首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate Fe isotopes. Fe isotope fractionations produced by both the enrichment cultures and the Thiodictyon culture were relatively constant at early stages of the reaction progress, where the 56Fe/54Fe ratios of poorly crystalline hydrous ferric oxide (HFO) metabolic products were enriched in the heavier isotope relative to aqueous ferrous iron (Fe[II]aq) by ∼1.5 ± 0.2‰. This fractionation appears to be independent of the rate of photoautotrophic Fe(II)-oxidation, and is comparable to that observed for Fe isotope fractionation by dissimilatory Fe(III)-reducing bacteria. Although there remain a number of uncertainties regarding how the overall measured isotopic fractionation is produced, the most likely mechanisms include (1) an equilibrium effect produced by biological ligands, or (2) a kinetic effect produced by precipitation of HFO overlaid upon equilibrium exchange between Fe(II) and Fe(III) species. The fractionation we observe is similar in direction to that measured for abiotic oxidation of Fe(II)aq by molecular oxygen. This suggests that the use of Fe isotopes to identify phototrophic Fe(II)-oxidation in the rock record may only be possible during time periods in Earth’s history when independent evidence exists for low ambient oxygen contents.  相似文献   

2.
Fe(III) solid phases are the products of Fe(II) oxidation by Fe(II)-oxidizing bacteria, but the Fe(III) phases reported to form within growth experiments are, at times, poorly crystalline and therefore difficult to identify, possibly due to the presence of ligands (e.g., phosphate, carbonate) that complex iron and disrupt iron (hydr)oxide precipitation. The scope of this study was to investigate the influences of geochemical solution conditions (pH, carbonate, phosphate, humic acids) on the Fe(II) oxidation rate and Fe(III) mineralogy. Fe(III) mineral characterization was performed using 57Fe-Mössbauer spectroscopy and μ-X-ray diffraction after oxidation of dissolved Fe(II) within Mops-buffered cell suspensions of Acidovorax sp. BoFeN1, a nitrate-reducing, Fe(II)-oxidizing bacterium. Lepidocrocite (γ-FeOOH) (90%), which also forms after chemical oxidation of Fe(II) by dissolved O2, and goethite (α-FeOOH) (10%) were produced at pH 7.0 in the absence of any strongly complexing ligands. Higher solution pH, increasing concentrations of carbonate species, and increasing concentrations of humic acids promoted goethite formation and caused little or no changes in Fe(II) oxidation rates. Phosphate species resulted in Fe(III) solids unidentifiable to our methods and significantly slowed Fe(II) oxidation rates. Our results suggest that Fe(III) mineralogy formed by bacterial Fe(II) oxidation is strongly influenced by solution chemistry, and the geochemical conditions studied here suggest lepidocrocite and goethite may coexist in aquatic environments where nitrate-reducing, Fe(II)-oxidizing bacteria are active.  相似文献   

3.
Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental conditions under which modern photoferrotrophs grow and the kinetics, physiology and mechanism of Fe(II) oxidation, no systematic analyses of the physico-chemical characteristics of those aggregates, such as shape, size, density and chemical composition, have as yet been conducted. Herein, experimental results show most aggregates are bulbous or ragged in shape, with an average particle size of 10-40 μm, and densities that typically range between 2.0 and 2.4 g/cm3; the cell fraction of the aggregates increased and their density decreased with initial Fe(II) concentration. The mineralogy of the ferric iron phase depended on the composition of the medium: goethite formed in cultures grown by oxidation of dissolved Fe(II) medium in the presence of low phosphate concentrations, while poorly ordered ferrihydrite (or Fe(III) phosphates) formed when amorphous Fe(II) minerals (Fe(II)-phosphates) and high concentrations of phosphate were initially present. Importantly, in all experiments, a fraction of the photoautotrophic cells remained planktonic, demonstrating a constant stoichiometric excess of Fe(III) compared to the autotrophically fixed carbon in the biogenic precipitate. These results not only have an important bearing on nutrient and trace element cycling in the modern water column, but the size, shape and composition of the aggregates can be used to estimate aggregate reactivity during sediment diagenesis over short and geologic time scales.  相似文献   

