首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Rare earth elements (REE) concentrations of Archean and Proterozoic chemical sediments are commonly used as proxies to study secular trends in the geochemistry of Precambrian seawater. In addition, similarities in the REE signatures of Archean chemical sediments and modern seawater have led researchers to argue that some Archean rocks originated as biochemical precipitates (i.e., microbial carbonates) in shallow marine (e.g., peritidal) environments. However, terrestrial waters, including river water and groundwater, also commonly exhibit REE fractionation patterns that resemble modern seawater. Here, we present the seawater-like REE data for groundwaters from central México as additional evidence that these patterns are not unique to the marine environment. The shale-normalized REE patterns of the groundwaters are compared to those of modern seawater (open ocean and nearshore), Holocene reefal microbial carbonates and corals, and Archean chemical sediments using statistical means (i.e., ANOVA and Wilcoxon analyses) in order to quantify the similarities and/or differences in the REE patterns. Shale-normalized (SN) Ce anomalies and measures of REE fractionation [i.e., (La/Yb)SN, (Pr/Yb)SN, (Nd/Yb)SN, and (Gd/Yb)SN] of the central México groundwater samples are statistically indistinguishable from those of modern seawater. Moreover, except for differences in the Ce anomalies, which are lacking in Archean chemical sediments, the REE patterns of the central México groundwaters are also statistically similar to REE patterns of Archean chemical sediments, especially those of the 3.45 Ga Strelley Pool Chert. Consequently, we suggest that without additional information, it may be premature to unequivocally conclude that Archean chemical sediments record REE signatures of an Archean ocean.  相似文献   

2.
The ΣREE and shale-normalized (PAAS) REESN values of modern brachiopods (biogenic low-Mg calcite: bLMC) represented by several species from high- to low latitudes, from shallow- to deep waters and from warm- and cold-water environments, define three distinct average ‘seawater’ trends. The warm- and cold-water brachiopods define two indistinguishable (p < 0.050) groups that mimic open-ocean seawater REE chemistry, exhibiting the typical LREE enrichment with a slightly positive to negative Ce anomaly followed by an otherwise invariant series. Other recent brachiopods from an essentially siliciclastic seabed environment are distinct in both ΣREE and REESN trends from the previous two populations, showing a slight enrichment in the MREEs and an increasing trend in the HREEs. Other groups of modern brachiopods are characterized by elevated REESN trends relative to the ‘normal’ groups as well as by complexity of the series trends. The most characteristic feature is the decrease in the HREEs in these brachiopods from areas of unusual productivity (i.e., such as upwelling currents, fluvial input and aerosol dust deposition). Preserved brachiopods from the Eocene and Silurian exhibit REESN trends and Ce anomalies similar to that of the ‘open-ocean’ modern brachiopods, although, their enriched ΣREE concentrations suggest precipitation of bLMC influenced by extrinsic environmental conditions.Preservation of the bLMC was tested by comparing the ΣREE and REESN trends of preserved Eocene brachiopods to those of Oligocene brachiopods that were altered in an open diagenetic system in the presence of phreatic meteoric-water. The altered bLMC is enriched by approximately one order of magnitude in both ΣREE and REESN trends relative to that in bLMC of their preserved counterparts. Similarly, the ΣREE and REESN of preserved Silurian brachiopod bLMC were compared to those of their enclosing altered lime mudstone, which exhibits features of partly closed system, phreatic meteoric-water diagenesis. Despite these differences in the diagenetic alteration systems and processes, the ΣREEs and REESN trends of the bLMC of altered brachiopods and of originally mixed mineralogy lime mudstones (now diagenetic low-Mg calcite) are enriched by about one order of magnitude relative to those observed in the coeval and preserved bLMC.In contrast to the changes in ΣREE and REESN of carbonates exposed to phreatic meteoric-water diagenesis, are the REE compositions of late burial calcite cements precipitated in diagenetically open systems from burial fluids. The ΣREE and REESN trends of the burial cements mimic those of their host lime mudstone, with all showing slight LREE enrichment and slight HREE depletion, exhibiting a ‘chevron’ pattern of the REESN trends. The overall enrichment or depletion of the cement REESN trends relative to that of their respective host rock material reflects not only the openness of the diagenetic system, but also strong differences in the elemental and REE compositions of the burial fluids. Evaluation of the (Ce/Ce*)SN and La = (Pr/Pr*)SN anomalies suggests precipitation of the burial calcite cements essentially in equilibrium with their source fluids.  相似文献   

