首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The Hakkari nonsulfide zinc deposit is situated close to the southeastern border of Turkey. Here both sulfide and nonsulfide Zn  Pb ores are hosted in carbonate rocks of the Jurassic Cudi Group with features typical of carbonate-hosted supergene nonsulfide zinc mineralization. The regional strike extent of the mineralized district is at least 60 km. The age of the supergene deposit has not been determined, but it is probable that the main weathering happened during Upper Tertiary, possibly between Upper Miocene and Lower Pliocene. The Hakkari mineralization can be compared to other carbonate-hosted Zn–Pb deposits in Turkey, and an interpretation made of its geological setting. The zinc mineral association at Hakkari typically comprises smithsonite and hemimorphite, which apparently replace both sulfide minerals and carbonate host rock. Two generations of smithsonite are present: the first is relatively massive, the second occurs as concretions in cavities as a final filling of remnant porosity. Some zinc is also hosted within Fe–Mn-(hydr)oxides. Lead is present in cerussite, but also as partially oxidized galena. Lead can also occur in Mn-(hydr)oxides (max 30% PbO). The features of the supergene mineralization suggest that the Hakkari deposit belongs both to the “direct replacement” and the “wall-rock replacement” types of nonsulfide ores. Mineralization varies in style from tabular bodies of variable thickness (< 0.5 to 13 m) to cross-cutting breccia zones and disseminated ore minerals in pore spaces and fracture planes. At Hakkari a As–Sb–Tl(≫ Hg) geochemical association has been detected, which may point to primary sulfide mineralization, quite different from typical MVT.  相似文献   

2.
The Lavrion carbonate-hosted Pb-Ag-Zn deposit in southeast Attica, Greece, consisted of significant non-sulfide ore bodies. The polymetallic sulfide mineralization was subjected to supergene oxidation, giving rise to gossan. The principal non-sulfide minerals of past economic importance were smithsonite, goethite and hematite. The supergene mineral assemblages occupy secondary open spaces and occur as replacement pods within marble. Calamine and iron ore mainly filled open fractures. X-ray diffraction and scanning electron microscopy of samples of oxidized ore indicate complex gossan mineralogy depending on the hypogene mineralogy, the degree of oxidation and leaching of elements, and the local hydrologic conditions. Bulk chemical analysis of the samples indicated high ore-grade variability of the supergene mineralization. On multivariate cluster analysis of geochemical data the elements were classified into groups providing evidence for their differential mobilization during dissolution, transport and re-precipitation. The mode of occurrence, textures, mineralogy and geochemistry of the non-sulfide mineralization confirm that it is undoubtedly of supergene origin: the product of influx into open fractures in the country rock of highly acidic, metal-rich water resulting from the oxidation of pyrite-rich sulfide protore. Dissolution of carbonates led to opening of the fractures. Mineral deposition in the supergene ore took place under near-neutral to mildly acidic conditions. The supergene dissolution and re-precipitation of Fe and Zn in the host marble increased metal grades and separated iron and zinc from lead, thereby producing economically attractive deposits; it further contributed to minimization of pollution impact on both soil and ground water.  相似文献   

