首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacterial surface adsorption can control metal distributions in some natural systems, yet it is unclear whether natural bacterial consortia differ in their adsorption behaviors. In this study, we conduct potentiometric titration and metal adsorption experiments to measure proton and Cd adsorption onto a range of bacterial consortia. We model the experimental data using a surface complexation approach to determine thermodynamic stability constants. Our results indicate that these consortia adsorb similar extents of protons and Cd and that the adsorption onto all of the consortia can be modeled using a single set of stability constants. Consortia of bacteria cultured from natural environments also adsorb metals to lesser extents than individual strains of laboratory-cultivated species. This study suggests that a wide range of bacterial species exhibit similar adsorption behaviors, potentially simplifying the task of modeling the distribution and speciation of metals in bacteria-bearing natural systems. Current models for bacteria-metal adsorption that rely on pure strains of laboratory-cultivated species likely overpredict the amount of bacteria-metal adsorption in natural systems.  相似文献   

2.
The quantity and quality of dissolved organic matters have been widely characterized by fluorescence spectroscopy, yet the relationship between the fluorescence properties of dissolved organic matters and its molecular composition remains poorly described in the literature. Here, we measured the fluorescence excitation–emission matrix of 17 well-characterized humic substance standards to determine a range of fluorescence parameters, including classical fluorescence indices (e.g., fluorescence index, biological index and humification index) and parameters derived from parallel factor analysis (e.g., component contribution). Relationships between humic substance’s fluorescence and compositional parameters were then statistically examined using canonical correspondence and simple correlation analyses. The canonical correspondence analysis generally suggested that most fluorescence parameters determined here are highly associated with the amount of aliphatic and aromatic compounds in humic substances. However, the correlation analysis between single molecular and fluorescence parameters indicated that the fluorescence properties of humic substances including the parallel factor analysis component contribution also significantly correlate well with several aspects of the molecular composition of humic substances, such as elemental composition, carbon species, acidic functional group and iron complexation. Overall, our results suggest that measurement of humic substance’s fluorescence is beneficial in understanding the molecular composition and environmental functions of dissolved organic matters in natural and engineered waters.  相似文献   

3.
Bulk Cd adsorption isotherm experiments, thermodynamic equilibrium modeling, and Cd K edge EXAFS were used to constrain the mechanisms of proton and Cd adsorption to bacterial cells of the commonly occurring Gram-positive and Gram-negative bacteria, Bacillus subtilis and Shewanella oneidensis, respectively. Potentiometric titrations were used to characterize the functional group reactivity of the S. oneidensis cells, and we model the titration data using the same type of non-electrostatic surface complexation approach as was applied to titrations of B. subtilis suspensions by Fein et al. (2005). Similar to the results for B. subtilis, the S. oneidensis cells exhibit buffering behavior from approximately pH 3-9 that requires the presence of four distinct sites, with pKa values of 3.3 ± 0.2, 4.8 ± 0.2, 6.7 ± 0.4, and 9.4 ± 0.5, and site concentrations of 8.9(±2.6) × 10−5, 1.3(±0.2) × 10−4, 5.9(±3.3) × 10−5, and 1.1(±0.6) × 10−4 moles/g bacteria (wet mass), respectively. The bulk Cd isotherm adsorption data for both species, conducted at pH 5.9 as a function of Cd concentration at a fixed biomass concentration, were best modeled by reactions with a Cd:site stoichiometry of 1:1. EXAFS data were collected for both bacterial species as a function of Cd concentration at pH 5.9 and 10 g/L bacteria. The EXAFS results show that the same types of binding sites are responsible for Cd sorption to both bacterial species at all Cd loadings tested (1-200 ppm). Carboxyl sites are responsible for the binding at intermediate Cd loadings. Phosphoryl ligands are more important than carboxyl ligands for Cd binding at high Cd loadings. For the lowest Cd loadings studied here, a sulfhydryl site was found to dominate the bound Cd budgets for both species, in addition to the carboxyl and phosphoryl sites that dominate the higher loadings. The EXAFS results suggest that both Gram-positive and Gram-negative bacterial cell walls have a low concentration of very high-affinity sulfhydryl sites which become masked by the more abundant carboxyl and phosphoryl sites at higher metal:bacteria ratios. This study demonstrates that metal loading plays a vital role in determining the important metal-binding reactions that occur on bacterial cell walls, and that high affinity, low-density sites can be revealed by spectroscopy of biomass samples. Such sites may control the fate and transport of metals in realistic geologic settings, where metal concentrations are low.  相似文献   