3.
Modern chemical sediments display a distinctive rare earth element + yttrium (REE + Y) pattern involving depleted LREE, positive La/La*SN, Eu/Eu*SN, and YSN anomalies (SN = shale normalised) that is related to precipitation from circumneutral to high pH waters with solution complexation of the REEs dominated by carbonate ions. This is often interpreted as reflecting precipitation from surface waters (usually marine). The oldest broadly accepted chemical sediments are c. 3,700 Ma amphibolite facies banded iron-formation (BIF) units in the Isua supracrustal belt, Greenland. Isua BIFs, including the BIF international reference material IF-G are generally considered to be seawater precipitates, and display these REE + Y patterns (Bolhar et al. in Earth Planet Sci Lett 222:43–60, 2004). Greenland Eoarchaean BIF metamorphosed up to granulite facies from several localities in the vicinity of Akilia (island), display REE + Y patterns identical to Isua BIF, consistent with an origin by chemical sedimentation from seawater and a paucity of clastic input. Furthermore, the much-debated magnetite-bearing siliceous unit of “earliest life” rocks (sample G91/26) from Akilia has the same REE + Y pattern. This suggests that sample G91/26 is also a chemical sediment, contrary to previous assertions (Bolhar et al. in Earth Planet Sci Lett 222:43–60, 2004), and including suggestions that the Akilia unit containing G91/26 consists entirely of silica-penetrated, metasomatised, mafic rock (Fedo and Whitehouse 2002a). Integration of our trace element data with those of Bolhar et al. (Earth Planet Sci Lett 222:43–60, 2004) demonstrates that Eoarchaean siliceous rocks in Greenland, with ages from 3.6 to 3.85 Ga, have diverse trace element signatures. There are now geographically-dispersed, widespread examples with Isua BIF-like REE + Y signatures, that are interpreted as chemically unaltered, albeit metamorphosed, chemical sediments. Other samples retain remnants of LREE depletion but are beginning to lose the distinct La, Eu and Y positive anomalies and are interpreted as metasomatised chemical sediments. Finally there are some siliceous samples with completely different trace element patterns that are interpreted as rocks of non-sedimentary origin, and include metasomatised mafic rocks. The positive La/La*SN, Eu/Eu*SN and YSN anomalies found in Isua BIFs and other Eoarchaean Greenland samples, such as G91/26 from Akilia, suggests that the processes of carbonate ion complexation controlling the REE − Y patterns were already established in the hydrosphere at the start of the sedimentary record 3,600–3,850 Ma ago. This is in accord with the presence of Eoarchaean siderite-bearing marbles of sedimentary origin, and suggests that CO2 may have been a significant greenhouse gas at that time.  相似文献   

4.
Rare earth elements in modern coral sands: an environmental proxy   总被引:1,自引:0,他引:1  
The concentration rare earth elements and Yttrium (REE + Y) were determined in coral sands from Kavaratti Island, Arabian Sea, India. Chondrite-normalized REE + Y patterns show: (1) high REE concentration particularly light REE (LREE) enrichment; (2) consistent negative Ce anomaly; (3) nearly chondritic Y/Ho ratios. All these features are consistent with the geochemistry of well oxygenated seawater with significant terrestrial contribution. The seawater composition of Nd/Yb ratio inferred from the coral record point to the dominance of LREE more than the heavy REE (HREE). The high terrestrial input rich in LREE and property of adsorption/scavenging processes of LREE than that of HREE may be the cause. Terrigenous contributions were detected on the basis of co-occurring trace element concentrations (Sc, Hf and Th) and Y/Ho ratio. Except for La, the REE distribution coefficients, KD(REE)s, are between 100 and 300. KDs are high comparing to the other elements in biogenic calcite which is attributed to detrital contamination during elemental incorporation. This study may not reflect original seawater chemistry but it can be a good proxy to indicate proximity of corals to terrigenous input sources.  相似文献   

