共查询到20条相似文献,搜索用时 15 毫秒
1.
The methane hydrate formation and the resource estimate resulting from free gas migration in seeping seafloor hydrate stability zone 总被引:3,自引:0,他引:3
Jinan Guan Deqing Liang Nengyou Wu Shuanshi Fan 《Journal of Asian Earth Sciences》2009,36(4-5):277-288
It is a typical multiphase flow process for hydrate formation in seeping seafloor sediments. Free gas can not only be present but also take part in formation of hydrate. The volume fraction of free gas in local pore of hydrate stable zone (HSZ) influences the formation of hydrate in seeping seafloor area, and methane flux determines the abundance and resource of hydrate-bearing reservoirs. In this paper, a multiphase flow model including water (dissolved methane and salt)-free gas hydrate has been established to describe this kind of flow-transfer-reaction process where there exists a large scale of free gas migration and transform in seafloor pore. In the order of three different scenarios, the conversions among permeability, capillary pressure, phase saturations and salinity along with the formation of hydrate have been deducted. Furthermore, the influence of four sorts of free gas saturations and three classes of methane fluxes on hydrate formation and the resource has also been analyzed and compared. Based on the rules drawn from the simulation, and combined information gotten from drills in field, the methane hydrate(MH) formation in Shenhu area of South China Sea has been forecasted. It has been speculated that there may breed a moderate methane flux below this seafloor HSZ. If the flux is about 0.5 kg m−2 a−1, then it will go on to evolve about 2700 ka until the hydrate saturation in pore will arrive its peak (about 75%). Approximately 1.47 × 109 m3 MH has been reckoned in this marine basin finally, is about 13 times over preliminary estimate. 相似文献
2.
A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate 总被引:3,自引:0,他引:3
Carbonate and organic matter deposited during the latest Paleocene thermal maximum is characterized by a remarkable -2.5% excursion in delta 13C that occurred over approximately 10(4) yr and returned to near initial values in an exponential pattern over approximately 2 x 10(5) yr. It has been hypothesized that this excursion signifies transfer of 1.4 to 2.8 x 10(18) g of CH4 from oceanic hydrates to the combined ocean-atmosphere inorganic carbon reservoir. A scenario with 1.12 x 10(18) g of CH4 is numerically simulated here within the framework of the present-day global carbon cycle to test the plausibility of the hypothesis. We find that (1) the delta 13C of the deep ocean, shallow ocean, and atmosphere decreases by -2.3% over 10(4) yr and returns to initial values in an exponential pattern over approximately 2 x 10(5) yr; (2) the depth of the lysocline shoals by up to 400 m over 10(4) yr, and this rise is most pronounced in one ocean region; and (3) global surface temperature increases by approximately 2 degrees C over 10(4) yr and returns to initial values over approximately 2 x 10(6) yr. The first effect is quantitatively consistent with the geologic record; the latter two effects are qualitatively consistent with observations. Thus, significant CH4 release from oceanic hydrates is a plausible explanation for observed carbon cycle perturbations during the thermal maximum. This conclusion is of broad interest because the flux of CH4 invoked during the maximum is of similar magnitude to that released to the atmosphere from present-day anthropogenic CH4 sources. 相似文献
3.
A review of the geochemistry of methane in natural gas hydrate 总被引:7,自引:0,他引:7
Keith A. Kvenvolden 《Organic Geochemistry》1995,23(11-12)
The largest accumulations on Earth of natural gas are in the form of gas hydrate, found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Measurements of hydrocarbon gas compositions and of carbon-isotopic compositions of methane from natural gas hydrate samples, collected in subaquatic settings from around the world, suggest that methane guest molecules in the water clathrate structures are mainly derived by the microbial reduction of CO2 from sedimentary organic matter. Typically, these hydrocarbon gases are composed of > 99% methane, with carbon-isotopic compositions (δ13CPDB) ranging from − 57 to − 73‰. In only two regions, the Gulf of Mexico and the Caspian Sea, has mainly thermogenic methane been found in gas hydrate. There, hydrocarbon gases have methane contents ranging from 21 to 97%, with δ13C values ranging from − 29 to − 57‰. At a few locations, where the gas hydrate contains a mixture of microbial and thermal methane, microbial methane is always dominant. Continental gas hydrate, identified in Alaska and Russia, also has hydrocarbon gases composed of > 99% methane, with carbon-isotopic compositions ranging from − 41 to − 49‰. These gas hydrate deposits also contain a mixture of microbial and thermal methane, with thermal methane likely to be dominant. Published by Elsevier Science Ltd 相似文献
4.