4.
Samples of authigenic material, sediment overlying water and oxic surface sediment (0–0.5-cm depth) from a perennially oxygenated lacustrine basin were analysed to investigate which solid phases are important for binding a suite of trace elements (Ag, As, Ca, Cd, Cu, Hg, In, methylmercury (MeHg), Mg, Mo, Pb, Sb and Zn). The authigenic material, which was collected with inert Teflon sheets deployed for several years across the sediment–water interface, contained mainly poorly crystallized Fe oxyhydroxides and natural organic matter, presumably humic substances derived from the watershed. Manganese oxyhydroxides were not present in the collected authigenic material due to the slightly acidic condition (pH = 5.6) of the lake that prevents the formation and recycling of these compounds. Conditional equilibrium constants for the adsorption of cationic (KFe–M) and anionic (KFe–A) trace elements onto the authigenic Fe oxyhydroxides were estimated from their concentrations in the authigenic material and in bottom water samples. These field-derived values of KFe–M and KFe–A were compared with those predicted by the surface complexation model, using laboratory-derived intrinsic adsorption constants and the water composition at the study site. Equilibrium constants (KPOM–M) were also calculated for the adsorption of the cationic trace elements onto the humic substances contained in the diagenetic material. The field-derived values of KPOM–M were compared to those predicted by the speciation code WHAM 6 for the complexation of the trace elements by dissolved humic substances in the lake. Combining the results of the present study with those on the distributions of trace elements in the porewater and solid-phase sediments reported in previous studies at the same site, it was determined whether the trace elements bind preferentially to Fe oxyhydroxides or natural organic matter in oxic sediments. The main inferences are that the anionic trace elements As, Mo and Sb, as well as the cationic metal Pb are preferentially bound to the authigenic Fe oxyhydroxides whereas the other trace elements, and especially Hg and MeHg, are preferentially bound to the humic substances.  相似文献   

5.
《Chemical Geology》2007,236(3-4):266-280
The surface chemistry of the cell wall of the metal resistant bacterium Cupriavidus metallidurans CH34 was investigated through proton exchange and zinc and cadmium sorption experiments. The effect of organic and mineral nutrients availability, culture age and viability on cell wall reactivity to H+, Zn or Cd was specifically addressed. Parameter sensitivity studies allowed constraining the pH-validity domain of the titration experiments and defining experimental conditions that permit reproducible experiments with this bacterium. The results were satisfactorily fitted with a non-electrostatic model that allowed the determination of the stability constants of three discrete acid–base functional groups differing in acidity at bacterial cell surfaces. These results revealed that C. metallidurans CH34 did not particularly stand out in terms of its surface reactivity as compared to metal-sensitive bacteria. This may confirm a generic global reactivity of all bacteria towards non-redox sensitive metals. The same reactivity to zinc was observed for C. metallidurans CH34 cells grown in LB-rich or TSM-mineral media. Cell surface reactivity was found to be independent of organic substrates availability but strongly dependent on cell growth stage and cell viability. Zinc sorption by C. metallidurans CH34 was only slightly (15% decrease) affected by phosphate availability. This suggests the involvement of phosphorus sites in metal binding. Zn and Cd stability constants compared to those of strong chelating ligands but were higher than those of weak ligands, such as acetic acid or phosphoric acid. This indicates that bacterial cells strongly compete with small dissolved organic components that are potentially less reactive to metals than bacteria. This competition potentially affects metal mobility in soils.  相似文献   

6.
Statistical distribution models of multi-site binding equilibria have potential applicability in the study of acid-base and metal complexation chemistry of humic substances in soils, sediments, and natural waters. A mathematical derivation is presented for the general continuous model for the case of proton binding; computational methods are described for fitting numerically the parameters in such models. Among models considered are those based on nontruncated, truncated, and bimodal (mixed) distributions. Specific emphasis is placed on Gaussian distribution models.  相似文献   

