首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg-bearing calcite was precipitated at 25°C in closed system free-drift experiments from solutions containing NaHCO3, CaCl2 and MgCl2. The chemical and isotope composition of the solution and precipitate were investigated during time course experiments of 24-h duration. Monohydrocalcite and calcite precipitated early in the experiments (<8 h), while Mg-calcite was the predominant precipitate (>95%) thereafter. Solid collected at the end of the experiments displayed compositional zoning from pure calcite in crystal cores to up to 23 mol% MgCO3 in the rims. Smaller excursions in Mg were superimposed on this chemical record, which is characteristic of oscillatory zoning observed in synthetic and natural solid-solution carbonates of differing solubility. Magnesium also altered the predominant morphology of crystals over time from the {104} to {100} and {110} growth forms.The oxygen isotope fractionation factor for the magnesian-calcite-water system (as 103lnαMg-cl-H2O) displayed a strong dependence on the mol% MgCO3 in the solid phase, but quantification of the relationship was difficult due to the heterogeneous nature of the precipitate. Considering only the Mg-content and δ18O values for the bulk solid, 103lnαMg-cl-H2O increased at a rate of 0.17 ± 0.02 per mol% MgCO3; this value is a factor of three higher than the single previous estimate (Tarutani T., Clayton R.N., and Mayeda T. K. (1969) The effect of polymorphims and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim. Cosmochim. Acta 33, 987-996). Nevertheless, extrapolation of our relationship to the pure calcite end member yielded a value of 27.9 ± 0.02, which is similar in magnitude to published values for the calcite-water system. Although no kinetic effect was observed on 103lnαMg-cl-H2O for precipitation rates that ranged from 103.21 to 104.60 μmol · m−2 · h−1, it was impossible to disentangle the potential effect(s) of precipitation rate and Mg-content on 103lnαMg-cl-H2O due to the heterogeneous nature of the solid.The results of this study suggest that paleotemperatures inferred from the δ18O values of high magnesian calcite (>10 mol% MgCO3) may be significantly underestimated. Also, the results underscore the need for additional experiments to accurately characterize the effect of Mg coprecipitation on the isotope systematics of calcite from a chemically homogeneous precipitate or a heterogeneous material that is analyzed at the scale of chemical and isotopic zonation.  相似文献   

2.
The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity.Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate that the number of D atoms incorporated during structural rearrangements can be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant structural changes.  相似文献   

3.
European vegetation during representative “warm” and “cold” intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.  相似文献   

4.
Experiments were conducted under canonical nebular conditions to see whether the chemical compositions of the various chondrule types can be derived from a single CI-like starting material by open-system melting and evaporation. Experimental charges, produced at 1580 °C and PH2 of 1.31×10−5 atm over 1 to 18 hours, consisted of only two phases, porphyritic olivine crystals in glass. Sulfur, metallic-iron and alkalis were completely evaporated in the first minutes of the experiments and subsequently the main evaporating liquid oxides were FeO and SiO2. Olivines from short runs (2-4 hours) have compositions of Fo83-Fo89, as in Type IIA chondrules, while longer experimental runs (12-18 hours) produce ∼Fo99 olivine, similar to Type IA chondrules. The concentration of CaO in both olivine (up to 0.6 wt.%) and glass, and their Mg#, increased with increasing heating duration. Natural chondrules also show increasing CaO with decreasing S, alkalis, FeO and SiO2. The similarities in bulk chemistry, mineralogy and textures between Type IIA and IA chondrules and the experimental charges demonstrate that these chondrules could have formed by the evaporation of CI precursors. The formation of silica-rich chondrules (IIB and IB) by evaporation requires a more pyroxene-rich precursor.Based on the FeO evaporation rates measured here, Type IIA and IA chondrules, were heated for at least ∼0.5 and ∼3.5 h, respectively, if formed at 1580 °C and PH2 of 1.31×10−5 atm. Type II chondrules may have experienced higher cooling-rates and less evaporation than Type I.The experimental charges experienced free evaporation and exhibited heavy isotopic enrichments in silicon, as well as zero concentrations of S, Na and K, which are not observed in natural chondrules. However, experiments on potassium-rich melts at the same pressure but in closed capsules showed less evaporation of K, and less K isotopic mass fractionation, than expected as a function of decreasing cooling rate. Thus the environment in which chondrules formed is as important as the kinetic processes they experienced. If chondrule formation occurred under conditions in which evaporated gases remained in the vicinity of the residual melts, the extent of evaporation would be reduced and back reaction between the gas and the melt could contribute to the suppression of isotopic mass fractionation. Hence chondrule formation could have involved evaporative loss without Rayleigh fractionation. Volatile-rich Type II and volatile-poor Type I chondrules may have formed in domains with high and low chondrule concentrations, and high partial pressures of lithophile elements, respectively.  相似文献   