3.
“Nonsulfides” is a term, which comprises a series of oxidized Zn(Pb)-ore minerals. It has also been used to define a special deposit type, mainly considered as derived from the weathering of Zn(Pb) sulfide concentrations. However, nonsulfide zinc deposits have been distinguished between supergene and hypogene, according to their mineralogy, geological characteristics and genetic setting. The supergene deposits formed by weathering and oxidation at ambient temperatures, whereas the hypogene ones are considered hydrothermal, or associated with metamorphic processes on primary sulfide ores.In this review paper, a comparison between a number of several nonsulfide deposits has been carried out: typical “Calamines”, peculiar “Calamines” and “Others”. The whole group comprises deposits of typical supergene origin, mixed supergene–hypogene mineralizations, and oxidized concentrations characterized by different metals only locally associated with zinc. The Zn–Pb nonsulfide concentrations hosted in carbonate rocks, which are mainly attributed to “wall-rock replacement” and “direct-replacement” supergene processes, are the typical “Calamines” (Liège district, Belgium; Iglesias district, Italy; Silesia–Cracow district, Poland). Peculiar “Calamine” deposits are those mineralizations that have been generally considered as supergene, but which are instead genetically related, at least partly, to hypogene processes (e.g. Angouran, Iran; Jabali, Yemen), though mineralogically and texturally similar to supergene nonsulfide deposits. The “Others” are prevailingly supergene nonsulfide zinc deposits not hosted in carbonate rocks (Skorpion, Namibia; Yanque, Peru), or characterized by other metals as main commodities, like lead (Magellan, Australia), silver (Sierra Mojada, Mexico; Wonawinta, Australia) or vanadium (Otavi Mountainland, Namibia).Minerals of current economic importance in most “Calamine” deposits are smithsonite, hydrozincite, and cerussite. This mineralogical association is generally simple but, when the “Calamines” are dolomite-hosted, one of the consequences of the “wall-rock replacement” process is the generation of a series of economically useless Zn- and Mg-bearing mixed carbonate phases. Secondary deposits hosted in silicatic (sedimentary or volcanic) rocks mainly contain hemimorphite and/or sauconite. Lead-, Ag- and V-rich nonsulfide ores are characterized by a more complex mineralogical association: mixed Pb-carbonates, Pb-sulfates, Pb-phosphates, Pb-arsenates, various Ag-sulfosalts, and Zn–Pb–Cu-vanadates.Carbon and oxygen stable isotope studies allow distinguishing between supergene and hypogene nonsulfide deposits, evaluating the effects of oxidative heating and even gaining indirect paleoclimatic information. The oxygen-isotope variation of the individual carbonate minerals within a deposit is relatively small, indicating constant formation temperatures and a single, meteoric fluid source. Carbon-isotope values are highly variable, thus suggesting several isotopically distinct carbon sources.Periods of paleoclimatic switch-overs from seasonally humid/arid to hyperarid have been considered as the most favorable conditions for the formation and preservation of supergene nonsulfide deposits. However, while several recent nonsulfide deposits throughout the world are positioned between 15° and 45° N latitude, thus pointing to a warm and humid weathering climate, others have been deposited in sub-Arctic regions.The economic value of the nonsulfide Zn(Pb–Ag–V) ores is highly variable, because more than in the case of metallic sulfide deposits, it resides not only on the geological setting, but also on their mineralogy that can directly influence processing and metallurgy.  相似文献   

4.
Platinum-group minerals (PGM) in primary ores and placers are compared in order to substantiate prospecting guides for layered and differentiated intrusions containing sulfide Cu-Ni ores with platinum-group elements (PGE). It is shown that supergene placer mineral assemblages bear information on primary sources and their probable economic value. The mineralogical and geochemical data on the large Siberian intrusions that host Cu-Ni and low-sulfide PGM deposits (Noril’sk 1, Kingash, Chinei, and Yoko-Dovyren) are used to elaborate mineralogical prospecting guides based on the comparative study of PGM assemblages in primary ore, heavy concentrate halos, and hillside sediments. The mechanism of PGM redistribution under supergene conditions is exemplified in the Chinei deposit. The placer mineral assemblage with prevalence of Pt-Fe alloys, atokite-rustenburgite, sperrylite, and multicomponent Pd-Sn-Cu-Pb compounds can be used as a prospecting guide for Noril’sk-type primary PGM ore and related economic placers. The paolovite-sperrylite or sperrylite PGM assemblage in heavy concentrate halos indicates occurrence of Cu-Ni ore in the prospecting area. Sperrylite with isomorphic admixture of Ir and Os typical of the Kingash pluton could be a orospecting guide for Ni-bearing mafic-ultramafic intrusions.  相似文献   