5.
Major, trace and rare earth elements (REE) concentration of the Eocene limestones, Jaisalmer Basin, Rajasthan, India are analysed to reconstruct the depositional conditions and to identify sources of REEs. Among the major oxides, CaO is the dominant oxide followed by SiO2 in the studied limestones. Trace element Ba dominates over the other trace elements and it shows negative correlation with CaO. The Sr, occurring in small concentration, shows positive correlation with CaO. Other trace elements such as V, Zr, Sc, Y, Rb, Ni, Pb Co, Cu, U occur in small concentrations. The studied limestones show a positive correlation of ΣREE with Fe2O3, Ni, Th, Sc, and Y. These limestones possess sea-water like shale-normalized REE + Y pattern with light REE depletion, slight Gd enrichment, slightly positive La anomaly, positive Y anomaly, positive Eu anomaly, negative Ce anomaly and superchondritic Y/Ho ratio from 23.12 to 28.57. The dominance of CaO and low percentage of MgO suggest that mineral phase is calcite and there is absence of dolomitization. The occurrence of SiO2 and Al2O3 in appreciable percentages may be because of the siliciclastic input during the limestone precipiatetion. The low concentration of Uranium (0.4-3.7) and authigenic Uranium (Average Total U-Th/3 value = 0.74) indicate that the studied limestones were precipitated in oxic condition from seawater. The depletion of LREE suggests that the limestones were precipitated from the seawater. The positive correlation of ΣREE with Al2O3 Fe2O3, Ni, Th, Sc, and Y and negative correlation with CaO suggest an input of siliciclastic sediments from the land during limestone precipitation. The negative Ce anomaly, slightly positive La anomaly, slight Gd enrichment, positive Y anomaly, and positive Eu anomaly also suggest that the limestone was precipitated from the seawater with some siliciclastic input from continent. The low values of the Y/Ho ratio (23.12 to 28.57) in the studied limestones suggest some modification of the seawater by the input of freshwater in a coastal environment. The REEs of the studied limestones are correlable with the shallow sea water REEs with exception of a few elements. We envisage a coastal/shallow marine depositional environment where mixing of the continental material in sea water appears feasible.  相似文献   

6.
The watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) is a karstic area. Rare earth elements (REEs) of dissolved loads, suspended particulate material (SPM) and sediments of riverbed are first synthetically reported to investigate REE geochemistry in the three phases in karstic watershed during the high-flow season. Results show that the low dissolved REE concentrations in the CQW are attributed to these rivers draining carbonate rocks. The dissolved REE have significant negative Eu anomaly and coexistence of middle and light REE (MREE??PAAS-normalized La N /Sm N and Gd N /Yb N ; LREE??PAAS-normalized La N /Yb N )-enrichment, which are due to the dissolution of impure Triassic carbonates. REE concentrations in most of SPM exceed that of sediments in the CQW and the average continental crust (UCC). The SPM and the sediments show some common features: positive Eu, Ce anomalies, and MREE enrichment. The controls on the patterns seem to be from weathering profiles: the oxidation state, the REE-bearing secondary minerals (cerianite, potassium feldspar and plagioclase), which are also supported by the evidence of Y/Ho fractionations in the three phases.  相似文献   

7.
Rare earth elements (REE) were determined in fine, medium and coarse crystalline replacement dolomites, and for saddle dolomite cements from the Middle Devonian Presqu'ile barrier from Pine Point and the subsurface of the Northwest Territories and north-eastern British Columbia. REE patterns of the fine crystalline dolomite are similar to those of Middle Devonian limestones from the Presqu'ile barrier. Fine crystalline dolomite occurs in the back-barrier facies and may represent penecontemporaneous dolomitization at, or just below, the sea floor. Medium crystalline dolomite is widespread in the lower southern and lower central barrier. Medium crystalline dolomite is slightly depleted in heavy REE compared with Devonian marine limestones and fine crystalline dolomite, and has negative Ce and Eu anomalies. Medium crystalline dolomites replaced pre-existing limestones or were recrystallized from earlier fine crystalline dolomites. During these processes, the REE patterns of their precursors were modified. Late stage, coarse crystalline replacement dolomite and saddle dolomite cements occur together in the upper barrier and have similar geochemical signatures. Coarse crystalline dolomites have negative Eu anomalies, and those from the Pine Point area also have positive La anomalies. Saddle dolomites are enriched in light REE and have positive La anomalies. The REE patterns of coarse crystalline dolomite and saddle dolomite differ from those of marine limestones and fine and medium crystalline dolomites, suggesting that different diagenetic fluids were responsible for these later dolomites. Although massive dolomitization requires relatively large volumes of fluids in order to provide the necessary amounts of Mg2-. dolomitization and subsequent recrystallization may not necessarily modify the REE signatures of the precursor limestones because of the low concentrations of REE in most natural fluids. Thus, relative fluid-rock ratios during diagenesis may be estimated from REE patterns in the diagenetic and precursor minerals. Fine crystalline dolomites retain the REE patterns of their limestone precursors. In the medium and coarse crystalline dolomites the precursor REE patterns were apparently altered by large volumes of fluids involved during dolomitization. This study suggests that REE compositions of dolomites and their limestone precursors may provide important information about the relative amounts of fluids involved during diagenetic processes, such as dolomitization.  相似文献   