5.
The Pt-Re-Os isotopic and elemental systematics of 13 group IIAB and 23 group IIIAB iron meteorites are examined. As has been noted previously for iron meteorite groups and experimental systems, solid metal-liquid metal bulk distribution coefficients (D values) for both IIAB and IIIAB systems show DOs>DRe>>DPt>1 during the initial stages of core crystallization. Assuming closed-system crystallization, the latter stages of crystallization for each core are generally characterized by DPt>DRe>DOs. The processes governing the concentrations of these elements are much more complex in the IIIAB core relative to the IIAB core. Several crystallization models utilizing different starting parameters and bulk distribution coefficients are considered for the Re-Os pair. Each model has flaws, but in general, the results suggest that the concentrations of these elements were dominated by equilibrium crystallization and subsequent interactions between solid metal and both equilibrium and evolved melts. Late additions of primitive metal to either core were likely minor or nonexistent.The 187Re-187Os systematics of the IIAB and IIIAB groups are consistent with generally closed-system behavior for both elements since the first several tens of Ma of the formation of the solar system, consistent with short-lived chronometers. The Re-Os isochron ages for the complete suites of IIAB and IIIAB irons are 4530 ± 50 Ma and 4517 ± 32 Ma, respectively, and are similar to previously reported Re-Os ages for the lower-Ni endmembers of these two groups. Both isochrons are consistent with, but do not require crystallization of the entire groups within 10-30 Ma of the initiation of crystallization.The first high-precision 190Pt-186Os isochrons for IIAB and IIIAB irons are presented. The Pt-Os isochron ages for the IIAB and IIIAB irons, calculated using the current best estimate of the λ for 190Pt, are 4323 ± 80 Ma and 4325 ± 26 Ma respectively. The Re-Os and Pt-Os ages do not overlap within the uncertainties. The younger apparent ages recorded by the Pt-Os system likely reflect error in the 190Pt decay constant. The slope from the Pt-Os isochron is combined with the age from the Re-Os isochron for the IIIAB irons to calculate a revised λ of 1.415 × 10−12 a−1 for 190Pt, although additional study of this decay constant is still needed.  相似文献   

6.
Schwertmannite (ideal formula: Fe8O8(OH)6SO4) is typically found as a secondary iron mineral in pyrite oxidizing environments. In this study, geochemical constraints upon its formation are established and its role in the geochemical cycling of iron between reducing and oxidizing conditions are discussed. The composition of surface waters was analyzed and sediments characterized by X-ray diffraction, FTIR spectroscopy and determination of the Fe:S ratio in the oxalate extractable fraction from 18 acidic mining lakes. The lakes are exposed to a permanent supply of pyritegenous ferrous iron from adjacent ground water. In 3 of the lakes the suspended matter was fractionated using ultra filtration and analyzed with respect to their mineral composition. In addition, stability experiments with synthetic schwertmannite were performed. The examined lake surface waters were O2-saturated and have sulfate concentrations (10.3 ± 5.5 mM) and pH values (3.0 ± 0.6) that are characteristic for the stability window of schwertmannite. Geochemical modeling implied that i) the waters were saturated with respect to schwertmannite, which controlled the activity of Fe3+ and sulfate, and ii) a redox equilibrium exists between Fe2+ and schwertmannite. In the uppermost sediment layers (1 to 5 cm depth), schwertmannite was detectable in 16 lakes—in 5 of them by all three methods. FTIR spectroscopy also proved its occurrence in the colloidal fraction (1-10 kDa) in all of the 3 investigated lake surface waters. The stability of synthetic schwertmannite was examined as a function of pH (2-7) by a 1-yr experiment. The transformation rate into goethite increased with increasing pH. Our study suggests that schwertmannite is the first mineral formed after oxidation and hydrolysis of a slightly acidic (pH 5-6), Fe(II)-SO4 solution, a process that directly affects the pH of the receiving water. Its occurrence is transient and restricted to environments, such as acidic mining lakes, where the coordination chemistry of Fe3+ is controlled by the competition between sulfate and hydroxy ions (i.e. mildly acidic).  相似文献   

