首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L-1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH)2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II)aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II)aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.  相似文献   

2.
Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA, USA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe-rich precipitates. Batch reactors were used to conduct experiments at 50 °C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10−13 mol m−2 s−1) was measured in the treatment with no Al and a concentration of 4.32 mol L−1 NaOH in the contact solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminants and radionuclides.  相似文献   

3.
The dissolution and transformation of soddyite ([UO2]2SiO4 · 2H2O) have been examined in aqueous suspension at pH 6 and 0.01 M NaNO3. Soddyite is an important component of the paragenetic sequence of secondary minerals that arises from the weathering of uraninite ore deposits and corrosion of spent nuclear fuel. A soddyite of high purity and crystallinity was synthesized in the laboratory for use in dissolution experiments. In batch experiments, rapid dissolution occurred over an initial period of several hours followed by continuing steady-state dissolution for up to 700 h. Up to 200 h, U and Si were released into solution at their stoichiometric 2:1 ratio in soddyite. A decrease in the dissolved U concentration was observed at longer times, indicating the precipitation of a new phase. Even after precipitation of the secondary phase, the continuing dissolution of soddyite could be inferred from increasing dissolved Si concentrations. Through the use of X-ray diffraction, Raman spectroscopy, and scanning electron microscopy, the precipitated phase was identified as a clarkeite-like sodium uranyl oxide hydrate. The sodium uranyl oxide hydrate was ultimately the solubility-controlling solid, despite being only a minor component. Soddyite dissolution rates were quantified in flow-through experiments, in which reaction products were flushed from the reactors, thereby avoiding reprecipitation of U. The measured dissolution rate at pH 6 was 0.71 μmol U m−2 h−1. A slower dissolution rate of 0.44 μmol U m−2 h−1 was observed when 100 μM dissolved Si was added to the reactor influent.  相似文献   

4.
Biotite dissolution under conditions of high pH and high aluminum, sodium, and nitrate concentrations analogous to those found in tank wastes at the Hanford Site was investigated using continuously stirred flow-through reactors at 22 to 25 °C. Experiments were designed to simulate tank leaks into the Hanford vadose zone where Fe(II) from biotite is the dominant reducing agent available to immobilize certain contaminants. Both non-steady-state and steady-state dissolution kinetics were quantified; interest in non-steady-state kinetics derives from the inherently transitory nature of tank leaks. Biotite was conditioned in pH 8 solutions to simulate the alkaline environment of the Hanford sediment, and then reacted in pH 10-14 solutions, some including 0.055 M Al(NO3)3 and/or 2 M or 6 M NaNO3. Initial dissolution transients (intervals of rapid release rates that decay to slower steady-state rates) showed fast preferential release of K followed by near-stoichiometric release of Si, Al, and Mg, and slower release of Fe. Each increase in pH resulted in a second transient with the greatest amounts of Si, Al, and K released at pH 14, followed by pHs 13, 12, 11, and 10. Fe release also was highest at pH 14, but unchanging at pHs 10-13 within experimental error. Transient releases at high pH are attributed to dissolution of amphoteric secondary phases such as ferrihydrite that are inferred from saturation calculations and solid analyses to form during the conditioning interval. Transient release of Si was inhibited by the presence of 0.055 M Al(NO3)3; the effects of Al(NO3)3 and NaNO3 on the release rates of Al, Fe, Mg, and K were variable and generally outweighed by the effect of pH. Quasi-steady-state release rates were slowest at pH 11-12 (10−12.2 mol biotite m−2 s−1 for Si) and increased in either direction in pH away from this minimum (to 10−11.5 at pHs 8 and 14 for Si). Fe release rates at high pH were sufficient to account for observed Cr(VI) reduction at Hanford. The net release rates of the major framework cations, from which the biotite dissolution rate is inferred, may reflect the precipitation of secondary phases or the alteration of biotite to vermiculite. The most extensive solid-phase alterations were observed in Na-enriched solutions.  相似文献   

5.
Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4 = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4 present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.  相似文献   