4.
Iron isotope fractionations produced during chemical and biological Fe(II) oxidation are sensitive to the proportions and nature of dissolved and solid-phase Fe species present, as well as the extent of isotopic exchange between precipitates and aqueous Fe. Iron isotopes therefore potentially constrain the mechanisms and pathways of Fe redox transformations in modern and ancient environments. In the present study, we followed in batch experiments Fe isotope fractionations between Fe(II)aq and Fe(III) oxide/hydroxide precipitates produced by the Fe(III) mineral encrusting, nitrate-reducing, Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Isotopic fractionation in 56Fe/54Fe approached that expected for equilibrium conditions, assuming an equilibrium Δ56FeFe(OH)3-Fe(II)aq fractionation factor of +3.0‰. Previous studies have shown that Fe(II) oxidation by this Acidovorax strain occurs in the periplasm, and we propose that Fe isotope equilibrium is maintained through redox cycling via coupled electron and atom exchange between Fe(II)aq and Fe(III) precipitates in the contained environment of the periplasm. In addition to the apparent equilibrium isotopic fractionation, these experiments also record the kinetic effects of initial rapid oxidation, and possible phase transformations of the Fe(III) precipitates. Attainment of Fe isotope equilibrium between Fe(III) oxide/hydroxide precipitates and Fe(II)aq by neutrophilic, Fe(II)-oxidizing bacteria or through abiologic Fe(II)aq oxidation is generally not expected or observed, because the poor solubility of their metabolic product, i.e. Fe(III), usually leads to rapid precipitation of Fe(III) minerals, and hence expression of a kinetic fractionation upon precipitation; in the absence of redox cycling between Fe(II)aq and precipitate, kinetic isotope fractionations are likely to be retained. These results highlight the distinct Fe isotope fractionations that are produced by different pathways of biological and abiological Fe(II) oxidation.  相似文献   

5.
Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)′). In this work, the kinetics of superoxide-mediated Fe(II)′ formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)′ formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)′ formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)′ was formed at a higher rate. The rate of Fe(II)′ produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)′ is formed from Fe(III)-fulvic acid complexes.  相似文献   

6.
Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe-O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II)aq - oxide interaction will produce low δ56Fe values for Fe(II)aq, similar to that produced by Fe(II) oxidation, only small quantities of low-δ56Fe Fe(II)aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low-δ56Fe aqueous Fe(II) in many natural systems.  相似文献   

7.
Iron isotopes were used to investigate iron transformation processes during an in situ field experiment for removal of dissolved Fe from reduced groundwater. This experiment provided a unique setting for exploring Fe isotope fractionation in a natural system. Oxygen-containing water was injected at a test well into an aquifer containing Fe(II)-rich reduced water, leading to oxidation of Fe(II) and precipitation of Fe(III)(hydr)oxides. Subsequently, groundwater was extracted from the same well over a time period much longer than the injection time. Since the surrounding water is rich in Fe(II), the Fe(II) concentration in the extracted water increased over time. The increase was strongly retarded in comparison to a conservative tracer added to the injected solution, indicating that adsorption of Fe(II) onto the newly formed Fe(III)(hydr)oxides occurred. A series of injection-extraction (push-pull) cycles were performed at the same well. The δ57Fe/54Fe of pre-experiment background groundwater (−0.57 ± 0.17 ‰) was lighter than the sediment leach of Fe(III) (−0.24 ± 0.08 ‰), probably due to slight fractionation (only ∼0.3 ‰) during microbial mediated reductive dissolution of Fe(III)(hydr)oxides present in the aquifer. During the experiment, Fe(II) was adsorbed from native groundwater drawn into the oxidized zone and onto Fe(III)(hydr)oxides producing a very light groundwater component with δ57Fe/54Fe as low as −4 ‰, indicating that heavier Fe(II) is preferentially adsorbed to the newly formed Fe(III)(hydr)oxides surfaces. Iron concentrations increased with time of extraction, and δ57Fe/54Fe linearly correlated with Fe concentrations (R2 = 0.95). This pattern was reproducible over five individual cycles, indicating that the same process occurs during repeated injection/extraction cycles. We present a reactive transport model to explain the observed abiotic fractionation due to adsorption of Fe(II) on Fe(III)(hydr)oxides. The fractionation is probably caused by isotopic differences in the equilibrium sorption constants of the various isotopes (Kads) and not by sorption kinetics. A fractionation factor α57/54 of 1.001 fits the observed fractionation.  相似文献   