7.
Partitioning of Eu(III) in calcite, CaCO3, was evaluated with the aim of collecting data on partition coefficients and to enhance understanding of the incorporation mechanisms. This information will aid in the interpretation of geological processes from rare Earth element (REE) data and in the use of Eu(III) as a chemical analogue for the trivalent actinides, particularly Am(III) and Cm(III). Coprecipitation experiments were carried out by the constant addition method at 25°C and PCO2 = 1 atm. Eu(III) was strongly partitioned from the solution into calcite. For dilute solid solutions (XEu < 0.001), Eu partition coefficients were estimated to be 770 ± 290 and found to be independent of calcite precipitation rate in the range of 0.02 to 2.7 nmol mg−1 min−1. This could be explained by the approximately equal values of the Eu partition and adsorption coefficients. Several solid solution models were tested. A vacancy model for Eu2(CO3)3-CaCO3 is consistent with the experimental results and constraints on geometry for Eu fit in the calcite lattice. For low Eu content, vacancy density is independent of Eu concentration in the solid so logarithm of the ion activity product, log (Eu)2(CO32−)3, depends linearly on log XEu2. The fit of the data to such a model is good evidence that Eu(III) is taken up as a true solid solution, not simply by physical trapping. A model using EuOHCO3-CaCO3 is also consistent with the uptake stoichiometry, but EuOH2+ substitution for Ca2+ would be expected to distort the calcite structure more than is compatible with such a high KD. Several other models, including EuNa(CO3)2-CaCO3, were abandoned because their stoichiometric relationships did not fit the experimental data.  相似文献   

8.
Formation of aqueous aluminate-borate complexes was characterized at 25°C using 27Al NMR spectroscopy, and at 50-200°C via measurements of gibbsite and boehmite solubility in the presence of boric acid. 27Al spectra performed at pH = 9 in Al-B solution with m(B) = 0.02 show the presence of two peaks at 80.5 and 74.5 ppm which correspond to Al(OH)4 and a single Al-substituted Q1Al dimer, Al(OH)3OB(OH)2, respectively. In 0.08 m and 0.2 m borate solution, a third peak appears at 68.5 ppm which can be assigned to the Q2Al trimer Al(OH)2O2(B(OH)2)2. These chemical shifts are close to those measured for Al(OH)3OSi(OH)3 and Al(OH)2O2(Si(OH)3)2 (74 and 69.5 ppm, respectively; Pokrovski et al., Min. Mag.62a (1998), 1194) which demonstrates the similar structure of Al-B and Al-Si complexes formed in alkaline solutions. Gibbsite and boehmite solubility were measured in weakly basic solutions as a function of boric acid concentration at 50°C and 78 to 200°C, respectively. Equilibrium was reached within several days at m(B) = 0.01-0.1, but more slowly at higher boron concentrations, and at 50°C and m(B) = 0.2, Al concentration increased continuously during at least 3 months as a result of the sluggish formation of Al-polyborates. The equilibrium constant of the reaction Al(OH)4 + B(OH)30(aq) = Al(OH)3OB(OH)2 + H2O decreases very slowly with increasing temperature to 200°C. The log K values are 1.58 ± 0.10, 1.46 ± 0.10, 1.52 ± 0.15, and 1.25 ± 0.15 at 50, 78, 150 and 200°C, respectively, which result in the following values of the standard thermodynamic properties for this reaction: ΔrG0 = −9.22 ± 3.25 kJ/mol, ΔrH0 = −4.6 ± 2.5 kJ/mol, ΔrS0 = 15.5 ± 6.9 J/mol K. The thermodynamic data generated in this study indicate that Al-B complexes can dominate aqueous aluminum speciation in solutions containing ≥0.7 g/L of boron at temperature to at least 400°C.  相似文献   