7.
Humic Ion-Binding Model V, which focuses on metal complexation with humic and fulvic acids, was modified to assess the role of dissolved natural organic matter in the speciation of rare earth elements (REEs) in natural terrestrial waters. Intrinsic equilibrium constants for cation-proton exchange with humic substances (i.e., pKMHA for type A sites, consisting mainly of carboxylic acids), required by the model for each REE, were initially estimated using linear free-energy relationships between the first hydrolysis constants and stability constants for REE metal complexation with lactic and acetic acid. pKMHA values were further refined by comparison of calculated Model V “fits” to published data sets describing complexation of Eu, Tb, and Dy with humic substances. A subroutine that allows for the simultaneous evaluation of REE complexation with inorganic ligands (e.g., Cl, F, OH, SO42−, CO32−, PO43−), incorporating recently determined stability constants for REE complexes with these ligands, was also linked to Model V. Humic Ion-Binding Model V’s ability to predict REE speciation with natural organic matter in natural waters was evaluated by comparing model results to “speciation” data determined previously with ultrafiltration techniques (i.e., organic acid-rich waters of the Nsimi-Zoetele catchment, Cameroon; dilute, circumneutral-pH waters of the Tamagawa River, Japan, and the Kalix River, northern Sweden). The model predictions compare well with the ultrafiltration studies, especially for the heavy REEs in circumneutral-pH river waters. Subsequent application of the model to world average river water predicts that organic matter complexes are the dominant form of dissolved REEs in bulk river waters draining the continents. Holding major solute, minor solute, and REE concentrations of world average river water constant while varying pH, the model suggests that organic matter complexes would dominate La, Eu, and Lu speciation within the pH ranges of 5.4 to 7.9, 4.8 to 7.3, and 4.9 to 6.9, respectively. For acidic waters, the model predicts that the free metal ion (Ln3+) and sulfate complexes (LnSO4+) dominate, whereas in alkaline waters, carbonate complexes (LnCO3+ + Ln[CO3]2) are predicted to out-compete humic substances for dissolved REEs. Application of the modified Model V to a “model” groundwater suggests that natural organic matter complexes of REEs are insignificant. However, groundwaters with higher dissolved organic carbon concentrations than the “model” groundwater (i.e., >0.7 mg/L) would exhibit greater fractions of each REE complexed with organic matter. Sensitively analysis indicates that increasing ionic strength can weaken humate-REE interactions, and increasing the concentration of competitive cations such as Fe(III) and Al can lead to a decrease in the amount of REEs bound to dissolved organic matter.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(19-20):3059-3067
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems.Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems.  相似文献   

9.
The topsoil temperature in arid areas of Xinjiang, China can be up to about 80°C in summer. This may significantly affect the chemical properties of soil humic substances. However, the effects of high temperature on characteristics of soil humic substances and their complexation with toxic metals are still poorly known. In the present study, binding of Hg(II) to unheated soil humic substances and heated soil humic substances from sandy soils was comparatively investigated using three-dimensional excitation?Cemission matrix (EEM) fluorescence spectroscopy. Two fluorescent peaks (peak I at Ex/Em?=?365?C370/470?C474?nm; peak II at Ex/Em?=?270?C275/468?C472?nm) identified as humic-like fluorescence were observed in the EEM spectra of humic substances. Both peaks were clearly quenched by Hg(II), indicating the strong interaction of humic-like substances with Hg(II), and showed blue shifts after heat treatment. Heat treatment caused an increase of the fraction of accessible fluorophore (f a), binding sites number (n) and effective quenching constants (logK a), indicating that more binding sites in humic substances could bind Hg(II) and form more stable humic substances?CHg(II) complexes after heat treatment. However, a decrease of binding constants (logK b) suggested that heat treatment would reduce the binding capacity of each binding site of humic substances to Hg(II). This study implies the transport of Hg(II) may be affected by high temperature in the arid zone due to the modification of the physicochemical properties of humic substances in soil.  相似文献   

