange reactions between sites in aluminum polyoxocations of the ε-Keggin type and bulk solution. Experimentally, the molecules have four nonequivalent oxygens that differ considerably in reactivity both within a molecule, and between molecules in the series: Al13, GaAl12, and GeAl12 [MO4Al12(OH)24(H2O)12n+(aq); with M = Al(III) for Al13, n = 7; M = Ga(III) for GaAl12, n = 7; M = Ge(IV) for GeAl12, n = 8]. We find that a partly dissociated, metastable intermediate molecule of expanded volume is necessary for exchange of both sets of μ2-OH and that the steady-state concentration of this intermediate reflects the bond strengths between the central metal and the μ4-O. Thus the central metal exerts extraordinary control over reactions at hydroxyl bridges, although these are three bonds away.This mechanism not only explains the reactivity trends for oxygen isotope exchange in μ2-OH and η-OH2 sites in the ε-Keggin aluminum molecules, but also explains the observation that the reactivities of minerals tend to reflect the presence of highly coordinated oxygens, such as the μ4-O in boehmite, α-, and γ-Al2O3 and their Fe(III) analogs. The partial dissociation of these highly coordinated oxygens, coupled with simultaneous activation and displacement of neighboring metal centers, may be a fundamental process by which metals atoms undergo ligand exchanges at mineral surfaces.  相似文献   

13.
The rate of pyrite oxidation in moist air was determined by measuring, over time, the pressure difference between a sealed chamber containing pyrite plus oxygen and a control. The experiments carried out at 25°C, 96.7% fixed relative humidity, and oxygen partial pressures of 0.21, 0.61, and 1.00 atm showed that the rate of oxygen consumption is a function of oxygen partial pressure and time. The rates of oxygen consumption (r, mol/m2sec) fit the expression
(A)  相似文献   

14.
The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity.Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.  相似文献   

15.
European vegetation during representative “warm” and “cold” intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.  相似文献   

16.
A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential reversibility in the enzymatic steps of the H2/CO2 pathway gives rise to variability in the observed carbon isotope fractionation. Results are further used to constrain the overall efficiency of electron consumption by way of the hydrogenase system in M. marburgensis, which is calculated to be less than 55%.  相似文献   

17.
The stable nitrogen isotopic composition of nitrate, concentrations of inorganic nitrogen and phosphorus, dissolved oxygen and nitrification rates were determined at six stations ranging from the oligotrophic North Pacific Subtropical Gyre (NPSG) to the more productive Eastern Tropical North Pacific (ETNP). Nitrification rates increased along the transect from a maximum rate of 1 nmol L−1 d−1 at station ALOHA to 23.7 nmol L−1 d−1 at station 6. In oxic surface waters, nitrate isotopically enriched in 15N (maximum δ15N-NO3 value of 12.5‰) was most likely the result of assimilatory nitrate reduction. In contrast, high δ15N-NO3 values (maximum of 12.3‰) in association with high nitrate deficits and anoxic conditions supported the interpretation of isotopic fractionation due to denitrification. A one-dimensional vertical advection and diffusion model was used to estimate the fractionation factor for denitrification at two stations in the ETNP. A comparison of modeled to observed δ15N-NO3 data indicated an isotopic enrichment factor (ε) of 30‰ at station 4 and 30 to 35‰ at station 5. Isotopically light nitrate (1.1 and 3.2‰) was observed in the upper 200 m of the water column at stations in the ETNP. Tracer studies of 15NH4 and biogeochemical indicators of nitrogen fixation supported the interpretation of nitrification as the most plausible explanation for low δ15N-NO3 values observed in water column samples. Our results are consistent with the occurrence of nitrification within the euphotic zone and for the first time provide corroborating stable nitrogen isotopic evidence for this process.  相似文献   

18.
Schwertmannite (ideal formula: Fe8O8(OH)6SO4) is typically found as a secondary iron mineral in pyrite oxidizing environments. In this study, geochemical constraints upon its formation are established and its role in the geochemical cycling of iron between reducing and oxidizing conditions are discussed. The composition of surface waters was analyzed and sediments characterized by X-ray diffraction, FTIR spectroscopy and determination of the Fe:S ratio in the oxalate extractable fraction from 18 acidic mining lakes. The lakes are exposed to a permanent supply of pyritegenous ferrous iron from adjacent ground water. In 3 of the lakes the suspended matter was fractionated using ultra filtration and analyzed with respect to their mineral composition. In addition, stability experiments with synthetic schwertmannite were performed. The examined lake surface waters were O2-saturated and have sulfate concentrations (10.3 ± 5.5 mM) and pH values (3.0 ± 0.6) that are characteristic for the stability window of schwertmannite. Geochemical modeling implied that i) the waters were saturated with respect to schwertmannite, which controlled the activity of Fe3+ and sulfate, and ii) a redox equilibrium exists between Fe2+ and schwertmannite. In the uppermost sediment layers (1 to 5 cm depth), schwertmannite was detectable in 16 lakes—in 5 of them by all three methods. FTIR spectroscopy also proved its occurrence in the colloidal fraction (1-10 kDa) in all of the 3 investigated lake surface waters. The stability of synthetic schwertmannite was examined as a function of pH (2-7) by a 1-yr experiment. The transformation rate into goethite increased with increasing pH. Our study suggests that schwertmannite is the first mineral formed after oxidation and hydrolysis of a slightly acidic (pH 5-6), Fe(II)-SO4 solution, a process that directly affects the pH of the receiving water. Its occurrence is transient and restricted to environments, such as acidic mining lakes, where the coordination chemistry of Fe3+ is controlled by the competition between sulfate and hydroxy ions (i.e. mildly acidic).  相似文献   