9.
The chemical and isotopic (87Sr/86Sr, δ11B, δ34Ssulfate, δ18Owater, δ15Nnitrate) compositions of water from the Lower Jordan River and its major tributaries between the Sea of Galilee and the Dead Sea were determined in order to reveal the origin of the salinity of the Jordan River. We identified three separate hydrological zones along the flow of the river:
(1)
A northern section (20 km downstream of its source) where the base flow composed of diverted saline and wastewaters is modified due to discharge of shallow sulfate-rich groundwater, characterized by low 87Sr/86Sr (0.7072), δ34Ssulfate (−2‰), high δ11B (∼36‰), δ15Nnitrate (∼15‰) and high δ18Owater (−2 to-3‰) values. The shallow groundwater is derived from agricultural drainage water mixed with natural saline groundwater and discharges to both the Jordan and Yarmouk rivers. The contribution of the groundwater component in the Jordan River flow, deduced from mixing relationships of solutes and strontium isotopes, varies from 20 to 50% of the total flow.
(2)
A central zone (20-50 km downstream from its source) where salt variations are minimal and the rise of 87Sr/86Sr and SO4/Cl ratios reflects predominance of eastern surface water flows.
(3)
A southern section (50-100 km downstream of its source) where the total dissolved solids of the Jordan River increase, particularly during the spring (70-80 km) and summer (80-100 km) to values as high as 11.1 g/L. Variations in the chemical and isotopic compositions of river water along the southern section suggest that the Zarqa River (87Sr/86Sr∼0.70865; δ11B∼25‰) has a negligible affect on the Jordan River. Instead, the river quality is influenced primarily by groundwater discharge composed of sulfate-rich saline groundwater (Cl-=31-180 mM; SO4/Cl∼0.2-0.5; Br/Cl∼2-3×10-3; 87Sr/86Sr∼0.70805; δ11B∼30‰; δ15Nnitrate ∼17‰, δ34Ssulfate=4-10‰), and Ca-chloride Rift valley brines (Cl-=846-1500 mM; Br/Cl∼6-8×10-3; 87Sr/86Sr∼0.7080; δ11B>40‰; δ34Ssulfate=4-10‰). Mixing calculations indicate that the groundwater discharged to the river is composed of varying proportions of brines and sulfate-rich saline groundwater. Solute mass balance calculations point to a ∼10% contribution of saline groundwater (Cl=282 to 564 mM) to the river. A high nitrate level (up to 2.5 mM) in the groundwater suggests that drainage of wastewater derived irrigation water is an important source for the groundwater. This irrigation water appears to leach Pleistocene sediments of the Jordan Valley resulting in elevated sulfate contents and altered strontium and boron isotopic compositions of the groundwater that in turn impacts the water quality of the lower Jordan River.
  相似文献   