10.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


11.
The ability of organic matter as well as carbonate ions to extract rare earth elements (REEs) from sandy sediments of a Coastal Plain aquifer was investigated for unpurified organic matter from different sources (i.e., Mississippi River natural organic matter, Aldrich humic acid, Nordic aquatic fulvic acid, Suwannee River fulvic acid, and Suwannee River natural organic matter) and for extraction solutions containing weak (i.e., CH3COO) or strong (i.e., ) ligands. The experimental results indicate that, in the absence of strong REE complexing ligands in solution, the amount of REEs released from the sand is small and the fractionation pattern of the released REEs appears to be controlled by the surface stability constants for REE sorption with Fe(III) oxides/oxyhydroxides. In the presence of strong solution complexing ligands, however, the amount and the fractionation pattern of the released REEs reflect the strength and variation of the stability constants of the dominant aqueous REE species across the REE series. The varying amount of REEs extracted by the different organic matter employed in the experiments indicates that organic matter from different sources has different complexing capacity for REEs. However, the fractionation pattern of REEs extracted by the various organic matter used in our experiments is remarkable consistent, being independent of the source and the concentration of organic matter used, as well as solution pH. Because natural aquifer sand and unpurified organic matter were used in our experiments, our experimental conditions are more broadly similar to natural systems than many previous laboratory experiments of REE-humic complexation that employed purified humic substances. Our results suggest that the REE loading effect on REE-humic complexation is negligible in natural waters as more abundant metal cations (e.g., Fe, Al) out-compete REEs for strong binding sites on organic matter. More specifically, our results indicate that REE complexation with organic matter in natural waters is dominated by REE binding to weak sites on dissolved organic matter, which subsequently leads to a middle REE (MREE: Sm-Ho)-enriched fractionation pattern. The experiments also indicate that carbonate ions may effectively compete with fulvic acid in binding with dissolved REEs, but cannot out compete humic acids for REEs. Therefore, in natural waters where low molecular weight (LMW) dissolved organic carbon (DOC) is the predominant form of DOC (e.g., lower Mississippi River water), REEs occur as “truly” dissolved species by complexing with carbonate ions as well as FA, resulting in heavy REE (HREE: Er-Lu)-enriched shale-normalized fractionation patterns. Whereas, in natural terrestrial waters where REE speciation is dominated by organic complexes with high molecular weight DOC (e.g., “colloidal” HA), only MREE-enriched fractionation patterns will be observed because the more abundant, weak sites preferentially complex MREEs relative to HREEs and light REEs (LREEs: La-Nd).  相似文献   

12.
We used titration calorimetry to measure the bulk heats of proton and Cd adsorption onto a common Gram positive soil bacterium Bacillus subtilis at 25.0 °C. Using the 4-site non-electrostatic model of Fein et al. [Fein, J.B., Boily, J.-F., Yee, N., Gorman-Lewis, D., Turner, B.F., 2005. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim. Cosmochim. Acta69 (5), 1123-1132.] to describe the bacterial surface reactivity to protons, our bulk enthalpy measurements can be used to determine the following site-specific enthalpies of proton adsorption for Sites 1-4, respectively: −3.5 ± 0.2, −4.2 ± 0.2, −15.4 ± 0.9, and −35 ± 2 kJ/mol, and these values yield the following third law entropies of proton adsorption onto Sites 1-4, respectively: +51 ± 4, +78 ± 4, +79 ± 5, and +60 ± 20 J/mol K. An alternative data analysis using a 2-site Langmuir-Freundlich model to describe proton binding to the bacterial surface (Fein et al., 2005) resulted in the following site-specific enthalpies of proton adsorption for Sites 1 and 2, respectively: −3.6 ± 0.2 and −35.1 ± 0.3 kJ/mol. The thermodynamic values for Sites 1-3 for the non-electrostatic model and Site 1 of the Langmuir-Freundlich model of proton adsorption onto the bacterial surface are similar to those associated with multifunctional organic acid anions, such as citrate, suggesting that the protonation state of a bacterial surface site can influence the energetics of protonation of neighboring sites. Our bulk Cd enthalpy data, interpreted using the 2-site non-electrostatic Cd adsorption model of Borrok et al. [Borrok, D., Fein, J.B., Tischler, M., O’Loughlin, E., Meyer, H., Liss, M., Kemner, K.M., 2004b. The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chem. Geol.209 (1-2), 107-119.] to account for Cd adsorption onto B. subtilis, yield the following site-specific enthalpies of Cd adsorption onto bacterial surface Sites 2 and 3, respectively: −0.2 ± 0.4 and +14.4 ± 0.9 kJ/mol, and the following third law entropies of Cd adsorption onto Sites 2 and 3, respectively: +57 ± 4 and +128 ± 5 J/mol K. The calculated enthalpies of Cd adsorption are typical of those associated with Cd complexation with anionic oxygen ligands, and the entropies are indicative of inner sphere complexation by multiple ligands. The experimental approach described in this study not only yields constraints on the molecular-scale mechanisms involved in proton and Cd adsorption reactions, but also provides new thermodynamic data that enable quantitative estimates of the temperature dependence of proton and Cd adsorption reactions.  相似文献   