After the Last Glacial Maximum, the semi-land-locked Black Sea basin was flooded by warm water from the Mediterranean Sea. This major sea level rise and change of physical water properties had a large impact on the gas hydrate reservoir in the sediments below. Modelling of the regional response of the gas hydrate stability zone (GHSZ) to the Black Sea flooding 7100 years ago shows that a strong effect of near-bottom temperature increase pushes the gas hydrate reservoir to a large shrinking of 15–62% that may release up to 1.1–4.6 Gt of methane. This catastrophic scenario is, however, delayed because of the transient nature of the heat wave propagation. The large-scale reduction of the GHSZ is only to take place within the next thousand years. At present, widespread hydrate dissociation is only expected to occur where there is a minimum water depth for hydrate stability. 相似文献
5.
Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth 总被引:2,自引:0,他引:2
Gregor Rehder Stephen H. Kirby Laura A. Stern John Pinkston Peter G. Brewer 《Geochimica et cosmochimica acta》2004,68(2):285-292
To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 μm/s and between 9.0 and 10.6 · 10−2 μm/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ± 0.5 mmol CO2/m2s and 0.37 ± 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. 相似文献
6.
琼东南盆地崖13气田天然气形成水合物的温压条件和厚度计算 总被引:13,自引:1,他引:13
天然气水合物具有巨大的资源前景和极强的环境与灾害效应,是目前地学研究中的热点。利用CSMHYD模拟程序,结合南海琼东南盆地地质和地球化学条件,计算了南海琼东南盆地崖13气田天然气形成水合物的温度和压力条件。在海底海水温度为2-16℃、盐度为3.4%条件下,琼东南盆地崖13气田C3+C4含量小于5%的天然气形成水合物压力有较大的范围。天然气组成对水合物形成温压条件有控制作用:随天然气中C3+C4的含量增加或C1+C2+N2+CO2含量降低,在等压条件下水合物形成温度增高,在等温条件下水合形成压力降低,压力降低的幅度受温度控制,温度越高,幅度越大,并且压力的对数与成分间有统计线性关系。在琼东南盆地平均地温梯度3.76℃/100m条件下,琼东南盆地崖13气田C3+C4含量小于5%的天然气形成水合物所需的C3+C4最小含量与海底之下的深度间存在统计函数关系,随海底之下深度的增加,形成水合物的天然气C3+C4最小含量也同步增加。这种关系也表明了天然气的C3+C4含量与海底之下形成水合物最大厚度间的关系。但不同地区由于海底水深、温度、地温梯度和天然气的组成不同,天然气的C3+C4含量与海底之下形成水合物厚度之间的统计函数关系式也不同,对于一个特定地区必须进行研究后才能确定。 相似文献
7.
《地学前缘》2017,(4):57-65
2013年珠江口盆地东部海域钻探取样结果表明,天然气水合物以不同形态分布于海底之下约10m至稳定带之上的不同深度区间。在GMGS2-08井位置,天然气水合物分别以脉状、块状形态出现在海底之下9~25m和65~80m(与碳酸盐岩有关)深度范围内。地震反射剖面上,含分散状水合物沉积层的底部深度与地震反射剖面上的似海底反射深度很好对应,但没有典型地震反射特征表明近海底沉积物中存在天然气水合物。在研究区另一钻探位置(GMGS2-16),取样也获得存在于近海底处的天然气水合物样品。本文研究以多道高分辨地震数据为基础,利用含天然气水合物沉积物具有较高声波速度的特征,在正演分析近海底存在薄高速层时地震反射速度变化规律的基础上,然后采用沿层速度分析方法获取近海底处的速度,据此推测近海底处天然气水合物的分布特征。结果表明,过GMGS2-08井和GMGS2-16井的地震反射数据的海底速度相干反演表现出明显的高速异常,而在GMGS2-11和GMGS2-12井位置则没有任何速度异常,与钻探取样结果一致。将地震数据的反射特征与区域地质条件进行综合分析,进一步预测这一区域近海底天然气水合物分布模式及地质成因。本文的研究结果为近海底天然气水合物地震探测和识别提供了有效手段,对天然气水合物资源勘探以及深海油气工程安全都具有重要意义。 相似文献
8.