5.
《Ore Geology Reviews》2003,22(1-2):91-116
Sediment-hosted disseminated gold deposits in NW Sichuan China have many features in common with the well-known Carlin-type deposits in the western United States. They are hosted by Middle–Upper Triassic turbidites composed of 1300–4300 m of rhythmically interbedded, slightly metamorphosed calcareous sandstone, siltstone, and slate. The ore bodies are typically layer- or lens-like in shape and generally extend parallel to the stratification of the host sedimentary rocks, with a strike length of tens to several hundreds of meters. The immediate host rocks consist mainly of calcareous slate and siltstone characterized by high contents of organic matter and diagenetic pyrite. The main primary ore minerals associated with gold mineralization include pyrite, arsenopyrite, realgar, and stibnite. Gangue minerals comprise mostly quartz, calcite and dolomite. Gold is extremely fine-grained, usually less than 1 μm, and cannot be seen with an electron microscope.Two types of ore mineralization have been recognized in the deposits. The stratiform ores are composed of rhythmical interbeds of sulfides (e.g., pyrite, arsenopyrite, realgar, stibnite) interpreted to be authigenic and detrital quartz, quartzite, sericite, and graphite of allogenic origin. They were folded and deformed concordantly with host rocks, and grade both vertically and laterally into normal country rocks. Another type of ore forms a network of numerous gold-bearing veins and veinlets of quartz–calcite–sulfides of millimeter-, centimeter-, decimeter-, and even meter-scale in width. The network ore randomly fills fissures, microfissures, and cleavages, but still is stratabound in character. Detailed studies on ore fabrics show abundant evidence for synsedimentary origins, although subsequent diagenesis, metamorphism, tectonic deformation, and epigenetic hydrothermal activity have significantly remolded the primary fabrics. Primary fabrics are shown either by rhythmical interbeds of different mineral components parallel to the bedding, or by the change of grain size of the same minerals such as pyrite, realgar, and stibnite. The layer inhomogeneity of the stratiform ore is clarified by parallel overprints of later schistosity planes, resulting in distinct grain orientation and elongation, aggregate polarization, and undulating extinction of ore minerals, especially of mechanically and chemically extremely mobile ones, such as realgar and stibnite.It is proposed that the stratiform ores in these Chinese deposits were most probably formed concurrently with their host Middle–Upper Triassic turbidites in submarine, hot spring environments, while the network mineralization was formed as a result of complicated processes such as diagenesis, weak metamorphism, tectonic deformation, and epigenetic hydrothermal activity, responsible for the remobilization or reworking of the pre-existing stratiform ores. Geochemical data also support this genetic model.  相似文献   

6.
中天山白石泉镁铁-超镁铁质岩体岩石学与矿物学研究   总被引:16,自引:0,他引:16  
白石泉地区镁铁一超镁铁质岩体处于塔里木板块前缘活动带与中天山地块接合部位,是中天山地块华力西中期岩浆活动的产物。主要岩石类型有辉石橄榄岩(斜方辉石橄榄岩、斜长二辉橄榄岩)、橄榄辉石岩、橄长岩、辉长岩及角闪辉长岩等,主要造岩矿物为橄榄石、斜方辉石、单斜辉石、角闪石、斜长石及黑云母。橄榄石均为贵橄榄石,其Fo值(78-85)位于含铜镍硫化物矿橄榄石的Fo值范围之内;辉石主要有顽火辉石、古铜辉石、紫苏辉石、透辉石等;斜长石的环带构造较为发育;角闪石的FeO含量随着岩浆的演化逐渐增加。它们与造山带环境中的东疆型镁铁一超镁铁杂岩中的造岩矿物具有相同的特征。这些特征表明了白石泉地区的镁铁一超镁铁质岩体的原始岩浆为高镁的拉斑玄武质岩浆。  相似文献   