10.
We present new hydrogen isotope data for separated matrix, hydrated chondrules, and other hydrated coarse silicate fragments from nine carbonaceous chondrites. These data were generated using a micro-analytical method involving stepped combustion of tens to hundreds of micrograms of hydrous solids. We also re-evaluate hydrogen isotope data from previous conventional stepped combustion experiments on these and other carbonaceous chondrites.Hydrogen isotope compositions of matrix and whole-rock samples of CM chondrites are correlated with oxygen isotope indices, major and minor-element abundances, and abundance and isotope ratios of other highly volatile elements. These correlations include a monotonic decrease in δD with increasing extent of aqueous alteration and decreasing abundances of highly volatile elements (including C, N and Ar), between extremes of ∼0‰ (least altered, most volatile rich) and −200‰ (most altered, least volatile rich). In plots involving only abundances and/or isotope ratios of highly volatile elements, CI chondrites fall on the high-δD, volatile rich end of the trends defined by CM chondrites; i.e., CI chondrites resemble the least altered CM chondrites in these respects. These trends suggest the protoliths of the CM chondrites (i.e., before aqueous alteration) contained an assemblage of volatiles having many things in common with those in the CI chondrites. If so, then the volatile-element inventory of the CI chondrites was a more widespread component of early solar system objects than suggested by the scarcity of recognized CI meteorites. Differences in volatile-element chemistry between the CI and average CM chondrites can be attributed to aqueous alteration of the latter.Previous models of carbonaceous chondrite aqueous alteration have suggested: (1) the protoliths of the CM chondrites are volatile poor objects like the CO or CV chondrites; and (2) the CI chondrites are more altered products of the same process producing the CM chondrites. Both suggestions appear to be inconsistent with hydrogen isotope data and other aspects of the volatile-element geochemistry of these rocks. We present a model for aqueous alteration of the CM chondrites that reconciles these inconsistencies and suggests revised relationships among the major subtypes of carbonaceous chondrites. Our model requires, among other things, that the water infiltrating CM chondrites had a δD value of ∼−158‰, consistent with initial accretion of CM parent bodies at ∼4 AU.  相似文献   

11.
This study attempts to provide a theoretical evaluation of coprecipitation and fundamental data of binary mixing properties in the barite isostructural family. Mixing properties of binary solid solutions in the barite isostructural family were derived from evaluation of coprecipitation experiments and partitioning coefficients reported in the literature. The Margules parameters, W, for these binary systems correlate well through the relationship,
  相似文献   

12.
A suite of nickel, cobalt, iron, copper, and zinc containing sulfides are assayed for the promotion of a model carbon fixation reaction with relevance to local reducing environments of the early Earth. The assay tests the promotion of hydrocarboxylation (the Koch reaction) wherein a carboxylic acid is synthesized via carbonyl insertion at a metal-sulfide-bound alkyl group. The experimental conditions are chosen for optimal assay, i.e., high reactant concentrations and pressures (200 MPa) to enhance chemisorption, and high temperature (250°C) to enhance reaction kinetics. All of the metal sulfides studied, with the exception CuS, promote hydrocarboxylation. Two other significant reactions involve the catalytic reduction of CO to form a surface-bound methyl group, detected after nucleophilic attack by nonane thiol to form methyl nonyl sulfide, and the formation of dinonyl sulfide via a similar reaction. Estimation of the catalytic turnover frequencies for each of the metal sulfides with respect to each of the primary reactions reveals that NiS, Ni3S2, and CoS perform comparably to commonly employed industrial catalysts. A positive correlation between the yield of primary product to NiS and Ni3S2 surface areas provides strong evidence that the reactions are surface catalytic in these cases. The sulfides FeS and Fe(1−x)S are unique in that they exhibit evidence of extensive dissolution, thus, complicating interpretation regarding heterogeneous vs. homogeneous catalysis. With the exception of CuS, each of the metal sulfides promotes reactions that mimic key intermediate steps manifest in the mechanistic details of an important autotrophic enzyme, acetyl-CoA synthase. The relatively high temperatures chosen for assaying purposes, however, are incompatible with the accumulation of thioesters. The results of this study support the hypothesis that transition metal sulfides may have provided useful catalytic functionality for geochemical carbon fixation in a prebiotic world (at least intially) devoid of peptide-based enzymes.  相似文献   

