首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of freshly abraded surfaces of cuprite, Cu2O, with neutral or mildly alkaline aqueous solutions of diethyl or di-n-butyl dithiophosphate (DTP) has been investigated by means of conventional and synchrotron X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy. It was confirmed that DTP adsorbs readily on Cu atoms in the surface layer of the mineral treated with solutions of the collector at pH values near 7 and 9 in the presence of air, and renders the surface hydrophobic. When cuprite is treated with relatively high concentrations of DTP for sufficiently long periods, collector can also be adsorbed as CuDTP, but the coverage does not exceed a thin layer of CuDTP on the adsorbed DTP monolayer, unlike the situation with Cu metal or chalcocite where a thick multilayer can be formed.  相似文献   

2.
The Sb speciation in soil samples from Swiss shooting ranges was determined using Sb K-edge X-ray absorption spectroscopy (XAS) and advanced statistical data analysis methods (iterative transformation factor analysis, ITFA). The XAS analysis was supported by a spectral data set of 13 Sb minerals and 4 sorption complexes. In spite of a high variability in geology, soil pH (3.1-7.5), Sb concentrations (1000-17,000 mg/kg) and shooting-range history, only two Sb species were identified. In the first species, Sb is surrounded solely by other Sb atoms at radial distances of 2.90, 3.35, 4.30 and 4.51 Å, indicative of metallic Sb(0). While part of this Sb(0) may be hosted by unweathered bullet fragments consisting of PbSb alloy, Pb LIII-edge XAS of the soil with the highest fraction (0.75) of Sb(0) showed no metallic Pb, but only Pb2+ bound to soil organic matter. This suggests a preferential oxidation of Pb in the alloy, driven by the higher standard reduction potential of Sb. In the second species, Sb is coordinated to 6 O-atoms at a distance of 1.98 Å, indicative of Sb(V). This oxidation state is further supported by an edge energy of 30,496-30,497 eV for the soil samples with <10% Sb(0). Iron atoms at radial distances of 3.10 and 3.56 Å from Sb atoms are in line with edge-sharing and bidentate corner-sharing linkages between Sb(O,OH)6 and Fe(O,OH)6 octahedra. While similar structural units exist in tripuhyite, the absence of Sb neighbors contradicts formation of this Fe antimonate. Hence the second species most likely consists of inner-sphere sorption complexes on Fe oxides, with edge and corner-sharing configuration occurring simultaneously. This pentavalent Sb species was present in all samples, suggesting that it is the prevailing species after weathering of metallic Sb(0) in oxic soils. No indication of Sb(III) was found.  相似文献   

3.
The crystal chemistry of Ni- and Co-bearing manganese oxides (lithiophorite and asbolane) has been investigated by X-ray Absorption Spectroscopy (XAS). The Mn oxides come from the lateritic weathering profiles of the ultrabasites of New Caledonia. The distinct behaviours of Ni and Co concern both oxidation states and local structures.The electronic structure and short range order around Co atoms do not depend on the nature of the Cocontaining phase. Co atoms are trivalent and 6-fold coordinated. Co-(O, OH) and Co-(Co, Mn) interatomic distances derived from EXAFS are equal to those found around Mn atoms which rules out the possibility of an adsorption of Co atoms directly above and below vacancies of MnO2 layers. The high structural order around Co contrasts with the structural disorder observed around Mn. Cobalt atoms do not occupy specific Mn sites and are not randomly distributed within the octahedral Mn layers.Unlike Co, Ni exhibits distinct surroundings in both phases. In asbolane, Ni atoms build partial Ni(OH)2 layers. Ni-OH distances are lower as compared with the free Ni hydroxide because of the formation of hydrogen bonds between Ni(OH)2 and MnO2 layers. In lithiophorite Ni atoms are located in the hydrargillite layer (Al(OH)3). Both chemical composition and structural considerations militate for a Ni for Li substitution in lithiophorite. Finally, evidence is given for the existence of a mixed-layering between lithiophorite and asbolane and the chemical variations generally observed in these Mn oxides are interpreted as a variable proportion of (Mn, Co)(O, OH2, Ni(OH)2 and (Al, Li, Ni)(OH)3 layers.  相似文献   