8.
Microbial dissimilatory iron reduction (DIR) has been identified as a mechanism for production of aqueous Fe(II) that has low 56Fe/54Fe ratios in modern and ancient suboxic environments that contain ferric oxides or hydroxides. These studies suggest that DIR could have played an important role in producing distinct Fe isotope compositions in Precambrian banded iron formations or other marine sedimentary rocks. However, the applicability of experimental studies of Fe isotope fractionation produced by DIR in geochemically simple systems to ancient marine environments remains unclear. Here we report Fe isotope fractionations produced during dissimilatory microbial reduction of hematite by Geobacter sulfurreducens in the presence and absence of dissolved Si at neutral and alkaline pH. Hematite reduction was significantly decreased by Si at alkaline (but not neutral) pH, presumably due to Si polymerization at the hematite surface. The presence of Si altered Fe isotope fractionation factors between aqueous Fe(II) or sorbed Fe(II) and reactive Fe(III), reflecting changes in bonding environment of the reactive Fe(III) component at the oxide surface. Despite these changes in isotopic fractionations, our results demonstrate that microbial Fe(III) oxide reduction produces Fe(II) with negative δ56Fe values under conditions of variable pH and dissolved Si, similar to the large inventory of negative δ56Fe in Neoarchean and Paleoproterozoic age marine sedimentary rocks.  相似文献   

9.
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42− and Cl salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor αFe(III)aq-Fe(II)aq ∼ 1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (∼1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (∼1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9‰ (αFe(III)aq-Fe(II)aq ∼ 1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record.  相似文献   

10.
The Fe(II) adsorption by non-ferric and ferric (hydr)oxides has been analyzed with surface complexation modeling. The CD model has been used to derive the interfacial distribution of charge. The fitted CD coefficients have been linked to the mechanism of adsorption. The Fe(II) adsorption is discussed for TiO2, γ-AlOOH (boehmite), γ-FeOOH (lepidocrocite), α-FeOOH (goethite) and HFO (ferrihydrite) in relation to the surface structure and surface sites. One type of surface complex is formed at TiO2 and γ-AlOOH, i.e. a surface-coordinated Fe2+ ion. At the TiO2 (Degussa) surface, the Fe2+ ion is probably bound as a quattro-dentate surface complex. The CD value of Fe2+ adsorbed to γ-AlOOH points to the formation of a tridentate complex, which might be a double edge surface complex. The adsorption of Fe(II) to ferric (hydr)oxides differs. The charge distribution points to the transfer of electron charge from the adsorbed Fe(II) to the solid and the subsequent hydrolysis of the ligands that coordinate to the adsorbed ion, formerly present as Fe(II). Analysis shows that the hydrolysis corresponds to the hydrolysis of adsorbed Al(III) for γ-FeOOH and α-FeOOH. In both cases, an adsorbed M(III) is found in agreement with structural considerations. For lepidocrocite, the experimental data point to a process with a complete surface oxidation while for goethite and also HFO, data can be explained assuming a combination of Fe(II) adsorption with and without electron transfer. Surface oxidation (electron transfer), leading to adsorbed Fe(III)(OH)2, is favored at high pH (pH > ∼7.5) promoting the deprotonation of two FeIII-OH2 ligands. For goethite, the interaction of Fe(II) with As(III) and vice versa has been modeled too. To explain Fe(II)-As(III) dual-sorbate systems, formation of a ternary type of surface complex is included, which is supposed to be a monodentate As(III) surface complex that interacts with an Fe(II) ion, resulting in a binuclear bidentate As(III) surface complex.  相似文献   

11.
Hexavalent uranium [U(VI)] dissolved in a modified lactate-C medium was treated under anoxic conditions with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz. The mass of Fe(III)-(hydr)oxide mineral was varied to give equivalent Fe(III)-mineral surface areas. After equilibration, the U(VI)-mineral suspensions were inoculated with sulfate-reducing bacteria, Desulfovibrio desulfuricans G20. Inoculation of the suspensions containing sulfate-limited medium yielded significant G20 growth, along with concomitant reduction of sulfate and U(VI) from solution. With lactate-limited medium, however, some of the uranium that had been removed from solution was resolubilized in the hematite treatments and, to a lesser extent, in the goethite treatments, once the lactate was depleted. No resolubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of 4 months. Uranium resolubilization was attributed to reoxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled at the end of the experiments yielded spectra similar to that of uraninite, but having distinct features, notably a much more intense and slightly broader white line consistent with precipitation of nanometer-sized particles. The XANES spectra thus provided strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, our results suggest that SRB mediate reduction of soluble U(VI) to an insoluble U(IV) oxide, so long as a suitable electron donor is available. Depletion of the electron donor may result in partial reoxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III)-(hydr)oxides are incompletely reduced.  相似文献   