深海溶解甲烷浓度数据连续获取的方法技术,对于海洋环境和天然气水合物开发过程中甲烷扩散作用及通量的动态监测,具有重要的科学意义和实际应用价值。本文较详细地介绍了依据"海水脱气、气体样品定量输入、电化学高精度检测"技术思路,采用"增压排液整机系统控制的海水循环、减压稳流、气液分离、烃类组分高精度检测技术改进"方法,研发"深海甲烷电化学原位长期监测技术"的关键环节和技术方法。结合原位传感器在胶州湾港口为期94天底水长期监测实验获取的数据成果,对原位传感器的技术性能、数据质量、地质效果进行了研究评价。结果表明:(1)原位传感器量程甲烷指标达到0.01~10 000 nmol/L,灵敏度达到0.01 nmol/L,对烃类组分检测具有较好的稳定性和选择性;(2)监测水域溶解甲烷数值范围19.01~106.87 nmol/L,正常甲烷背景32.41 nmol/L,局部异常甲烷背景80.60 nmol/L,资料显示异常与污水排放过程对海水环境污染有关;(3)实测甲烷数据成果地球化学特征与胶州湾海域海水环境以往调查研究成果符合,证明了实测数据的客观性和科学性;(4)海试监测试验成果证明,原位传感器测试性能可靠、结构设计合理、设计思路科学,基本具备了海洋科学调查中对海水甲烷浓度数据获取的能力,在未来海洋天然气水合物开发过程中对甲烷扩散作用的动态监测及深海甲烷浓度通量的长期监测中,具有实际应用价值和科学意义。 相似文献
9.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects. 相似文献
10.
Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments 总被引:4,自引:0,他引:4
K. Wallmann G. Aloisi A. Obzhirov P. Tishchenko 《Geochimica et cosmochimica acta》2006,70(15):3905-3927
Seven sediment cores were taken in the Sea of Okhotsk in a south-north transect along the slope of Sakhalin Island. The retrieved anoxic sediments and pore fluids were analyzed for particulate organic carbon (POC), total nitrogen, total sulfur, dissolved sulfate, sulfide, methane, ammonium, iodide, bromide, calcium, and total alkalinity. A novel method was developed to derive sedimentation rates from a steady-state nitrogen mass balance. Rates of organic matter degradation, sulfate reduction, methane turnover, and carbonate precipitation were derived from the data applying a steady-state transport-reaction model. A good fit to the data set was obtained using the following new rate law for organic matter degradation in anoxic sediments:
11.
Fluid migration patterns are important for understanding gas hydrate and hydrocarbon systems. However, conducting experiments on or below the seafloor is difficult because crustal fluid flow rates are usually very slow, so long term observations are needed. Temperature can be used as a good tracer for studying fluid flows. Temperatures derived from bottom-simulating reflectors (BSRs) might help to understand fluid migration patterns in shallow marine sediments. In this study, we studied 2D fluid flow patterns in two potential gas hydrate provinces offshore southwestern Taiwan: the Yung-An Ridge in the active margin and Formosa Ridge in the passive margin. We used 2D bathymetry, average seafloor temperatures and regional geothermal gradients measured by thermal probes, as constraints to construct 2D theoretical conductive temperature fields using finite element methods. We then compared the BSR-based temperature with the theoretical conductive temperature field. The results show a temperature discrepancy attributed to advective heat transfer due to fluid migration. For the Yung-An Ridge, the BSR-based temperatures are about 2 °C higher than the model: Especially in (1) near a fault zone, (2) under the eastern flank where there are strong seismic reflectors in a pseudo-3D seismic dataset, and (3) near a fissure zone. For the Formosa Ridge, our results showed a distinct decrease in temperatures around the southern peak of the ridge, where an active gas plume was found. BSR-based temperatures predict on average 2 °C lower than the model. At these two sites, the shallow temperature fields are strongly affected by 2D bathymetry. However, new insights regarding fluid flow patterns can be obtained using this model approach. 相似文献
12.