13.
Siderophile element distributions within individual metal grains in two CH chondrites, Allan Hills 85085 and Pecora Escarpment 91467, were measured by laser ablation inductively coupled plasma mass spectrometry. Those metal grains that are zoned in Ni were also found to be zoned in other refractory siderophile elements, such as Ru, but not in Pd, which is not refractory but is highly siderophile. This pattern is consistent with an origin by condensation from a gas of approximately solar composition, but not with an origin by redox processes or fractional crystallization. The unzoned metal grains in CH chondrites were found to be frequently depleted in Ru but not in Pd, consistent with later stage condensation from a solar gas after removal of the zoned metal. Gold is inversely correlated with Ni in the unzoned metal grains, and mean Au abundances in zoned metal are always low. Both zoned and unzoned metal in CH chondrites could plausibly be produced from a thermostatically regulated nebula, followed by rapid removal of the zoned metal, and slower removal of the unzoned metal, both at temperatures near or above the condensation temperature of Au (∼1250 K). This is also consistent with the isolation temperatures inferred from silicate grains in CH chondrites by previous workers based on their volatile element inventories. The volatile siderophile Cu is enriched in the rims relative to the interiors of both zoned and unzoned grains, and is interpreted as the product of diffusion during low-grade thermal processing. The similarity of Cu distributions, and degree of kamacite/taenite exsolution, between zoned and unzoned metal in CH chondrites suggests that the two populations of metal experienced modest thermal metamorphism after they were brought together in the same environment, probably on the CH parent body. Fragmentation and size-sorting of the metal must have post-dated the Cu zoning, and may have occurred in a regolith on the CH parent body. The compositions of CH metal, like that of metal from QUE 94411 and HH 237, are consistent with a nebular origin, and may be the most primitive nebular materials (as distinct from presolar grains) sampled by chondrites.  相似文献   

14.
A new method has been developed to separate the compositional variations in ocean island basalts into those that result from variations in source composition and from the melting process itself. The approach depends on correlations between isotope ratios, which can only come from source inhomogeneities, and elemental concentrations. Analysis of three data sets shows that the inhomogeneities beneath Theistareykir, in NE Iceland, Kilauea and Pitcairn can be produced by subduction of oceanic islands and volcanic ridges. The thicknesses of the lithosphere on which such islands were constructed and potential temperatures of the plumes that produced them can be estimated from the geochemical observations. Model ages are harder to determine, though simple assumptions give about 400 Ma for the Theistareykir source and 1.2 Ga for Kilauea. The model may also provide a physical explanation for the commonly used isotopic classification of ocean island basalts, with the isotopic composition changing from HIMU through EMII to EMI as the melt fraction increases. These results have been obtained from a small number of data sets obtained from ocean island basalts erupted in small areas during short time intervals. More such observations are needed to discover whether geochemical observations from other islands are consistent with the same model.  相似文献   

15.
Triplicate porewater lead concentration profiles were determined on six occasions in a Canadian Shield lake. Total Pb concentrations were also measured in a dated core obtained at the same site. This information, as well as an extensive dataset comprising ancillary geochemical measurements on porewaters and sediment and the population densities of benthic animals, is used in a one-dimensional transport-reaction diagenetic model to investigate the transport and mobilization of Pb in these sediments. Application of the model consistently indicates the presence of a zone of Pb production to the porewaters that lies above a zone of Pb consumption. The profiles of various porewater constituents and thermodynamic calculations indicate that Pb is mobilized in the zone of production by the reductive dissolution of iron oxyhydroxides, whereas it is removed in the zone of consumption by precipitation as a solid sulfide. Rate constants are estimated for reductive iron dissolution (kdFe(III) = 2.0 ± 0.5 × 10−1 cm3 mol−1 s−1), Pb adsorption on iron oxyhydroxides (kadsPb = 98 ± 55 cm3 mol−1 s−1), and Pb precipitation (kpptPb = 8 × 10−20 mol cm−3 s−1 to 16 ± 13 × 10−22 mol cm−3 s−1, depending on the solubility product assumed for the precipitation of PbS). According to model calculations, diagenetic processes, such as remobilization, molecular diffusion, bioturbation, and bioirrigation have a negligible influence on the solid phase Pb profile. In agreement with this finding, the present-day fluxes of dissolved Pb by diffusion (JDPb = −6.5 × 10−11 mol cm−2 yr−1), bioturbation (JBPb = −1.1 × 10−13 mol cm−2 yr−1), and bioirrigation (JIPb = −1.5 × 10−11 mol cm−2 yr−1) are small compared to the flux of Pb deposited with settling particles (JSPb = 5.3 × 10−9 mol cm−2 yr−1).  相似文献   