4.
Methylmercury cation (CH3Hg+) is known to have a strong affinity for organic matter in soil, sedimentary, and aquatic environments. The objective of this study is to determine the dominant ligands binding CH3Hg+ in humic acids by evaluating several CH3Hg+-ligand complexation models, using mercury LIII-edge extended X-ray absorption fine structure (EXAFS). The model CH3Hg+ binding ligands examined in this study include thiol (-SH), hydrogen polysulfide (-SSH or -SSSH), sulfide (-S-), disulfide (-SS-), carboxyl (-COOH), and amine (-NH2). Based on the atomic geometry around mercury in each model structure, we distinguished CH3Hg+-binding ligands in two different humic acids (soil and aquatic). We observed CH3Hg+ preferentially binds to thiol ligands. After saturating reactive thiol ligands, the majority of CH3Hg+ binds to carboxyl ligands rather than to amine or other reduced sulfur ligands than thiol. We found no evidence of significant CH3Hg+-sulfide/disulfide or CH3Hg+-hydrogen polysulfide complexes in any samples. When CH3Hg+ binds to a humic ligand, the C-Hg bond in CH3Hg+ remains intact. Some heavy atoms are proximately coordinated around the mercury atom in the sample containing the highest CH3Hg+ levels used in this study.  相似文献   

5.
We prepare TiO2 film by ALD and study their electronic properties by soft X-ray absorption spectroscopy (XAS) and photoelectron spectroscopy. We focus on XAS and X-ray linear dichroism to indentify band onset and learn about local distortion of the Ti–O octahedral atomic and about defects which cause Ti-based electronic states within the band gap.  相似文献   

6.
The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO4), and low Ni concentration ([Ni]initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order of the observed surface complexes increases from 0.01 Å2 to 0.005 Å2 with increasing reaction time. On the basis of the low Ni-Al coordination numbers, it appears that over an extended reaction time period of 1 yr the diffusion of Ni atoms in the octahedral layer is not the major uptake mechanism of Ni onto montmorillonite.  相似文献   

7.
X-ray absorption fine structure (XAFS) spectroscopic analysis at the As, Se, and Mn K-edges was used to study arsenate [As(V)O43−] and selenite [Se(IV)O32−] sorption complexes on the synthetic hydrous manganese oxides (HMOs) vernadite (δ-MnO2) and K-birnessite (nominal composition: K4Mn14O27 · 9H2O). No significant changes were observed in sorption complex structure as a function of sorbent, pH (5 to 8), surface coverage (0.04 to 0.73 μmol/m2), or reaction time (5 to 22 h) in the arsenate or selenite systems. In the arsenate/HMO system, extended XAFS parameters indicate an average second-neighbor As(V) coordination of 2.0 ± 0.4 Mn at an average distance of 3.16 ± 0.01 Å, which is consistent with formation of As(V)O4 sorption complexes sharing corners with two adjacent Mn(IV)O6 surface species (i.e., bidentate, binuclear). In the selenite/HMO system, selenite surface complexes are surrounded by two shells of Mn atoms, which could represent two different adsorption complexes or a precipitate. The first shell consists of 1.6 ± 0.4 Mn at 3.07 ± 0.01 Å, which is consistent with the selenite anion forming bidentate (mononuclear) edge-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. The second shell consists of 1.4 ± 0.4 Mn at 3.49 ± 0.03 Å, consistent with selenite forming monodentate, corner-sharing complexes with Mn(II)O6 or Mn(III)O6 octahedra. Pauling bond valence analysis that uses the extended XAFS-derived bond lengths for As(V)-O, Se(IV)-O, and Mn-O bonds indicates that the proposed surface complexes of selenite and arsenate on HMOs should be stable. Although a nearly identical Se(IV) coordination environment is found in a crystalline Mn(II)-Se(IV) precipitate (which has a structure similar to that of MnSeO3 · H2O), there are significant differences in the X-ray absorption near-edge structure and extended XAFS spectra of this precipitate and the selenite/HMO sorption samples. These differences coupled with transmission electron microscopy results suggest that if a precipitate is present it lacks long-range order characteristic of crystalline MnSeO3 · H2O.  相似文献   