8.
Carbonate, largely in the form of dolomite, is found throughout the host rocks and ores of the Nchanga mine of the Zambian Copperbelt. Dolomite samples from the hanging wall of the mineralization show low concentrations of rare-earth elements (REE) and roof-shaped, upward convex, shale-normalized REE patterns, with positive Eu*SN anomalies (1.54 and 1.39) and marginally negative Ce anomalies (Ce*SN 0.98,0.93). In contrast, dolomite samples associated with copper and cobalt mineralization show a significant rotation of the REE profile, with HREE enrichment, and La/LuSN ratios <1 (0.06–0.42). These samples also tend to show variable but predominantly negative Eu*SN and positive cerium anomalies and an upwardly concave MREE distribution (Gd-Er). Malachite samples from the Lower Orebody show roof-tile-normalized REE patterns with negative europium anomalies (Eu*SN 0.65–0.80) and negative cerium anomalies (Ce*SN 0.86–0.9). The carbonate 87Sr/86Sr signature correlates with the associated REE values. The uppermost dolomite samples show Neoproterozoic seawater-like 87Sr/86Sr ratios ranging from 0.7111 to 0.7116, whereas carbonate from Cu–Co mineralized samples show relatively low concentrations of strontium and more radiogenic 87Sr/86Sr, ranging between 0.7136–0.7469. The malachite samples show low concentrations of strontium, but give a highly radiogenic 87Sr/86Sr of 0.7735, the most radiogenic 87Sr/86Sr ratio. These new data suggest that the origin and timing of carbonate precipitation at Nchanga is reflected in the REE and Sr isotope chemistry. The upper dolomite samples show a modified, but essentially seawater-like signature, whereas the rotation of the REE profile, the MREE enrichment, the development of a negative Eu*SN anomaly and more radiogenic 87Sr/86Sr suggests the dolomite in the Cu–Co mineralized samples precipitated from basinal brines which had undergone significant fluid–rock interaction. Petrographic, REE, and 87Sr/86Sr data for malachite are consistent with the original sulfide Lower Orebody being subject to a later oxidizing event.  相似文献   

9.
Rare earth elements (REE) analysis was carried out in two coral species Diploria strigosa and Copophyllia natans from Isla de Sacrificios Reef (ISR) (19° 10′ 51.6″N; 96° 5′ 45.6″W) Veracruz, Mexico. Both corals were cut at the top, middle and bottom parts to detect possible differences in REE concentrations related to water masses and sediment inputs. An enrichment in heavy rare elements (HREE) compared to light rare elements (LREE) at the top of Diploria strigosa and Copophyllia natans, evidenced by (La/Lu)SN <0.5, (La/Yb)SN <0.5 and (Pr/Yb)SN <0.5 is observed. This HREE enrichment in both corals is probably due to the high pH and CO32? content in the seawater. A negative Ce anomaly is observed throughout Diploria strigosa and Copophyllia natans, probably linked with well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter. Positive Eu anomalies in both corals are due to development of the ISR in shallow waters. Ce/Ce* vs. (Pr/Yb)SN diagram suggests the input of terrigenous material, as all samples have Ce/Ce* and Pr/Yb values outside the seawater range signature. However, the Nd/Yb and (Nd/Yb)SN suggest that the top of Diploria strigosa and Copophyllia natans are associated with coastal waters at about 50 m depth.  相似文献   