12.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

13.
Analytical methods used for determining dissolved Fe(II) often yield inaccurate results in the presence of high Fe(III) concentrations. Accurate analysis of Fe(II) in solution when it is less than 1% of the total dissolved Fe concentration (FeT) is sometimes required in both geochemical and environmental studies. For example, such analysis is imperative for obtaining the ratio Fe(II)/Fe(III) in rocks, soils and sediments, for determining the kinetic constants of Fe(II) oxidation in chemical or biochemical systems operating at low pH, and is also important in environmental engineering projects, e.g. for proper control of the regeneration step (oxidation of Fe(II) into Fe(III)) applied in ferric-based gas desulphurization processes. In this work a method capable of yielding accurate Fe(II) concentrations at Fe(II) to FeT ratios as low as 0.05% is presented. The method is based on a pretreatment procedure designed to separate Fe(II) species from Fe(III) species in solution without changing the original Fe(II) concentration. Once separated, a modified phenanthroline method is used to determine the Fe(II) concentration, in the virtual absence of Fe(III) species. The pretreatment procedure consists of pH elevation to pH 4.2–4.65 using NaHCO3 under N2(g) environment, followed by filtration of the solid ferric oxides formed, and subsequent acidification of the Fe(II)-containing filtrate. Accuracy of Fe(II) analyses obtained for samples (Fe(II)/FeT ratios between 2% and 0.05%) to which the described pretreatment was applied was >95%. Elevating pH to above 4.65 during pretreatment was shown to result in a higher error in Fe(II) determination, likely resulting from adsorption of Fe(II) species and their removal from solution with the ferric oxide precipitate.  相似文献   

14.
Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ~3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ~1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.  相似文献   

15.
Sorption of contaminants such as arsenic (As) to natural Fe(III) (oxyhydr)oxides is very common and has been demonstrated to occur during abiotic and biotic Fe(II) oxidation. The molecular mechanism of adsorption- and co-precipitation of As has been studied extensively for synthetic Fe(III) (oxyhydr)oxide minerals but is less documented for biogenic ones. In the present study, we used Fe and As K-edge X-ray Absorption Near Edge Structure (XANES), extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, Mössbauer spectroscopy, XRD, and TEM in order to investigate the interactions of As(V) and As(III) with biogenic Fe(III) (oxyhydr)oxide minerals formed by the nitrate-reducing Fe(II)-oxidizing bacterium Acidovorax sp. strain BoFeN1. The present results show the As immobilization potential of strain BoFeN1 as well as the influence of As(III) and As(V) on biogenic Fe(III) (oxyhydr)oxide formation. In the absence of As, and at low As loading (As:Fe ≤ 0.008 mol/mol), goethite (Gt) formed exclusively. In contrast, at higher As/Fe ratios (As:Fe = 0.020-0.067), a ferrihydrite (Fh) phase also formed, and its relative amount systematically increased with increasing As:Fe ratio, this effect being stronger for As(V) than for As(III). Therefore, we conclude that the presence of As influences the type of biogenic Fe(III) (oxyhydr)oxide minerals formed during microbial Fe(II) oxidation. Arsenic-K-edge EXAFS analysis of biogenic As-Fe-mineral co-precipitates indicates that both As(V) and As(III) form inner-sphere surface complexes at the surface of the biogenic Fe(III) (oxyhydr)oxides. Differences observed between As-surface complexes in BoFeN1-produced Fe(III) (oxyhydr)oxide samples and in abiotic model compounds suggest that associated organic exopolymers in our biogenic samples may compete with As oxoanions for sorption on Fe(III) (oxyhydr)oxides surfaces. In addition HRTEM-EDXS analysis suggests that As(V) preferentially binds to poorly crystalline phases, such as ferrihydrite, while As(III) did not show any preferential association regarding Fh or Gt.  相似文献   

16.
Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [FeIII(H2O)6]3+ and hematite at 98°C allows the equilibrium 56Fe/54Fe fractionation to be inferred, which we estimate at 103lnαFe(III)-hematite = −0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 106/T2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [FeIII(H2O)6]3+ and hematite based on vibrational frequencies and Mössbauer shifts by [Polyakov 1997] and [Polyakov and Mineev 2000], and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ∼12 h produces a kinetic isotope fractionation where 103lnαFe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by itself does not measurably fractionate Fe isotopes.  相似文献   

17.
《Applied Geochemistry》2000,15(6):785-790
The original ferrozine method has been modified to sequentially determine the Fe(II)/Fe(III) speciation in small volumes of fresh and marine water samples, at the submicromolar level. Spectrophotometric analyses of the Fe(II)–ferrozine complex are performed on a single aliquot before and after a reduction step with hydroxylamine. The procedure is calibrated using Fe(III) standards stable under normal conditions of analysis. It is shown also that the presence of high concentrations of dissolved NOM (natural organic matter) do not create any significant artifacts. The method was used to measure Fe(II) and Fe(III) depth distribution in salt marsh pore waters and in a stratified marine basin.  相似文献   