烃类成因对天然气水合物成藏的控制 总被引:10,自引:0,他引:10
天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点,是未来的新型海洋能源。模拟实验显示,在烃类气体供给充分,温度低于平衡温度、压力大于平衡压力的条件下,天然气水合物的形成对于烃类气体的来源没有选择性。然而,已经获取的天然气水合物样品的分析显示,形成水合物的气体大多数为微生物成因气体,只有少量为热解气。最新的研究显示,形成生物气的营养源丰富,适合微生物的地质条件宽泛,生物气能够为形成天然气水合物提供充足的气源。通过对热解气和生物气形成天然气水合物条件的研究,以及对天然气水合物的地质分布特征的分析,笔者强调指出,与热解气相比,生物气更易于形成天然气水合物,而热解气形成的天然气水合物实际上意味着资源的严重破坏,并进一步认为,南海天然气水合物勘探方向,应集中在有利生物气形成富集以及有利于水合物形成的地质条件的分析和地质体的调查上,而不是在常规的深部油气藏附近展开。 相似文献
13.
青藏高原天然气水合物潜在分布区预测 总被引:3,自引:2,他引:3
青藏高原冻土面积约150×104km2,是中国最大的冻土区,具备较好的天然气水合物找矿前景。运用热力学预测方法,根据青藏高原的年平均地表地温、冻土层厚度、冻土层内地温梯度(2.22℃/100m)、冻土层下地温梯度(4.18℃/100m)等参数,分纯甲烷组分、纯二氧化碳组分和各种实测气体组分,分别计算出天然气水合物的稳定带及其厚度,并编制出相应的分布预测图。结果显示,青藏高原大部分冻土区基本具备天然气水合物的形成条件,即使最难形成的纯甲烷水合物也能在部分冻土区内形成。若单纯从温压条件考虑,成矿条件最有利的地区是喀喇昆仑地区,其次为西昆仑地区,再次为羌塘盆地,最后才是祁连山等地区。综合考虑气源条件、运移条件、储层条件等,羌塘盆地是青藏高原天然气水合物形成条件和找矿前景最好的地区,其次是祁连山地区、风火山—乌丽地区,再次是昆仑山垭口盆地、唐古拉山—土门地区、喀喇昆仑地区、西昆仑—可可西里盆地等。 相似文献
14.
ABSTRACT Bubble plumes from hydrocarbon seeps drive upwelling flows in the water column that can disappear if the bubbles dissolve. This may lead to formation of a layer enriched in gases and substances transported by the bubbles, a process we term bubble deposition. A review of observed dissolved methane layers in the North Sea showed their existence in an area of active seeping pockmarks at a height of ∼ 20–30 m above the sea bed, well below the thermocline. To test the bubble deposition hypothesis, rising seep bubbles were simulated numerically. The model predicted a dissolution depth consistent with the observed methane layer for ∼ 2700-µm-radius bubbles. The model also predicted that bubbles smaller than 3400 µm dissolved subsurface, decreasing to 2000 µm for a 10-cm s−1 upwelling flow. We speculate that this layer may be attractive to marine organisms. Although North Sea seeps are not oily, this mechanism also applies to oily bubbles from hydrocarbon seeps or a leaking undersea gas/oil pipeline. Thus bubble deposition can create a subsurface oil layer which rises far slower than either the bubble stream or droplets entrained in the stream. 相似文献
15.
As a clean fossil fuel with great reserves, natural gas hydrate (NGH) is widely regarded as an important future alternative energy source. NGH is widely distributed in onshore tundra and shallow sedimentary layers in the deep sea. These sedimentary layers typically exit shallow burial depth, poor diagenesis and low strength characteristics; moreover, the decomposition of NGH can also greatly reduce reservoir strength. Therefore, NGH development can easily causes many geomechanical problems, including reservoir instability, sand production and seabed landslides, etc., which may further trigger a series of environmental disasters such as tsunamis, natural gas leakage and the acceleration of global warming. This study mainly reviews the research progress regarding geomechanical issues in NGH development, including mechanical properties of NGH-bearing sediments, borehole stability, hydraulic fracturing, sand production, reservoir settlement and seabed landslides. In addition to previous research achievements regarding geomechanical problems in NGH exploitation, the limitations and challenges are also discussed, and several questions and insightful suggestions are put forward for future research from our point of view. 相似文献
16.
Uma Shankar Kalachand Sain Michael Riedel 《Journal of the Geological Society of India》2012,79(2):199-209
The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating
reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins
drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the
thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes
than those from other seismic reflectors. We estimate the average geothermal gradient of ∼40°C/km and heat flow varying from
23 to 62 mW/m2 in the study area utilizing the BSR’s observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous
or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the
nature of BSR. 相似文献
17.