6.
Sedimentary biogenic silica from Redeyef in Gafsa basin (southern Tunisia) was analysed for its 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra and complemented by X-ray diffraction and SEM observations. The 29Si MAS NMR spectrum is characterized by the abundance of hydroxylated silicon, displayed in resonance intensities and reflects a clear tendency towards dissolution of diatomaceous amorphous silica and the occurrence of the hydrated silica, which is the main component that ensures the diagenetic transition via the mechanism of dissolution–precipitation to other more crystalline silica phases, after the lost of its hydroxyls groups (water) by heating (burial). 27Al MAS NMR reveals two coordinations of Al; the octahedrally coordinated Al suggests the presence of clay relics trapped during crystal growth or a microcrystalline zeolite (clinoptilolite detected by SEM observations), while the tetrahedrally coordinated Al suggests the presence of minor quantities of minerals with tetrahedral Al, such as an Al-rich fluid and/or minerals such as feldspars.  相似文献   

7.
Secondary reactions occurring in pyrite-containing sediments from open cut coal mines are complex and not fully understood. In this study, the changes in seepage water composition in a column experiment with a sediment containing pyrite (5.6 g kg−1) were evaluated using a chemical equilibrium model. A column experiment with artificial irrigation (730 mm water yr−1) was carried out for 2 yr with a sediment from the open pit mine Garzweiler, Germany, at the Institute of Applied Geology. Tracer (LiCl) was added to the sediment. Seepage water composition at 52 cm depth was sampled weekly. Redox potential and the water potential were also recorded weekly. Sulphate and Fe(II) were the dominant ions in the seepage water with concentration maxima of 500 and 350 mmol l−1 after 50 days (0.7 pore volumes (PV)). Minimum pH values were around 0.8 after 100 days (1.4 PV), but increased subsequently and reached 2.4 after 700 days (9.5 PV). Ion activity product calculations indicated the intermediate formation of gypsum (19th–480th day of the experiment). Solutions were undersaturated with respect to alunite, jarosite, jurbanite, schwertmannite, melanterite, gibbsite and goethite during the whole experiment. The model of coupled equilibria which included inorganic complexation, precipitation/dissolution of gypsum and multiple cation exchange was tested. Pyrite oxidation and pH-dependent silicate weathering were considered using simple input functions. Transport was modelled using a field capacity cascade submodel. Model results showed satisfactory agreement with measured values for pH and concentrations of SO4, Fe, Mg, Ca and Al. Correlation coefficients lay between 0.7 and 0.9 and linear regression coefficients (modelled against measured) were 1.5 (Ca), 1.0 (Fe, SO4), 0.8 (Mg), 0.7 (pH) and 0.6 (Al). The results showed that the protons produced during pyrite oxidation (94 mmolc H+ kg−1) were mainly released into seepage water (as HSO4 and H+). Cation exchange reactions buffered 20 mmolc of H+ kg−1 sediment, and Al released by silicate weathering accounted for 3.6 mmolc H+ kg−1. Modelling was useful to further understand the significance of different pH buffer reactions.  相似文献   

8.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(19-20):3261-3275
Studies on the dissolution kinetics of kaolinite were performed using batch reactors at 25°C and in the pH range from 1 to 13. A rapid initial dissolution step was first observed, followed by a linear kinetic stage reached after approximately 600 hr of reaction during which the kaolinite dissolves congruently at pH < 4 and pH > 11. The apparent incongruency between pH 5 and 10 was due to the precipitation of an Al–hydroxide phase. The true dissolution rates were computed from the amount of Si released into solution. The rate dependence on pH can be described by: r = 10−12.19aH+0.55 + 10−14.36 + 10−10.71aOH0.75Between pH 5 and 10, the rate is approximately constant, although a smooth minimum was observed at pH close to 9. mAn attempt was made to obtain a general rate law based on the coordination theory, which was first applied to the mineral dissolution studies by Stumm and co-workers. The kinetic data were combined with the results obtained for the surface speciation by Huertas et al. (1998). It is possible to express the linear dissolution rate as a simple power function of the concentration of the surface sites active in various pH ranges: r = 10−8.25 [>Al2OH2+] + 10−10.82 [>AlOH2+]0.5 + 10−9.1 [>Al2OH + >AlOH + >SiOH] + 103.78 [>Al2O + >AlO]3This equation assumes that the dissolution mechanism is mainly controlled by the two Al surface sites (external and internal structural hydroxyls, and aluminol at the crystal edges) under both acidic and alkaline conditions. The model reflects well the important contribution of the crystal basal planes to the dissolution of kaolinite.  相似文献   