19.
Mass fractionation laws relate the fractionation factor αA for one isotope ratio to the fractionation factor αB for a second isotope ratio of the same element, with a fractionation exponent β such that αA = αBβ. The exponent β defines the mass-dependence of the mass fractionation law and thus determines the slope of a mass fractionation line in linearized three isotope space. The generalized power law (GPL) defines β as a function of a variable exponent n. The laws that aim to describe equilibrium and kinetic isotope fractionations are special cases of the GPL with n = −1 and n 0, respectively.Large isotope fractionations (up to 10% for 106Cd/114Cd) were found to accompany the evaporation of molten Cd into vacuum at about 180°C. The slopes of the fractionation lines (β-values) were obtained by analyzing the Cd isotope compositions of the evaporation residues relative to the starting material with two different multiple collector-ICPMS instruments. For the most fractionated sample, the difference between the theoretical β-values, that describe kinetic and equilibrium isotope fractionation, is 10 to 20 times larger than the measurement uncertainty. A mass-dependence with n = −0.35 was determined for this sample. This result differs significantly from the value that would be expected for simple kinetic evaporation (n 0), which is governed by the diffusion of monatomic Cd from the melt into vacuum. The observed “non-kinetic” mass-dependence probably results from partial recondensation (back reaction) of Cd vapor into the melt phase. This interpretation requires that equilibrium evaporation of Cd at about 180°C is associated with significant isotope fractionation.The present study demonstrates that the mechanism of isotope fractionation can be investigated by studying the associated mass-dependence, which can be determined by measuring the isotope ratios of a fractionated product relative to the starting material. The quantification of mass fractionation line slopes with the GPL should aid the interpretation of mass-dependent and small mass-independent isotope effects.  相似文献   

20.
The Pt-Re-Os isotopic and elemental systematics of 13 group IIAB and 23 group IIIAB iron meteorites are examined. As has been noted previously for iron meteorite groups and experimental systems, solid metal-liquid metal bulk distribution coefficients (D values) for both IIAB and IIIAB systems show DOs>DRe>>DPt>1 during the initial stages of core crystallization. Assuming closed-system crystallization, the latter stages of crystallization for each core are generally characterized by DPt>DRe>DOs. The processes governing the concentrations of these elements are much more complex in the IIIAB core relative to the IIAB core. Several crystallization models utilizing different starting parameters and bulk distribution coefficients are considered for the Re-Os pair. Each model has flaws, but in general, the results suggest that the concentrations of these elements were dominated by equilibrium crystallization and subsequent interactions between solid metal and both equilibrium and evolved melts. Late additions of primitive metal to either core were likely minor or nonexistent.The 187Re-187Os systematics of the IIAB and IIIAB groups are consistent with generally closed-system behavior for both elements since the first several tens of Ma of the formation of the solar system, consistent with short-lived chronometers. The Re-Os isochron ages for the complete suites of IIAB and IIIAB irons are 4530 ± 50 Ma and 4517 ± 32 Ma, respectively, and are similar to previously reported Re-Os ages for the lower-Ni endmembers of these two groups. Both isochrons are consistent with, but do not require crystallization of the entire groups within 10-30 Ma of the initiation of crystallization.The first high-precision 190Pt-186Os isochrons for IIAB and IIIAB irons are presented. The Pt-Os isochron ages for the IIAB and IIIAB irons, calculated using the current best estimate of the λ for 190Pt, are 4323 ± 80 Ma and 4325 ± 26 Ma respectively. The Re-Os and Pt-Os ages do not overlap within the uncertainties. The younger apparent ages recorded by the Pt-Os system likely reflect error in the 190Pt decay constant. The slope from the Pt-Os isochron is combined with the age from the Re-Os isochron for the IIIAB irons to calculate a revised λ of 1.415 × 10−12 a−1 for 190Pt, although additional study of this decay constant is still needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号