13.
A dialysis procedure was used to assess the distribution coefficients of ∼50 major and trace elements (TEs) between colloidal (1 kDa–0.22 μm) and truly dissolved (<1 kDa) phases in Fe- and organic-rich boreal surface waters. These measurements allowed quantification of both TE partitioning coefficients and the proportion of colloidal forms as a function of solution pH (from 3 to 8). Two groups of elements can be distinguished according to their behaviour during dialysis: (i) elements which are strongly associated with colloids and exhibit significant increases of relative proportion of colloidal forms with pH increase (Al, Ba, Cd, Co, Cr, Cu, Fe, Ga, Hf, Mn, Ni, Pb, rare earth elements (REEs), Sr, Th, U, Y, Zn, Zr and dissolved organic C) and (ii) elements that are weakly associated with colloids and whose distribution coefficients between colloidal and truly dissolved phases are not significantly affected by solution pH (As, B, Ca, Cs, Ge, K, Li, Mg, Mo, Na, Nb, Rb, Sb, Si, Sn, Ti, V). Element speciation was assessed using the Visual MINTEQ computer code with an implemented NICA-Donnan humic ion binding model and database. The model reproduces quantitatively the pH-dependence of colloidal form proportion for alkaline-earth (Ba, Ca, Mg, Sr) and most divalent metals (Co, Cd, Mn, Ni, Pb, Zn) implying that the complexation of these metals with low molecular weight organic matter (<1 kDa fraction) is negligible. In contrast, model prediction of colloidal proportion (fraction of 1 kDa–0.22 μm) of Cu2+ and all trivalent and tetravalent metals is much higher than that measured in the experiment. This difference may be explained by (i) the presence of strong metal-binding organic ligands in the <1 kDa fraction whose stability constants are several orders of magnitude higher than those of colloidal humic and fulvic acids and/or (ii) coprecipitation of TE with Fe(Al) oxy(hydr)oxides in the colloidal fraction, whose dissolution and aggregation controls the pH-dependent pattern of TE partitioning. Quantitative modeling of metal – organic ligand complexation and empirical distribution coefficients corroborate the existence of two colloidal pools, formerly reported in boreal surface waters: “classic” fulvic or humic acids binding divalent transition metals and alkaline-earth elements and large-size organo-ferric colloids transporting insoluble trivalent and tetravalent elements.  相似文献   

14.
We measured the kinetics of U(VI) reduction by Shewanella oneidensis MR-1 under anaerobic conditions in the presence of variable concentrations of either EDTA or dissolved Ca. We measured both total dissolved U and U(VI) concentrations in solution as a function of time. In separate experiments, we also measured the extent of U(VI) adsorption onto S. oneidensis in order to quantify the thermodynamic stabilities of the important U(VI)-bacterial surface complexes. In the EDTA experiments, the rate of U(IV) production increased with increasing EDTA concentration. However, the total dissolved U concentrations remained constant and identical to the initial U concentrations during the course of the experiments for all EDTA-bearing systems. Additionally, the U(VI) reduction rate in the EDTA experiments exhibited a strong correlation to the concentration of the aqueous U4+-EDTA complex. We conclude that the U(VI) reduction rate increases with increasing EDTA concentration, likely due to U4+-EDTA aqueous complexation which removes U(IV) from the cell surface and prevents UO2 precipitation.In the Ca experiments, the U(VI) reduction rate decreased as Ca concentration increased. Our thermodynamic modeling results based on the U(VI) adsorption data demonstrate that U(VI) was adsorbed onto the bacterial surface in the form of a Ca-uranyl-carbonate complex in addition to a number of other Ca-free uranyl complexes. The observed U(VI) reduction rates in the presence of Ca exhibit a strong negative correlation to the concentration of the Ca-uranyl-carbonate bacterial surface complex, but a strong positive correlation to the total concentration of all the other Ca-free uranyl surface complexes. Thus, the concentration of these Ca-free uranyl surface complexes appears to control the rate of U(VI) reduction by S. oneidensis in the presence of dissolved Ca. Our results demonstrate that U speciation, both of U(VI) before reduction and of U(IV) after reduction, affects the reduction kinetics, and that thermodynamic modeling of the U speciation may be useful in the prediction of reduction kinetics in realistic geologic settings.  相似文献   