《地学前缘》2017,(4):89-101
2011—2015年对东沙和神狐水合物钻探区进行了连续5年7个航次的海上调查工作,获取了大量研究区海水水文、水化学及溶解甲烷含量数据,为天然气水合物勘查与试采环境评价提供了良好的基础数据及采前环境基线。调查期间,研究区海水甲烷浓度范围为0~31.4nmol·L~(-1),平均浓度为6.7nmol·L~(-1),高于全球平均海水甲烷浓度,表明南海海水甲烷浓度本底值高于全球平均水平;研究区海水溶解甲烷浓度及其分布特征不受区域海水水文特征、海水化学特征及季节等因素影响,且表层海水-大气甲烷交换并非单一的汇或者源的关系,而是根据时间的不同,海水-大气甲烷交换存在汇源转换;综合调查结果表明,研究区甲烷渗漏对海水、大气甲烷含量没有明显影响,且水合物钻探对区域环境没有明显的影响。 相似文献
18.
New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies 总被引:2,自引:0,他引:2
Numerical computer simulations have been used to gain insight into the evolution of marine hydrothermal systems and the formation conditions of massive sulfide deposits in ancient and modern submarine volcanic terrains. Simulation results have been used to gain a better understanding of the formation of massive sulfide ore deposits, their location, zonation, size, and occurrence in various geotectonic settings.Most hydrothermal fluid discharging at the seafloor exhibits temperatures ranging from 200 °C to about 410 °C and average fluid discharge velocities of 1 to 2 m/s in agreement with seafloor observations. Mass calculations imply that average massive sulfide deposits may form in ~ 5000 years while giant deposits take longer than 5000 years to accumulate; supergiant deposits either need much longer time to form (> 35,000 years) or at least 100 ppm of metal in solution. Results indicate that supergiant deposits may only form in certain geotectonic environments where longevity and preservation potential of the hydrothermal system are high. An additional process (mineral precipitate cap) is proposed here to explain the zinc content of massive sulfide deposits. This cap would prevent the widespread dissolution of anhydrite and the ‘wash-out’ of zinc by subsequent hydrothermal fluid discharge. 相似文献
19.
A.F. Safronov E.Yu. Shits M.N. Grigor'ev M.E. Semenov 《Russian Geology and Geophysics》2010,51(1):83-87
Natural gas hydrate deposits have been estimated to store about 10% of gas in hydrate form (even with regard to a higher concentration of gas in hydrates), proceeding from the known ratio of dissolved-to-deposited gas. This high percentage is largely due to the fact that the buffer factor in natural gas hydrate deposits is lower than that for free gas because of less diverse structural conditions for gas accumulation. Therefore, the available appraisal of world resources of hydrated gas needs a revision.Hydrates in rocks are either syngenetic or epigenetic. Syngenetic hydrates originate from free or dissolved gas which was present in rocks in situ at the time when PT-conditions became favorable for gas hydrate formation. Epigenetic hydrates are derived from gas which came by migration into rocks with their PT-conditions corresponding to formation of gas hydrates.In addition to the optimum PT-conditions and water salinity, economic gas hydrate accumulation requires sustained supply of natural gas into a specific zone of gas hydrate formation. This condition is feasible only in the case of vertical migration of natural gas along faults, fractured zones, and lithologic windows, or, less often, as a result of lateral migration.Of practical importance are only the gas hydrate deposits produced by vertical or lateral gas migration. 相似文献
20.
测井作为一种重要的地球物理勘探手段,在天然气水合物资源定量评价中发挥着重要的作用,随着木里地区天然气水合物勘探井的日益增多,需建立一套适合本地区的泥质含量、含水饱和度和孔隙度等储层参数的计算方法,这对储层优选、资源量的评估等具有重要意义.笔者基于国内外文献常用的天然气水合物测井评价模型,选用经过环境校正和标准化处理后的测井数据,定量计算天然气水合物的孔隙度与饱和度等参数,结合岩心测试和岩电资料,修正并完善储层参数的计算模型,分析各种测井评价方法在水合物储层计算当中的优劣.研究结果表明:泥质含量选用自然伽马值求取为宜;孔隙度选用受水合物分解所产生气体影响较小的密度值求取;饱和度的求取需根据水合物含量的不同,分别选用印度尼西亚公式、修正的wood方程或修正的阿尔奇公式. 相似文献