16.
Photoautotrophic bacteria that oxidize ferrous iron (Fe[II]) under anaerobic conditions are thought to be ancient in origin, and the ferric (hydr)oxide mineral products of their metabolism are likely to be preserved in ancient rocks. Here, two enrichment cultures of Fe(II)-oxidizing photoautotrophs and a culture of the genus Thiodictyon were studied with respect to their ability to fractionate Fe isotopes. Fe isotope fractionations produced by both the enrichment cultures and the Thiodictyon culture were relatively constant at early stages of the reaction progress, where the 56Fe/54Fe ratios of poorly crystalline hydrous ferric oxide (HFO) metabolic products were enriched in the heavier isotope relative to aqueous ferrous iron (Fe[II]aq) by ∼1.5 ± 0.2‰. This fractionation appears to be independent of the rate of photoautotrophic Fe(II)-oxidation, and is comparable to that observed for Fe isotope fractionation by dissimilatory Fe(III)-reducing bacteria. Although there remain a number of uncertainties regarding how the overall measured isotopic fractionation is produced, the most likely mechanisms include (1) an equilibrium effect produced by biological ligands, or (2) a kinetic effect produced by precipitation of HFO overlaid upon equilibrium exchange between Fe(II) and Fe(III) species. The fractionation we observe is similar in direction to that measured for abiotic oxidation of Fe(II)aq by molecular oxygen. This suggests that the use of Fe isotopes to identify phototrophic Fe(II)-oxidation in the rock record may only be possible during time periods in Earth’s history when independent evidence exists for low ambient oxygen contents.  相似文献   

17.
We report a study of the oxygen isotope ratios of chondrules and their constituent mineral grains from the Mokoia, oxidized CV3 chondrite. Bulk oxygen isotope ratios of 23 individual chondrules were determined by laser ablation fluorination, and oxygen isotope ratios of individual grains, mostly olivine, were obtained in situ on polished mounts using secondary ion mass spectrometry (SIMS). Our results can be compared with data obtained previously for the oxidized CV3 chondrite, Allende. Bulk oxygen isotope ratios of Mokoia chondrules form an array on an oxygen three-isotope plot that is subparallel to, and slightly displaced from, the CCAM (carbonaceous chondrite anhydrous minerals) line. The best-fit line for all CV3 chondrite chondrules has a slope of 0.99, and is displaced significantly (by δ17O ∼ −2.5‰) from the Young and Russell slope-one line for unaltered calcium-aluminum-rich inclusion (CAI) minerals. Oxygen isotope ratios of many bulk CAIs also lie on the CV-chondrule line, which is the most relevant oxygen isotope array for most CV chondrite components. Bulk oxygen isotope ratios of most chondrules in Mokoia have δ18O values around 0‰, and olivine grains in these chondrules have similar oxygen isotope ratios to their bulk values. In general, it appears that chondrule mesostases have higher δ18O values than olivines in the same chondrules. Our bulk chondrule data spread to lower δ18O values than any ferromagnesian chondrules that have been measured previously. Two chondrules with the lowest bulk δ18O values (−7.5‰ and −11.7‰) contain olivine grains that display an extremely wide range of oxygen isotope ratios, down to δ17O, δ18O around -50‰ in one chondrule. In these chondrules, there are no apparent relict grains, and essentially no relationships between olivine compositions, which are homogeneous, and oxygen isotopic compositions of individual grains. Heterogeneity of oxygen isotope ratios within these chondrules may be the result of incorporation of relict grains from objects such as amoeboid olivine aggregates, followed by solid-state chemical diffusion without concomitant oxygen equilibration. Alternatively, oxygen isotope exchange between an 16O-rich precursor and an 16O-poor gas may have taken place during chondrule formation, and these chondrules may represent partially equilibrated systems in which isotopic heterogeneities became frozen into the crystallizing olivine grains. If this is the case, we can infer that the earliest nebular solids from which chondrules formed had δ17O and δ18O values around -50‰, similar to those observed in refractory inclusions.  相似文献   