8.
The acid chemistry of confined waters in smectite interlayers have been investigated with first principles molecular dynamics (FPMD) simulations. Aiming at a systematic picture, we establish the model systems to take account of the three possible controlling factors: layer charge densities (0 e, 0.5 e and 1.0 e per cell), layer charge locations (tetrahedral and octahedral) and interlayer counterions (Na+ and Mg2+). For all models, the interlayer structures are characterized in detail. Na+ and Mg2+ show significantly different hydration characteristics: Mg2+ forms a rigid octahedral hydration shell and resides around the midplane, whereas Na+ binds to a basal oxygen atom and forms a very flexible hydration shell, which consists of five waters on average and shows very fast water exchanges. The method of constraint is employed to enforce the water dissociation reactions and the thermodynamic integration approach is used to derive the free-energy values and the acidity constants. Based on the simulations, the following points have been gained. (1) The layer charge is found to be the direct origin of water acidity enhancement in smectites because the neutral pore almost does not have influences on water dissociations but all charged pores do. (2) With a moderate charge density of 0.5 e per cell, the interlayer water shows a pKa value around 11.5. While increasing layer charge density to 1.0 e, no obvious difference is found for the free water molecules. Since 1.0 e is at the upper limit of smectites’ layer charge, it is proposed that the calculated acidity of free water in octahedrally substituted Mg2+-smectite, 11.3, can be taken as the lower limit of acidities of free waters. (3) In octahedrally and tetrahedrally substituted models, the bound waters of Mg2+ show very low pKa values: 10.1 vs 10.4. This evidences that smectites can also promote the dissociations of the coordinated waters of metal cations. The comparison between the two Mg2+-smectites reveals that different layer charge locations do not lead to obvious differences for bound and free water acidities.  相似文献   

9.
Chloride and hydrosulfide are the principal ligands assumed to govern transport of copper in hydrothermal fluids. Existing solubility experiments suggest that Cu(I)-hydrosulfide complexes are dominant compared to chloride complexes at low salinities in alkaline solutions (H2S(aq)/HS pH buffer), and may be important in transporting Cu in low density magmatic vapors, potentially controlling the liquid-vapor partitioning of Cu. This study provides the first in situ evidence of the solubility of copper sulfides and the nature and structure of the predominant Cu species in sulfur-containing fluids at temperatures up to 592 °C and pressures of 180-600 bar. XANES and EXAFS data show that at elevated T (?200 °C), Cu solubility occurs via a linear Cu complex. At 428 °C in alkaline solutions, Cu is coordinated by two sulfur atoms in a distorted linear coordination (angle ∼150-160°). This geometry is consistent with the species predicted by earlier solubility studies. In addition, in situ measurements of the solubility of chalcocite in 2 m NaHS solutions performed in this study are in remarkably good agreement with the solubilities calculated using available thermodynamic data for Cu(I)-hydrosulfide complexes, also supporting the interpretation of speciation in these studies and validating the extrapolation of low-T thermodynamic properties for to high P-T. Data on phase separation for the 2 m NaHS solution show that while significant amounts of copper can be partitioned into the vapor phase, there is no indication for preferential partitioning of Cu into the vapor. This is consistent with recent partitioning experiments conducted in autoclaves by Pokrovski et al. (2008a) and Simon et al. (2006). XANES data suggest that the species present in the low density phase is very similar to that present in the high density liquid, i.e., , although Cu(HS)(H2S)0 cannot be excluded on the basis of XAS data.  相似文献   

10.
Rietveld refinement of X-ray synchrotron data was performed for two synthetic tetrahedrite samples, with 0.61 and 1.83 Fe atoms, and two synthetic tennantite samples with 0.10 and 1.23 Fe atoms p.f.u. M12(Sb,As)4S13. Measurements were performed at 25 and 250°C. For both the phases, increased Fe substitution is reflected in the increased tetrahedral ‘Cu1’–S distance (‘Cu1’ is a site of Fe substitution) and Cu2–S distances. Cu2 was refined as a split position; the Cu2–Cu2 split about the plane of the S12S2 triangle is about 0.56 and 0.65 Å for tetrahedrite and tennantite, respectively. Cu2–Cu2 distances in the structure cavity are 2.8–2.9 Å. Between 25 and 250°C, the lattice parameter a increased by 0.02–0.04 Å and the interatomic distances by 0.01 Å on an average. Thermal expansion coefficients of little-substituted samples are similar to those of unsubstituted samples, whereas thermal expansion appears to decrease with increasing substitution by Fe. The Cu2–Cu2 split increases at 250°C by about 0.1 Å for tetrahedrite and by more than 0.15 Å for tennantite but the cage expansion is minimal so that the Cu2–Cu2 distances in the cavity decrease with temperature. Difference Fourier maps indicate that there is little residual electron density left between the two Cu2 half-sites in tetrahedrite but this inter-site density is substantially higher in tennantite. It increases with temperature, especially in the little-substituted tennantite sample.  相似文献   