18.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

19.
Oxidation of As(III) by natural manganese (hydr)oxides is an important geochemical reaction mediating the transformation of highly concentrated As(III) in the acidic environment such as acid mine drainage (AMD) and industrial As-contaminated wastewater, however, little is known regarding the presence of dissolved Fe(II) on the oxidation process. In this study, oxidation of As(III) in the absence and presence of Fe(II) by MnO2 under acidic conditions was investigated. Kinetic results showed that the presence of Fe(II) significantly inhibited the removal of As(III) (including oxidation and sorption) by MnO2 in As(III)-Fe(II) simultaneous oxidation system even at the molar ratio of Fe(II):As(III) = 1/64:1, and the inhibitory effects increased with the increasing ratios of Fe(II):As(III). Such an inhibition could be attributed to the formation of Fe(III) compounds covering the surface of MnO2 and thus preventing the oxidizing sites available to As(III). On the other hand, the produced Fe(III) compounds adsorbed more As(III) and the oxidized As(V) on the MnO2 surface with an increasing ratio of Fe(II):As(III) as demonstrated in kinetic and XPS results. TEM and EDX results confirmed the formation of Fe compounds around MnO2 particles or separated in solution in Fe(II) individual oxidation system, Fe(II) pre-treated and simultaneous oxidation processes, and schwertmannite was detected in Fe(II) individual and Fe pre-treated oxidation processes, while a new kind of mineral, probably amorphous FeOHAs or FeAsO4 particles were detected in Fe(II)-As(III) simultaneous oxidation process. This suggests that the mechanisms are different in Fe pre-treated and simultaneous oxidation processes. In the Fe pre-treated and MnO2-mediated oxidation pathway, As(III) diffused through a schwertmannite coating formed around MnO2 particles to be oxidized. The newly formed As(V) was adsorbed onto the schwertmannite coating until its sorption capacity was exceeded. Arsenic(V) then diffused out of the coating and was released into the bulk solution. The diffusion into the schwertmannite coating and the oxidation of As(III) and sorption of both As(V) and As(III) onto the coating contributed to the removal of total As from the solution phase. In the simultaneous oxidation pathway, the competitive oxidation of Fe(II) and As(III) on MnO2 occurred first, followed by the formation of FeOHAs or FeAsO4 around MnO2 particles, and these poorly crystalline particles of FeOHAs and FeAsO4 remained suspended in the bulk solution to adsorb As(III) and As(V). The present study reveals that the formation of Fe(III) compounds on mineral surfaces play an important role in the sorption and oxidation of As(III) by MnO2 under acidic conditions in natural environments, and the mechanisms involved in the oxidation of As(III) depend upon how Fe(II) is introduced into the As(III)-MnO2 system.  相似文献   

20.
Sorption and desorption processes are an important part of biological and geochemical metallic isotope cycles. Here, we address the dynamic aspects of metallic isotopic fractionation in a theoretical and experimental study of Fe sorption and desorption during the transport of aqueous Fe(III) through a quartz-sand matrix. Transport equations describing the behavior of sorbing isotopic species in a water saturated homogeneous porous medium are presented; isotopic fractionation of the system (Δsorbedmetal-soln) being defined in terms of two parameters: (i) an equilibrium fractionation factor, αe; and (ii) a kinetic sorption factor, α1. These equations are applied in a numerical model that simulates the sorption-desorption of Fe isotopes during injection of a Fe(III) solution pulse into a quartz matrix at pH 0-2 and explores the effects of the kinetic and equilibrium parameters on the Fe-isotope evolution of porewater. The kinetic transport theory is applied to a series of experiments in which pulses of Na and Fe(III) chloride solutions were injected into a porous sand grain column. Fractionation factors of αe = 1.0003 ± 0.0001 and α1 = 0.9997 ± 0.0004 yielded the best fit between the transport model and the Fe concentration and δ56Fe data. The equilibrium fractionation (Δ56FesorbedFe-soln) of 0.3‰ is comparable with values deduced for adsorption of metallic cations on iron and manganese oxide surfaces and suggests that sandstone aquifers will fractionate metallic isotopes during sorption-desorption reactions. The ability of the equilibrium fractionation factor to describe a natural system, however, depends on the proximity to equilibrium, which is determined by the relative time scales of mass transfer and chemical reaction; low fluid transport rates should produce a system that is less dependent on kinetic effects. The results of this study are applicable to Fe-isotope fractionation in clastic sediments formed in highly acidic conditions; such conditions may have existed on Mars where acidic oxidizing ground and surface waters may have been responsible for clastic sedimentation and metallic element transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号