15.
The role of organic ligands in metal complexing in natural waters has received little attention because of uncertainties regarding both the abundance and nature of dissolved organic carbon compounds. Recent data show that the bulk of dissolved organic matter in natural waters consists of highly oxidized and chemically and biologically stable polymeric compounds closely resembling soil humic substances. Average molar concentrations of these aquatic humics in major U.S. rivers range from 5 × 10?6to 3 × 10?5 moles 1?1. Fractional elution of soil organic matter by meteoric waters may be considered to be the main process contributing to the presence of humic matter in rivers. The aquatic humic polymers participate in complex formation through ionizable functional groups with a range of differential acidities. The stabilities of metal-humic complexes in natural waters are higher than those of the corresponding inorganic metal complexes. Quantitative evaluation of the metal-organic interactions can be approached by applying variable equilibrium functions which take into account the differential physico-chemical characteristics of the active complexing sites on the polymer molecule. Assuming an average humic concentration of 10 mg 1?1, complexation of trace metals can be significant even in the presence of excess concentrations of major cations.  相似文献   

16.
Conditional surface binding constants and complexation capacities for Zn, Pb, Cd, and Cu were determined from surface titration experiments of heterogeneous natural aquatic particulate matter of different origin and composition. Metals and particles were evaluated in naturally occurring concentration ranges in river water.The adsorption of trace metals can be adequately described with a single conditional binding constant over a wide range of metal : particle ratios. Binding constants for aquatic particles at pH 8.0 are remarkably independent from particle composition and are specific for each metal: log Kads Zn = 8.39, log Kads Pb = 9.67, log Kads Cd = 8.61, log ads Cu = 9.84. From competition experiments with Ca and Pb we extracted a sorption coefficient for Ca of log Kads Ca = 2.5 (pH 8.0). Maximum surface binding capacities for all metal ions were found for particles containing high fractions of Mn-oxides which are associated with large specific surface areas. Generally, we found sorption capacities to decrease in the sequence Cu Pb, Zn > Cd.The experiments suggest that the conditional surface binding constants and complexation capacities are applicable to model trace metal adsorption in the concentration ranges of natural waters under conditions similar to the experiments. Results also imply that the chemical nature of particle surface sites is rather uniform in the intermediate concentration range or that the array of binding sites averages out differences in sorption strength over the prevailing concentration range of metal ions, respectively.  相似文献   

17.
18.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species (Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10−9-10−3 M), and ionic strength (10−3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities (μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb2+]aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd2+]aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of “highly reactive sites” those concentration represents only 2.5-3% of the total amount of carboxylic sites. For reversible adsorption experiments, the dominating carboxylic groups, whose concentration is allowed to vary within the uncertainty of experimental acid-base titrations, are sufficient to reproduce the metal adsorption isotherms. Results of this study strongly suggest that laboratory experiments performed in a wide range of metal to biomass ratios, represent robust and relatively simple method for assessing the distribution of metals between aqueous solution and planktonic and periphytic biomass in natural settings.  相似文献   

19.
Some recent developments made during the European Union 6th Framework Integrated Project FUNMIG in the understanding and prediction of behaviour in ternary systems of radionuclides, humic substances and mineral surfaces are described. These developments are placed in the context of the existing literature. The aim is to describe the current understanding of humic substance mediated radionuclide transport as it may be applied to calculations in support of Radiological Performance Assessment. Some improvements in experimental techniques that provide the raw data to calibrate metal ion binding models are explained. The various metal ion binding models that are available are described and contrasted, before the recent development of ternary system models, in particular the Ligand Charge Distribution model that can predict metal ion and humic substance behaviour in ternary systems. The kinetic effects in ternary systems are described along with the models that are used to describe them. Finally, the remaining challenges in making predictions of radionuclide transport for the Radiological Performance Assessment of radioactive waste repositories are discussed.  相似文献   

20.
《Applied Geochemistry》1986,1(5):573-590
Surface and groundwaters, plants and organic and inorganic components of sediments from a uranium rich bog in Kern County, California were studied to determine the mechanism of uranium entrapment and concentration.Spring waters which originate along a fault trace and contain elevated uranium concentrations (up to 293 μg/l) and other metals percolate through the waterlogged boggy meadow. Several approaches used to study the speciation of metals in the bog sediments indicate that U, unlike other metals, is predominantly associated with organic matter. In samples with high total organic carbon (>7%), uranium values range up to 1100 ppm. Analyses of organic constituents of the sediments show that humic substances, and not living plant material, are responsible for U entrapment and enrichment. Infra-red studies suggest that the mechanism of entrapment is complexation of the uranyl cation in groundwaters by car☐yl functional groups on the humic and fulvic acid molecules.Published experimental and thermodynamic data are reviewed and a mechanism to explain preferential enrichment of U over other trace metals is proposed for freshwater bog or marsh environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号