11.
The determination of the oxidation states of copper and iron in sulfides, and chalcopyrite (CuFeS2) in particular, using 2p X-ray photoemission spectroscopy (XPS) and L2,3-edge X-ray absorption spectroscopy (XAS) is revisited. Reassessment of the published spectra derived by these methods produces consistent results and reveals the ‘d count’ in the copper compounds to be intermediate between d9 and d10. Nevertheless, these covalent copper compounds can be divided into those nominally monovalent and those nominally divalent. The Fe L2,3-edge XAS of chalcopyrite, along with Mössbauer data, confirm the presence of high-spin Fe3+. Chalcopyrite, despite recent published reports to the contrary, clearly belongs to the monovalent copper class.  相似文献   

12.
We report results from in situ extended X-ray absorption fine structure (EXAFS) spectroscopy studies of Cu(II) and Zn(II) complexes forming at the calcite surface following adsorption from preequilibrated calcite-saturated solutions. Both Cu(II) and Zn(II) coordinate at Ca sites on the calcite surface, forming mononuclear inner-sphere adsorption complexes. The Zn adsorption complexes are in tetrahedral coordination with first-shell O neighbors with RZn-O = 1.95 Å, and the Cu complexes are Jahn-Teller distorted, with equatorial RCu-O = 1.95 Å. Results from EXAFS data of dilute Cu- and Zn-calcite solid solutions confirm substitution of these metals in the Ca site of the calcite structure as octahedral complexes during coprecipitation. X-ray fluorescence microanalyses of calcite (101?4) hillocks grown in coprecipitation experiments show that divalent Cu and Zn, which have ionic radii smaller than Ca, are preferentially incorporated into the parallel arrays of <4?41>+ steps that define one pair of symmetrically equivalent vicinal faces on polygonized growth spirals. In contrast, other divalent metals with sixfold ionic radii smaller than Ca (Co, Cd, Mn, Mg) have been shown to be preferentially incorporated into <4?41> growth steps, which define the second pair of vicinal faces on the growth spirals, but which are symmetrically nonequivalent to the steps on the first pair. The distortion from octahedral symmetry observed for the Cu and Zn adsorption complexes likely plays a key role in the observed preference of Cu and Zn for incorporation into the <4?41>+ steps.  相似文献   

13.
《Applied Geochemistry》2004,19(10):1529-1535
This work focuses on interaction between granite–stainless steel (SUS) pipe–dry steam in the presence of Cu. Three types of hydrothermal experiments were conducted: (1) SUS–Cu–granite, (2) SUS–Cu, (3) SUS–granite. It was found that a high protective amorphous AlSi1,6O4 layer (thickness about 5 μm) was formed on the supporting pipe surface only in the case of SUS–Cu–granite interaction. The Al silicate layer formed during the experiment was characterized by X-ray diffraction (XRD) techniques and scanning electron microscopy (SEM) with EDX. According to kinetic data this layer has high protective properties.  相似文献   