10.
We report the benthic fluxes of O2, titration alkalinity (TA), Ca2+, NO3, PO43−, and Si(OH)4 from in situ benthic flux chamber incubations on the Ceara Rise and Cape Verde Plateau and compare them to previously published results. We find within analytical uncertainty that the TA flux is twice the calcium flux, suggesting that dissolution/precipitation of CaCO3 is the principal mechanism controlling benthic TA and Ca2+ fluxes. At sites where the sediments contain significant (>35%) CaCO3 and the overlying waters are supersaturated with respect to CaCO3, the ratios of the total dissolution rate to the remineralization rate are significantly less than at all other study sites. We propose that these observations can be explained by precipitation of fresh CaCO3 at the supersaturated sediment surface followed by redissolution deeper in the sediments because of metabolically-produced CO2. A numerical simulation is presented to demonstrate the feasibility of this explanation. In addition, surface exchange reactions in high-CaCO3 sediments coupled with high rates of particle mixing may also impact rates of metabolic dissolution and depress chamber-derived estimates of carbonate alkalinity and calcium benthic fluxes. These results suggest that at supersaturated, high CaCO3 locations, previous models of sediment diagenesis may have overestimated the impact of metabolic dissolution on the preservation of CaCO3 deposited on the sea floor.  相似文献   

11.
The influence of Al(OH)4 on the dissolution rate of quartz at pH 10-13 and 59-89 °C was determined using batch experiments. Al(OH)4 at concentrations below gibbsite solubility depressed the dissolution rate by as much as 85%, and this effect was greater at lower pH and higher Al(OH)4 concentration. Dissolution rates increased with increasing temperature; however, the percent decrease in rate due to the presence of Al(OH)4 was invariant with temperature for a given H+ activity and Al(OH)4 concentration. These data, along with what is known about Al-Si interactions at high pH, are consistent with Al(OH)4 and Na+ co-adsorbing on silanol sites and passivating the surrounding quartz surface. The observed pH dependence, and lack of temperature dependence, of inferred Al(OH)4 sorption also supports the assumption that the acid-base behavior of the surface silanol groups has only a small temperature dependence in this range. A Langmuir-type adsorption model was used to express the degree of rate depression for a given in situ pH and Al(OH)4 concentration. Incorporation of the rate data in the absence of aluminate into models that assume a first-order dependence of the rate on the fraction of deprotonated silanol sites was unsuccessful. However, the data are consistent with the hypothesis proposed in the literature that two dissolution mechanisms may be operative in alkaline solutions: nucleophilic attack of water on siloxane bonds catalyzed by the presence of a deprotonated silanol group and OH attack catalyzed by the presence of a neutral silanol group. The data support the dominance of the second mechanism at higher pH and temperature.  相似文献   

12.
《Applied Geochemistry》2005,20(1):193-205
Sorption and precipitation of Co(II) in simplified model systems related to the Hanford site high-level nuclear waste tank leakage were investigated through solution studies, geochemical modeling, and X-ray absorption fine structure (XAFS) spectroscopy. Studies of Co(II) sorption to pristine Hanford sediments (ERDF and Sub), which consist predominantly of quartz, plagioclase, and alkali feldspar, show an adsorption edge centered at pH  8.0 for both sediments studied, with sorption >99% above pH  9.0. Aqueous SiO2 resulting from dissolution of the sediments increased in concentration with increasing pH, though the systems remained undersaturated with respect to quartz. XAFS studies of Co(II) sorption to both sediment samples reveal the oxidation of Co(II) to Co(III), likely by dissolved O2, although this oxidation was incomplete in the Sub sediment samples. The authors propose that Fe(II) species, either in aqueous solution or at mineral surfaces, partially inhibited Co(II) oxidation in the Sub sediment samples, as these sediments contain significantly higher quantities of Fe(II)-bearing minerals which likely partially dissolved under the high-pH solution conditions. In alkaline solutions, Al precipitated as bayerite, gibbsite, or a mixture of the two at pH > 7; an amorphous gel formed at pH values less than 7. Aqueous Co concentrations were well below the solubility of known Co-bearing phases at low pH, suggesting that Co was removed from solution through an adsorption mechanism. At higher pH values, Co concentrations closely matched the solubility of a Co-bearing hydrotalcite-like solid. XAFS spectra of Co(II) sorbed to Al-hydroxide precipitates are similar to previously reported spectra for such hydrotalcite-like phases. The precipitation processes observed in this study can significantly reduce the environmental hazard posed by 60Co in the environment.  相似文献   