7.
8.
鄂东北早元古代沉积变质锰矿是我国时代最古老的锰矿之一,是由早元古代锰质碳酸盐岩经区域变质作用而成,后又经风化富集形成工业矿床。由于特殊的地质构造背景和成矿作用的多阶段性,元素和矿物组合复杂,具有独特性。本文研究了各种组分的演变关系和元素集散因素,为锰质碳酸盐岩在高压绿片岩相区域动力变质及其后表生作用中的演变提供了一个实例。  相似文献   

9.
The mineralogy and structure of the supergene profile in recently-exploited volcaniс hosted massive sulphide (VHMS) deposits of Cyprus, Uralian and Kuroko type in the South Urals, Russia, have been studied. Specific subzones enriched in secondary sulphides and associated minerals have been distinguished in residual pyrite and quartz–pyrite sands at the Gayskoye, Zapadno-Ozernoye, Dzhusinskoye and Alexandrinskoye deposits. Besides minerals which are common to the cementation subzones (covellite, chalcocite and acanthite), non-stoichiometric colloform and framboidal pyrite, pyrite–dzharkenite, pyrrhotite-like and jordanite-like minerals, metacinnabar, sphalerite, selenium-enriched tetrahedrite and unidentified As-, Sb sulphosalts of Pb or Hg and Ag, sulphur-bearing clausthalite, naumannite and tiemannite were also found. Secondary sulphide minerals in VHMS deposits of the South Urals region are characterized by light sulphur isotope compositions (− 8.1 to − 17.2‰). Superposition of the advanced oxidation of colloform pyrite, an enrichment in impurities (sphalerite, galena, and tennantite) from the primary ores, stagnant water conditions, an elevation of the water table during oxidation, and bacterial activity led to supergene concentrations of the base metals as sulphide, selenides or sulphosalts.  相似文献   

10.
Abstract. Intrusion‐related gold deposits are widely distributed within the North China craton or along its marginal fold belts. Presently, about 200 individual intrusion‐related gold deposits (prospects) have been discovered, among which Yuerya, Anjia‐yingzi, Linglong, Jiaojia, Chenjiazhangzi, Qiyugou, Jinjiazhuang, Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang are the most important ones. In general, the intrusion‐related gold deposits can be classified into three major groups according to their host rocks: (1) hosted by or related to felsic intrusions, including (la) calc‐alkaline granitoid intrusions and (lb) cryptoexplosion breccia pipes; (2) related to ultramafic intrusions, and (3) hosted by or related to alkaline intrusions. The first group contains the Yuerya, Anjiayingzi, Linglong, Jiaojia, Chenjiazhangzi and Qiyugou gold deposits. Gold mineralization at these deposits occurs within Mesozoic Yanshanian calc‐alkaline granitoid intrusions or cryptoexplosion breccia pipes as gold‐bearing quartz veins and replacement bodies. Pyrite, galena, sphalerite, chalcopyrite, native gold and electrum are major metallic minerals. The Jinjiazhuang deposit belongs to the second group, and occurs within Hercynian diopsidite and peridotite as quartz veins and replacement bodies. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Dongping, Hougou, Huangtuliang, Guilaizhuang, Wulashan and Donghuofang deposits. Gold mineralization at these deposits occurs predominantly within the Hercynian alkaline intrusive complexes as K‐feldspar‐quartz veins and replacement bodies. Major metal minerals are pyrite, galena, chalcopyrite, tellurides, native gold and electrum. All these pyrite separates from Hercynian and Yanshanian intrusions or cryptoexplosion pipes associated with the gold deposits show a broad range in δ34S value, which is overall higher than those Precambrian rocks and their hosted gold deposits. For the alkaline intrusion‐related gold deposits, the δ34S values of the sulfides (pyrite, galena and chalcopyrite) from the deposits increase systematically from orebodies to the alkaline intrusions. All of these intrusion‐related gold deposits show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot in between the fields of the intrusions and Precambrian metamorphic rocks. Data are interpreted as indicative of a mixing of sulfur and lead from magma with those from Precambrian metamorphic rocks. Isotopic age data, geological and geochemical evidences suggest that the ore‐forming materials for the intrusion‐related gold deposits were generated during the emplacement of the Hercynian or Yanshanian intrusion. The calc‐alkaline or alkaline magma may provide heat, volatiles and metals for the intrusion‐related gold deposits. Evolved meteoric water, which circulated the wall rocks, was also progressively involved in the magmatic hydrothermal system, and may have dominated the ore fluids during late stage of ore‐forming processes. Therefore, the ore fluid may have resulted from the mixing of calc‐alkaline or alkaline magmatic fluids and evolved meteoric water. All these intrusion‐related gold deposits are believed to be products of Hercynian or Yanshanian calc‐alkaline and alkaline igneous processes along deep‐seated fault zones within the North China craton or along its marginal belts.  相似文献   