10.
皖北新元古界望山组灰岩微量元素地球化学特征*   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究皖北新元古界望山组灰岩地球化学特征及地质背景,对该地区灰岩进行了系统的岩石学和微量元素地球化学测试。研究结果表明:望山组灰岩中,元素U、Pb、Sr、Sm富集,Nb、Pr、Zr、Hf明显亏损;稀土总量偏低(6.68~42.78 μg/g),轻稀土略亏损,NdSN/YbSN值在0.65~0.91之间变化,轻重稀土分异微弱,灰岩样品均具有程度不同的La和Y正异常。U、Th、Ce等元素特征反映了研究区望山组形成于缺氧的水体环境,Sr/Ba、Sr/Cu值反映了望山组灰岩形成于盐度较大的海水环境和干旱的气候条件;La-Th-Sc和Th-Sc-Zr/10图解指示望山组灰岩可能形成于大陆岛弧环境。  相似文献   

11.
This study examines the rare earth elements and yttrium (REY) concentrations of twenty-five samples from the reef outcrop exposed along the Lianglitage Mountain in the Ordovician, Tarim Basin in China. The concentration analysis provides constraints on the paleoenvironment during reef deposition. Based on the detailed sedimentology and petrographic work, we divide the reef facies into four sub-facies: the base facies, reef-core facies, reef-flank facies, and sealing facies. The geochemical data (such as major and trace elements, carbon and oxygen isotopes, and REYs) are further used to study the coeval seawater characteristics as well as potential diagenesis overprints. The result indicated that the diagenesis has little effect on the REY patterns of the reefal limestones. The REY concentrations of the reefal limestones are overall low (ranging from 3.69 to 19.60 ppm, arithmetic mean=10.22 ppm, SD=5.4). The PAAS-normalized REY patterns are consistently flat compared to the typical well-oxidized, shallow marine water patterns. However, the light REE (LREE) depletions, positive La anomalies, negative Ce anomalies and positive Y anomalies, suggest that these reefal limestones are likely an indicative of contemporaneous seawater REY signals. The seawater-like Y/Ho ratios (average at 37.51) further support that REY signals in these limestones are likely a reflection of seawater with little diagenetic modifications. The low Y/Ho ratios presented only in the reef-flank facies and sealing facies are likely a suggestion of detrital contamination. Hence, this study confirms that REY patterns of the limestones at the base facies and reef-core facies can record ancient seawater information, and reefs can be used as a potential geochemical proxy for paleoenvironment studies throughout the Earth’s history.  相似文献   

12.
The Neoproterozoic Narji Formation of Cuddapah Basin, Southern India is mainly composed of limestones with minor amount of clastic rocks. Limestones are massive as well as laminated and occasionally chert bearing. Geochemistry (major, trace, and REE) of limestones is studied to strengthen the knowledge on depositional environment of Narji Formation in the direction to better figure out the development of Cuddapah Basin during Neoproterozoic era. Average SiO2 (25.97), Al2O3/TiO2 (16.67), and K2O/Al2O3 (0.21) ratios suggest clastic contamination in the Narji limestones. PAAS (Post Archean Australian Shale) normalized REE?+?Y pattern of Narji limestones are showing seawater like REE?+?Y pattern. The Er/Nd and Y/Ho ratios (average 0.17 and 35.68, respectively) of Narji limestones indicate the retention of normal seawater character with the signatures of terrigenous input and diagenesis process. Positive Ce anomaly, high U/Th (>?1.25), and V/(V?+?Ni) (>?0.5) ratios of Narji limestones clearly indicate their deposition in dyoxic to anoxic condition.  相似文献   