14.
The local structures of divalent Zn, Cu, and Pb sorbed on the phyllomanganate birnessite (Bi) have been studied by powder and polarized extended X-ray absorption fine structure (EXAFS) spectroscopy. Metal-sorbed birnessites (MeBi) were prepared at different surface coverages by equilibrating at pH 4 a Na-exchanged buserite (NaBu) suspension with the desired aqueous metal. Me/Mn atomic ratios were varied from 0.2% to 12.8% in ZnBi and 0.1 to 5.8% in PbBi. The ratio was equal to 15.6% in CuBi. All cations sorbed in interlayers on well-defined crystallographic sites, without evidence for sorption on layer edges or surface precipitation. Zn sorbed on the face of vacant layer octahedral sites (□), and shared three layer oxygens (Olayer) with three-layer Mn atoms (Mnlayer), thereby forming a tridentate corner-sharing (TC) interlayer complex (Zn-3Olayer-□-3Mnlayer). TCZn complexes replace interlayer Mn2+ (Mninter2+) and protons. TCZn and TCMninter3+ together balance the layer charge deficit originating from Mnlayer4+ vacancies, which amounts to 0.67 charge per total Mn according to the structural formula of hexagonal birnessite (HBi) at pH 4. At low surface coverage, zinc is tetrahedrally coordinated to three Olayer and one water molecule ([IV]TC complex: (H2O)-[IV]Zn-3Olayer). At high loading, zinc is predominantly octahedrally coordinated to three Olayer and to three interlayer water molecules ([VI]TC complex: 3(H2O)-[VI]Zn-3Olayer), as in chalcophanite ([VI]ZnMn34+O7·3H2O). Sorbed Zn induces the translation of octahedral layers from −a/3 to +a/3, and this new stacking mode allows strong H bonds to form between the [IV]Zn complex on one side of the interlayer and oxygen atoms of the next Mn layer (Onext): Onext…(H2O)-[IV]Zn-3Olayer. Empirical bond valence calculations show that Olayer and Onext are strongly undersaturated, and that [IV]Zn provides better local charge compensation than [VI]Zn. The strong undersaturation of Olayer and Onext results not only from Mnlayer4+ vacancies, but also from Mn3+ for Mn4+ layer substitutions amounting to 0.11 charge per total Mn in HBi. As a consequence, [IV]Zn,Mnlayer3+, and Mnnext3+ form three-dimensional (3D) domains, which coexist with chalcophanite-like particles detected by electron diffraction. Cu2+ forms a Jahn-Teller distorted [VI]TC interlayer complex formed of two oxygen atoms and two water molecules in the equatorial plane, and one oxygen and one water molecule in the axial direction. Sorbed Pb2+ is not oxidized to Pb4+ and forms predominantly [VI]TC interlayer complexes. EXAFS spectroscopy is also consistent with the formation of tridentate edge-sharing ([VI]TE) interlayer complexes (Pb-3Olayer-3Mn), as in quenselite (Pb2+Mn3+O2OH). Although metal cations mainly sorb to vacant sites in birnessite, similar to Zn in chalcophanite, EXAFS spectra of MeBi systematically have a noticeably reduced amplitude. This higher short-range structural disorder of interlayer Me species primarily originates from the presence of Mnlayer3+, which is responsible for the formation of less abundant interlayer complexes, such as [IV]Zn TC in ZnBi and [VI]Pb TE in PbBi.  相似文献   

15.
The effect of pressure on titanium coordination in glasses, with composition K2TiSi4O11, quenched isobarically from liquids equilibrated at high pressure (5, 10, 15, 20, 25, 30 kbar respectively) and T=1600° C has been investigated by X-ray absorption spectroscopy (XAS). The XANES spectra collected at the Ti K-edge clearly show a variation with pressure that is related to changes in the geometrical environment around the Ti atoms. By comparison with spectra of standard materials, the XANES spectra of the glasses suggest a relatively low average coordination number (near 5) in samples quenched at low pressure and a higher coordination number (near 6) in samples quenched from the highest pressure. The combination of XANES data with density and compressibility measurements supports the idea that a mixture of 6- and lower coordinated (4- and/ or 5-coordinated) Ti geometries are present in the 1 bar glass, and an increasing proportion of 6-coordinated Ti occurs in the glasses synthesized at progressively higher pressures.  相似文献   

16.
The distribution of iron atoms in the octahedral sheet of a series of dioctahedral smectites with varying unit-cell composition and iron content was investigated by Fe K-edge XAS spectroscopy. First-step analysis reveals that the patterns corresponding to backscattering by atoms located between 3 and 4 Å from the absorbing atom are very sensitive to the relative amount of light (Si, Al, Mg) and heavy (Fe) atoms. Detailed modelling of this domain then provides valuable information on the number of iron atoms surrounding octahedral iron. By comparing the number of iron neighbours deduced from EXAFS with that determined from unit-cell composition assuming a statistical distribution, three groups of montmorillonites can be distinguished: (1) clay samples from Wyoming display an ordered distribution of iron atoms; (2) clay samples from Georgia, Milos, China and Washington exhibit a close to random distribution of iron atoms; (3) clay samples from North Africa, Germany, Texas and Arizona display extensive iron clustering. These results complement previously obtained IR results and show that the combination of these two spectroscopic techniques could provide an additional crystal-chemistry-based framework for typological analysis of montmorillonite deposits.  相似文献   