13.
Waters from high‐altitude alpine lakes are mainly recharged by meteoric water. Because of seasonal variations in precipitation and temperature and relatively short hydraulic residence times, most high‐altitude lakes have lake water isotopic compositions (δ18Olake) that fluctuate due to seasonality in water balance processes. Input from snowmelt, in particular, has a significant role in determining lake water δ18O. Here we compare two high‐resolution δ18Odiatom records from lake sediments in the Swedish Scandes with instrumental data from the last century obtained from nearby meteorological stations. The time period AD 1900–1990 is characterised by an increase in winter precipitation and high winter/summer precipitation ratios and this is recorded in δ18Odiatom as decreasing trends. Lowest δ18Odiatom values and highest amount of winter precipitation are found around AD 1990 when the winter North Atlantic Oscillation index was above +2. We conclude that for the last 150 a the main factor affecting the δ18Odiatom signal in these sub‐Arctic high‐altitude lakes with short residence times has been changes in amount of winter precipitation and that δ18Odiatom derived from high‐altitude lakes in the Swedish Scandes can be used as a winter precipitation proxy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines.FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <−70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases.There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water chemistry over short distances, reflecting the interaction of acid ground waters with neutral to alkaline lake waters derived from ponded surface runoff. Meridiani Planum observations indicate that such lateral variations are much less pronounced, pointing to the dominant influence of ground water chemistry, vertical ground water movements, and aeolian processes on the Martian surface mineralogy.  相似文献   

16.
Textural and mineral–chemical characteristics in the Bangriposi wehrlites (Eastern India) provide insight into metamorphic processes that morphologically and chemically modified magmatic spinel during serpentinization of wehrlite. Aluminous chromite included in unaltered magmatic olivine is chemically homogenous. In sub-cm to 10s-of-micron-wide veins, magnetite associated with antigorite and clinochlore comprising the serpentine matrix is near-stoichiometric. But Al–Cr–Fe3+ spinels in the chlorite–magnetite veins are invariably zoned, e.g., chemically homogenous Al-rich chromite interior successively mantled by ferritchromite/Cr-rich magnetite zone and magnetite continuous with vein magnetite in the serpentine matrix. In aluminous chromite, ferritchromite/Cr-rich magnetite zones are symmetrically disposed adjacent to fracture-controlled magnetite veins that are physically continuous with magnetite rim. The morphology of ferritchromite–Cr-rich magnetite mimics the morphology of aluminous chromite interior but is incongruous with the exterior margin of magnetite mantle. Micropores are abundant in magnetite veins, but are fewer in and do not appear to be integral to the adjacent ferritchromite–Cr-rich magnetite zones. Sandwiched between chemically homogenous aluminous chromite interior and magnetite mantle, ferritchromite–Cr-rich magnetite zones show rim-ward decrease in Cr2O3, Al2O3 and MgO and complementary increase in Fe2O3 at constant FeO. In diffusion profiles, Fe2O3–Cr2O3 crossover coincides with Al2O3 decrease to values <0.5 wt% in ferritchromite zone, with Cr2O3 continuing to decrease within magnetite mantle. Following fluid-mediated (hydrous) dissolution of magmatic olivine and olivine + Al–chromite aggregates, antigorite + magnetite and chlorite + magnetite were transported in 10s-of-microns to sub-cm-wide veins and precipitated along porosity networks during serpentinization (T: 550–600 °C, f(O2): ?19 to ?22 log units). These veins acted as conduits for precipitation of magnetite as mantles and veins apophytic in chemically/morphologically modified magmatic Al-rich chromite. Inter-crystalline diffusion induced by chemical gradient at interfaces separating aluminous chromite interiors and magnetite mantles/veins led to the growth of ferritchromite/Cr-rich magnetite zones, mimicking the morphology of chemically modified Al–Cr–Fe–Mg spinel interiors. Inter-crystalline diffusion outlasted fluid-mediated aluminous chromite dissolution, mass transfer and magnetite precipitation.  相似文献   