13.
稀土元素主要通过交代碳酸盐矿物的Ca2+0进入碳酸盐格架,所以沉积碳酸盐(岩的稀土元素特征能够很好的指示沉积流体来源和古环境。常用的稀土元素指标包括稀土元素总量(ΣREE)、稀土元素配分型式、以及La、Ce、Eu、Gd和Y等元素的异常指数。碳酸盐(岩)的稀土元素含量可能受到硅酸盐矿物、Fe-Mn氧化物/氢氧化物和磷酸盐等非碳酸盐组分以及成岩蚀变作用的影响。因此,在分析过程中,我们只有排除这些影响因素,才能用碳酸盐(岩)的稀土元素指标来探讨流体来源和古环境。这要求我们采集新鲜剖面上的样品,并用适当浓度的弱酸进行分步溶样,提取适当的组分,避免样品中的非碳酸盐组分干扰原始沉积组分的稀土元素特征。不同的沉积水体和沉积相下形成的碳酸盐(岩)具有不同的稀土元素特征:从太古宙到全新世的海相碳酸盐(岩)记录了LREE亏损、La正异常和高Y/Ho值的稀土元素特征;海底孔隙水的稀土元素特征则受氧化-还原条件、离子络合形式、孔隙流体来源的制约;热液流体具有LREE富集、Eu正异常的稀土元素特征;河水和湖泊有相对平坦的稀土元素特征。因此,碳酸盐(岩)的稀土元素特征具有重要的古环境指示意义。  相似文献   

14.
The calcium-isotope composition (δ44/42Ca) was analyzed in modern, Cretaceous and Carboniferous marine skeletal carbonates as well as in bioclasts, non-skeletal components, and diagenetic cements of Cretaceous and Carboniferous limestones. In order to gain insight in Ca2+aq-CaCO3-isotope fractionation mechanisms in marine carbonates, splits of samples were analyzed for Sr, Mg, Fe, and Mn concentrations and for their oxygen and carbon isotopic composition. Biological carbonates generally have lower δ44/42Ca values than inorganic marine cements, and there appears to be no fractionation between seawater and marine inorganic calcite. A kinetic isotope effect related to precipitation rate is considered to control the overall discrimination against 44Ca in biological carbonates when compared to inorganic precipitates. This is supported by a well-defined correlation of the δ44/42Ca values with Sr concentrations in Cretaceous limestones that contain biological carbonates at various stages of marine diagenetic alteration. No significant temperature dependence of Ca-isotope fractionation was found in shells of Cretaceous rudist bivalves that have recorded large seasonal temperature variations as derived from δ18O values and Mg concentrations. The reconstruction of secular variations in the δ44/42Ca value of seawater from well preserved skeletal calcite is compromised by a broad range of variation found in both modern and Cretaceous biological carbonates, independent of chemical composition or mineralogy. Despite these variations that may be due to still unidentified biological fractionation mechanisms, the δ44/42Ca values of Cretaceous skeletal calcite suggest that the δ44/42Ca value of Cretaceous seawater was 0.3-0.4‰ lower than that of the modern ocean.  相似文献   

15.
Major, trace and rare earth elements (REE) concentrations in limestone beds of the Asu River Group within the Middle Benue Trough were measured to understand the depositional conditions, characteristics and source of REE. The limestone has high content of CaO (Average of 46.55%), followed by SiO2 (Average of 7.90 %), Fe2O3(t), MgO and Al2O3. The limestones are depleted in most of the trace elements (Co, V, Rb, Ba, Zr, Y, Nb, Hf and Th) when compared with the Post-Archean Australian Shale (PAAS). The observed large variations in ΣREE contents among various limestones of the present study (12.22 to 142.53ppm) are mainly due to the amount of terrigenous matter present in them. The characteristics of non-seawater-like REE patterns, elevated REE concentrations, high LaN/YbN ratios and low Y/Ho ratios, suggest that the observed variations in ΣREE contents are mainly controlled by the amount of detrital sediments in the limestones of the Asu River Group in the middle Benue trough. The observed variations in Ce contents and Ce anomalies in the studied samples resulted from detrital input. The limestones show positive Mn* values (0.30 to 0.78) and low contents of U (~0.60–3.20 ppm) suggesting that they were deposited under oxygen-rich environment.  相似文献   

16.
Abstract The Zudong and Guanxi granites are original rocks of the ion adsorption-type HREE and LREE deposits in weathering crust of granites. The ∑REE 1 ∑REE=REE+Y.
value and LREE 2 LREE=∑(La-Eu) and HREE=∑(Gd-Lu)+Y.
/ HREE ratio of the Zudong granite are 264 ppm and 0.81-0.24 respectively, and the average Y/∑REE ratio is 35.8-54.5%. This is mainly due to magmatic crystallization and evolution and deuteric metasomatism (albitization, muscovitization and fluorite-doveritization). These alterations resulted in endogenic mineralizations of yttrium-group REE fluorine carbonates, silicates and arsenates. The Guanxi granite is characterized by LREE enrichment (the average LREE/HREE ratio is 2.43).  相似文献   