17.
An X-ray absorption spectroscopy (XAS) study of the Fe local environment in natural amethyst (a variety of α-quartz, SiO2) has been carried out. Room temperature measurements were performed at the Fe K-edge (7,112 eV), at both the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions. Experimental results were then compared with DFT calculations. XANES experimental spectra suggest Fe to occur mainly in the trivalent state, although a fraction of Fe2+ is identified. EXAFS spectra, on the other hand, reveal an unusual short distance for the first coordination shell:  = 1.78(2) Å, the coordination number being 2.7(5). These results allow to establish that Fe replaces Si in its tetrahedral site, and that numerous local distortions are occurring as a consequence of the presence of Fe3+ variably compensated by protons and/or alkaline ions, or uncompensated. The formal valence of Fe, on the basis of both experimental and DFT structural features, can be either 4+ or 3+. Taking into account the XANES evidences, we suggest that Fe mainly occurs in the trivalent state, compensated by protons, and that a minor fraction of Fe4+ is stabilised by the favourable local structural arrangement.  相似文献   

18.
Synchrotron radiation has been used to collect Cu K-edge and Ag K-edge EXAFS from several tetrahedrite, (Cu,Ag)10(Zn,Fe,Cu)2Sb4S13, minerals. The results have been used to investigate the coordination environment of the Ag and Cu, and to determine which sites in the structure are occupied by silver atoms when they replace copper. The Ag EXAFS spectrum of a sample with high silver content reveals an interaction between silver and antimony which may explain the anomalous decrease in unit cell size found in natural tetrahedrites when the silver content increases beyond four atoms per unit formula.  相似文献   

19.
The concentration and transport of metals in hydrothermal solutions depend on how metals ions combine with ligands to form complexes, and experimental methods are necessary to identify the important complexes. UV-Vis-NIR spectrophotometry was used to study the formation of Cu(II)-chloride complexes in LiCl brines up to very high chlorinities (18 m LiCl), at temperatures between 25°C and 90°C. The number of Cu(II)-chloride complexes necessary to account for the variation in spectra with varying chloride molality at each temperature was estimated using principal component analysis. The molar absorptivity coefficients and concentrations of each complex were then determined using a “model-free” analysis, which does not require any assumption about the chemistry of the system, other than the number of absorbing species present. Subsequently, the results from the “model-free” analysis were integrated with independent experimental evidence to develop a thermodynamic speciation model, where the logarithms of the equilibrium constants for Cu(II)-chloride formation reactions were fitted to the data using a non-linear least-squares approach. Maps of the residual function were used to estimate uncertainties in the fitted equilibrium constants.The results of this study are similar to published properties of distorted octahedral [CuCl(OH2)5]+ and [CuCl2(OH2)4]0 at all temperatures, but diverge for [CuCl3(OH2)3] and distorted tetrahedral [CuCl4]2−. Moreover, the data suggest the presence of [CuCl5]3−, probably with D3h point group, at very high salt concentration. This study demonstrates that it is possible to determine apparent thermodynamic equilibrium constants for the formation of complexes of trace amount of metals in highly concentrated brines, such as those associated with many ore deposits. The results are dependent on the choice of activity coefficients for charged and neutral aqueous complexes, but this influence is relatively small compared with the experimental uncertainty. This study shows that Cu2+ chloro-complexes, predominantly [CuCl2(OH2)4]0 and [CuCl4]2−, will play a dominant role in nature where free oxygen is available (near-surface), and where chloride activities are very high (evaporitic basins; hypersaline soils).  相似文献   

20.
Using trioctahedral smectites synthesized at low temperature (25 and 75°C). partition coefficients have been determined for M2+ transition metals (Mn, Fe, Co, Ni, Cu, Zn) between octahedral sheets of smectites and water. These coefficients D(M2+?Mg) = (M2+)/(Mg) solid/(M2+)/(Mg) liquid have high values near 104 for Cu, 1000 for Ni, Co, Zn, 300 for Fe and 30 for Mn. All transition metals are strongly stabilized in the magnesian solid phase, even Mn which leads to noncrystallized products. Within the range of experimental uncertainties, it is found that tetrahedral substitution of Si by Al and differences in temperature (from 25 to 75°C) have no influence on partition coefficients. Experimental data are closely related to thermodynamic properties of the cations and on this basis other partition coefficients can be calculated, for the (M2+ ? Fe2+) pair for instance. The behaviour of transition metals is explained using crystal field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号