17.
Laboratory experiments on reagent-grade calcium carbonate and carbonate rich glacial sediments demonstrate previously unreported kinetic fractionation of carbon isotopes during the initial hydrolysis and early stages of carbonate dissolution driven by atmospheric CO2. There is preferential dissolution of Ca12CO3 during hydrolysis, resulting in δ13C-DIC values that are significantly lighter isotopically than the bulk carbonate. The fractionation factor for this kinetic isotopic effect is defined as εcarb. εcarb is greater on average for glacial sediments (−17.4‰) than for calcium carbonate (−7.8‰) for the < 63 μm size fraction, a sediment concentration of 5 g L−1 and closed system conditions at 5°C. This difference is most likely due to the preferential dissolution of highly reactive ultra-fine particles with damaged surfaces that are common in subglacial sediments. The kinetic isotopic fractionation has a greater impact on δ13C-DIC at higher CaCO3:water ratios and is significant during at least the first 6 h of carbonate dissolution driven by atmospheric CO2 at sediment concentrations of 5 g L−1. Atmospheric CO2 dissolving into solution following carbonate hydrolysis does not exhibit any significant equilibrium isotopic fractionation for at least ∼ 6 h after the start of the experiment at 5°C. This is considerably longer than previously reported in the literature. Thus, kinetic fractionation processes will likely dominate the δ13C-DIC signal in natural environments where rock:water contact times are short <6-24 h (e.g., glacial systems, headwaters in fluvial catchments) and there is an excess of carbonate in the sediments. It will be difficult apply conventional isotope mass balance techniques in these types of environment to identify microbial CO2 signatures in DIC from δ13C-DIC data.  相似文献   

18.
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%).The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by α-recoil injection of 234Th. The fraction of 238U decays that result in α-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 4 × 10−7 to 2 × 10−6 yr−1. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 104 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials.The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (Rd) of soils and deep-sea sediments can be approximately described by the expression Rd ≈ 0.1 Age−1 for ages spanning 1000 to 5 × 108 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.  相似文献   

19.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

20.
This research aims to improve the current knowledge of groundwater salinisation processes in coastal aquifers using combined hydrochemical and isotopic parameters and inverse hydrochemical modelling. Field investigations were conducted in Laizhou Bay, which is the area most seriously affected by seawater intrusion in north China. During three sampling campaigns along a vertical transect in the Changyi-Liutuan area, 95 ground- and surface-water samples were collected for major ion and isotope analysis (2H/18O, 3H, 14C, 34S). The groundwater changes along the general flowpath towards the coast from fresh (<1 g/L), brackish (1-10 g/L), saline (10-100 g/L) to brine water (>100 g/L). Molar Cl/Br ratios are close to those of seawater in almost all groundwater samples, indicating that brines and deep seawater evolved from different events of palaeo-seawater intrusion. Depleted isotopic signatures of brines and deep saline water point to a former, initially depleted seawater reservoir due to runoff dilution. Tritium and 14C activities in deep saline water below confining units indicate isolation from modern precipitation and significant residence times. Brine water shows a wide range of 3H and 14C ages due to the complex conditions of mixing without isolation from modern groundwater. Sulphur-34 isotope ratios support seawater intrusion as a possible salt origin, although this parameter does not exclude gypsum dissolution. The combined use of Cl and 18O yields four different end-members of groundwater, and three different mixing scenarios were identified explaining the hydrochemical composition of groundwater samples with intermediate salinity in the different areas. To improve understanding of the various water types and their related processes in a spatial context, a conceptual model was developed integrating the results derived from the presented data in a vertical cross-section. Results of three inverse modelling simulations using PHREEQC-2 show that all hypothetical mixing scenarios derived from conservative components are thermodynamically feasible. In all scenarios, mixing, ion exchange, dissolution of dolomite and precipitation of gypsum and calcite account for the hydrochemical changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号