17.
Reconstructing the environmental conditions that supported early life on Earth relies on well-preserved geochemical archives in the rock record. However, many geochemical tracers either lack specificity or they are affected by post-depositional alteration. We present a data set of major and trace element abundances and Cd isotope compositions of dome-shaped and conophyton-type stromatolites of the Late Mesoproterozoic Paranoá Group (Brazil), showing distinct values with unprecedented resolution at the lamina scale.The studied stromatolites consist of dolomite with a high purity and a negligible content of immobile elements (e.g., <0.66 ppm Zr), indicating that elemental compositions are not influenced by detrital contamination. Even though the carbonates have experienced different extent of recrystallization, the measured elemental and isotopic compositions do not correlate with fluid mobile elements. The stromatolites thus represent prime archives for geochemical proxies to reconstruct paleo-environmental conditions.Two endmember compositions can be distinguished by multiple proxy analysis, reflecting the contrasting depositional environments of the two types of stromatolites: Shale-normalized rare earth elements including yttrium (REYSN) patterns of domal stromatolites show a light REYSN (LREY) enrichment (YbSN/PrSN < 0.84), slightly super-chondritic Y/Ho ratios (33.6–39.3) and unfractionated Cd isotopes relative to upper continental crust. This indicates that the stromatolites formed in a shallow-water environment that was episodically influenced by seawater. Their REY and Cd compositions are dominated by dissolved elements that were delivered via weathering and erosion processes from the ambient continent.In contrast, REYSN patterns of the conophyta are parallel those of modern seawater with an LREYSN depletion relative to HREYSN (YbSN/PrSN = 2.1 to 3.9), positive GdSN anomalies (1.1 to 1.4) and strong super-chondritic Y/Ho ratios (37.9 to 46.2), suggesting a microbial habitat that was dominated by seawater. Cd isotopes correlate negatively with Cd and U, but positively with Mn and Ce concentrations, reflecting authigenic carbonate formation at different depths within a redox gradient of the ancient microbial mat. ε112/110Cddol values increase from −3.52 at the mat surface to +3.46 in the interior of the mat, due to the effect of kinetic fractionation during Cd-uptake, e.g. by adsorption onto organic matter or by precipitation of sulfides, in addition to incorporation into carbonate minerals. Hence, our multi-proxy approach including Cd isotopes bears a high potential to shed light on environmental conditions in ancient microbial habitats and the activity of microbial life on Early Earth.  相似文献   

18.
Distributions of the rare-earth elements (REE) in omphacite and garnet and REE behaviors during metamorphic processes were discussed. The REE concentrations of garnet and omphacite in six eclogite samples from the Dabie Mountain, central China, were measured by inductively coupled plasma-mass spectrometry (ICP-MS). The correlation of δEu ratios between garnet and omphacite indicated that chemical equilibrium of REE distribution between garnet and omphacite could be achieved during ultra-high pressure (UHP) metamorphism. Most of the partition coefficients (Kd=CiOmp/CiGrt) of light rare-earth elements (LREE) are higher than 1. However the partition coefficients of heavy rare-earth elements (HREE) are lower than 1. This indicated that the LREE inclined to occupy site M2 in omphacite, but the HREEs tended to occupy eightfold coordinated site in garnet during the eclogite formation. The REE geochemistry of the eclogites indicated that LREE could be partially lost during the prograde metamorphic process of protolith, but be introduced into the rocks during the symplectite formation. LREE are more active than HREE during the UHP metamorphism. The results are favorable to highlighting the REE behavior and evolution of UHP metamorphic rocks.  相似文献   