18.
Here we present the results of experiments investigating the adsorption of Protactinium and Thorium onto different particle types in natural seawater. Particle types studied were smectite as a representative of clay, biogenic opal from a cleaned diatom culture, manganese dioxide precipitate, and calcium carbonate. The particles were added to three different types of natural seawater (0.5 mg/L) which were first 0.2 μm-filtered, and the distribution of Pa and Th between dissolved and particulate phase (>0.2 μm) was monitored for 4 to 5 d at increasing time intervals. The tracers applied were the β-emitters 233Pa and 234Th. The measurement technique via β-counting for both nuclides in the same sample is reported here for the first time.The observed recoveries during the experiment range from 40 to 99 (±5) % for Th and from 51 to 105 (±6) % for Pa. The distribution coefficients (Kd) after establishment of an equilibrium cover a wide range for Th from 0.5 to 107 × 106 ml/g, and from 0.03 to 166 × 106 ml/g for Protactinium, depending on particle type and on the type of seawater used.Thorium revealed a specific affinity for all particle types investigated, with varying degree and adsorption kinetics. The results suggest that all particle types investigated may serve as Th carrier phases in the sediment. Pa was found to be less particle reactive than Th in most cases. Th/Pa fractionation factors (FTh/Pa) were also obtained. Weakest fractionation was found on MnO2 (FTh/Pa=1), followed by the chemically cleaned biogenic opal (2.8) and smectite (5.4). The results for calcium carbonate were highly variable. Our experimental results imply that particle composition is indeed playing a role in the differing marine geochemistry of Th and Pa. We conclude that experiments with filtered natural seawater using particle concentrations on a natural level are a helpful approach when investigating the geochemical behaviour of strongly particle-reactive elements like Th and Pa in the marine environment.  相似文献   

19.
A method for the prediction of Gibbs free energies of formation for minerals belonging to the alunite family is proposed, based on an empirical parameter ΔGO= Mz+(c) characterizing the oxygen affinity of the cation Mz+. The Gibbs free energy of formation from constituent oxides is considered as the sum of the products of the molar fraction of an oxygen atom bound to any two cations, multiplied by the difference of oxygen affinity ΔGO= Mz+(c) between any two consecutive cations. The ΔGO= Mz+(c) value, using a weighing scheme involving the electronegativity of a cation in a specific site (12-fold coordination site, octahedral and tetrahedral) is assumed to be constant. It can be calculated by minimizing the difference between experimental Gibbs free energies (determined from solubility measurements) and calculated Gibbs free energies of formation from constituent oxides. Results indicate that this prediction method gives values within 0.5% of the experimentally measured values. The relationships between ΔGO= Mz+(alunite) corresponding to the electronegativity of a cation in either dodecahedral sites, octahedral sites or tetrahedral sites and known as ΔGO= Mz+(aq) were determined, thereby allowing the prediction of the electronegativity of rare earth metal ions and trivalent ions in dodecahedral sites and highly charged ions in tetrahedral sites. This allows the prediction of Gibbs free energies of formation of any minerals of the alunite supergroup (bearing various ions located in the dodecahedral and tetrahedral sites). Examples are given for hydronium jarosite and hindsalite, and the results appear excellent when compared to experimental values.  相似文献   

20.
The major organic component of carbonaceous chondrites is a solvent-insoluble, high molecular weight macromolecular material that constitutes at least 70% of the total organic content in these meteorites. Analytical pyrolysis is often used to thermally decompose macromolecular organic matter in an inert atmosphere into lower molecular weight fragments that are more amenable to conventional organic analytical techniques. Hydropyrolysis refers to pyrolysis assisted by high hydrogen gas pressures and a dispersed catalytically-active molybdenum sulfide phase. Hydropyrolysis of meteorites has not been attempted previously although it is ideally suited to such studies due to its relatively high yields. Hydropyrolysis of the Murchison macromolecular material successfully releases significant amounts of high molecular weight PAH including phenanthrene, carbazole, fluoranthene, pyrene, chrysene, perylene, benzoperylene and coronene units with varying degrees of alklyation. Analysis of both the products and residue from hydropyrolysis reveals that the meteoritic organic network contains both labile (pyrolysable) and refractory (nonpyrolysable) fractions. Comparisons of hydropyrolysis yields of Murchison macromolecular materials with those from terrestrial coals indicate that the refractory component probably consists of a network dominated by at least five- or six-ring PAH units cross-linked together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号