19.
This study explores the possibility of establishing Nd isotopic variations in seawater over geologic time. Calcite, aragonite and apatite are examined as possible phases recording seawater values of ?Nd. Modern, biogenic and inorganically precipitated calcite and aragonite from marine environments were found to have Nd concentrations of from 0.2 to 70 ppb, showing that primary marine CaCO3 contains little REE and that Nd/Ca is not greatly enhanced relative to seawater during carbonate precipitation. Very young marine limestone and dolomite containing no continental detritus have ~200 ppb Nd. All the carbonates are LREE enriched (?0.16 ≤fSmNd≤?0.45). Modern and very young Atlantic and Pacific carbonates have ?Nd in the range of shallow Atlantic and Pacific seawater respectively, implying that they derive their REE from local seawater. The Nd in well preserved carbonate fossils is ≤4 × 104 ppb, much greater than in their modern counterparts but like the high values found for carbonates in other studies. We believe the high REE contents (at the 500 ppb level) in some detritusfree carbonates are due to REE-rich Fe-hydroxide in/on the carbonate. In favorable cases, such material may record seawater ?Nd values, however introduction of extraneous REE may obscure the original isotopic composition of pure CaCO3 because of its very low intrinsic primary REE abundance.Modern biogenic apatite is also shown to have very low REE content (<150 ppb Nd) but appears to quickly scavenge REE from seawater. Inorganically precipitated apatite from phosphorites has high concentrations of seawater-derived REE. Young phosphorite apatite from the Atlantic and Pacific oceans has ?Nd in the range of the seawater from these oceans. Older apatite samples of similar age from different localities bordering common oceans record similar values of ?Nd(T). Sedimentary apatite has ?Sr(T) values in good agreement with the curves for 87Sr86Sr of seawater as a function of time. Individual conodonts from a single formation yield the same ?Sr(T) and ?Nd(T). Other workers have shown that sedimentary apatite preserves seawater REE patterns. These characteristics suggest that sedimentary apatite can be used to determine ?Nd(T) in ancient seawater. The seawater values so inferred range between ?1.7 and ?8.9 over the last 700 my and lie in the range of modern seawater, showing no evidence for drastic changes. High values of seawater ?Nd(T) in the Triassic and latest Precambrian may correlate with the breakup of large continental landmasses. The initial ?Nd(T) =?15.0 of a 2 AE old phosphorite implies the presence of ~ 1.5 AE old continental crust at 2 AE ago. The approach outlined here can be used to constrain the age of the exposed crust as a function of time.  相似文献   

20.
The chemical composition of surface water in the photic zone of the Precambrian ocean is almost exclusively known from studies of stromatolitic carbonates, while banded iron formations (IFs) have provided information on the composition of deeper waters. Here we discuss the trace element and Nd isotope geochemistry of very shallow-water IF from the Pongola Supergroup, South Africa, to gain a better understanding of solute sources to Mesoarchean shallow coastal seawater. The Pongola Supergroup formed on the stable margin of the Kaapvaal craton ∼2.9 Ga ago and contains banded iron formations (IFs) that represent the oldest documented Superior-type iron formations. The IFs are near-shore, pure chemical sediments, and shale-normalized rare earth and yttrium distributions (REYSN) exhibit positive LaSN, GdSN, and YSN anomalies, which are typical features of marine waters throughout the Archean and Proterozoic. The marine origin of these samples is further supported by super-chondritic Y/Ho ratios (average Y/Ho = 42). Relative to older Isua IFs (3.7 Ga) from Greenland, and younger Kuruman IFs (2.5 Ga) also from South Africa, the Pongola IFs are depleted in heavy rare earth elements (HREE), and appear to record variations in solute fluxes related to sea level rise and fall. Sm-Nd isotopes were used to identify potential sediment and solute sources within pongola shales and IFs. The ?Nd(t) for Pongola shales ranges from −2.7 to −4.2, and ?Nd(t) values for the coeval iron-formation samples (range −1.9 to −4.3) are generally indistinguishable from those of the shales, although two IF samples display ?Nd(t) as low as −8.1 and −10.9. The similarity in Nd isotope signatures between the shale and iron-formation suggests that mantle-derived REY were not a significant Nd source within the Pongola depositional environment, though the presence of positive Eu anomalies in the IF samples indicates that high-T hydrothermal input did contribute to their REY signature. Isotopic mass balance calculations indicate that most (?72%) of the Nd in these seawater precipitates was derived from continental sources. If previous models of Fe-Nd distributions in Archean IFs are applied, then the Pongola IFs suggest that continental fluxes of Fe to Archean seawater were significantly greater than are generally considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号