11.
Although Mn is one of the major impurities in the economic iron ores from the Bahariya Oasis, information on its modes of occurrence and origin is lacking in previous studies. High-Mn iron ores from El Gedida and Ghorabi–Nasser iron mines were subjected to detailed mineralogical, geochemical, and petrographic investigations using X-ray diffraction (XRD), infrared absorption spectrometry (IR), Raman spectroscopy, X-ray fluorescence (XRF), scanning electron microscopy (SEM), and electron probe microanalyzer (EPMA) to clarify the modes of occurrence of Mn in these deposits and its origin. The results showed that the MnO2 contents range between 0.03 and 13.9 wt.%. Three mineralogical types have been identified for the Mn in the high-Mn iron ores, including: (1) inclusions within the hematite and goethite and/or Mn accumulated on their active surfaces, (2) coarse-grained and crystalline pyrolusite, and (3) fine-grained cement-like Mn oxide and hydroxide minerals (bixbyite, cryptomelane, aurorite, romanechite, manjiroite, and pyrochroite) between the Fe-bearing minerals. The Mn carbonate mineral (rhodochrosite) was detected only in the Ghorabi–Nasser high-Mn iron ores. Since IR patterns of low-Mn and high-Mn samples are almost the same, a combination of XRD analysis using non-filtered Fe-Kα radiations and Raman spectroscopy could be the best way to identify and distinguish between different Mn minerals.Assuming that both Fe and Mn were derived from the same source, the occurrence of high-Mn iron ores at the base of the stratigraphic section of the deposits overlain by the low-Mn iron ores indicated a supergene origin of the studied ores by descending solutions. The predominance of Mn oxide and hydroxide minerals in botryoidal shapes supports this interpretation. The small grain size of Mn-bearing minerals as well as the features of microbial fossils such as spherical, elliptical, and filamentous shapes of the Fe-bearing minerals suggested a microbial origin of studied iron ores.Variations in the distribution and mineralogy types of Mn in the iron ores of the Bahariya Oasis demanded detailed mineralogical and petrographic characterizations of the deposits before the beneficiation of high-Mn iron ores from the Bahariya Oasis as feedstock for the ironmaking industries in Egypt by magnetizing reduction. High Mn contents, especially in the Ghorabi–Nasser iron ore and occurrence of Mn as inclusions and/or accumulated on the surface of the Fe-bearing minerals would suggest a possible utilization of the high-Mn iron ores to produce ferromanganese alloys.  相似文献   

12.
Oxide-silicate ore deposits containing approximately 10% of Ni reserves of Russia are located in the Sverdlovsk, Chelyabinsk, and Orenburg districts of the Urals. Garnierite is among the most important industrial minerals of supergene nickel deposits. We studied this mineral in metasomatites and ores of the Cheremshan, Sinar, Elov, Sakhara, and Buruktal deposits based on the chemical, thermal, and X-ray phase analysis data. It is shown for the first time that garnierites of the Ural province are composed of both exogenous and hydrothermal mineral associations. The spatial distribution of minerals suggests that the hydrothermal association is a lateral and vertical (depth) continuation of mineralization in the Uralian supergene deposits. This conclusion widens significantly the scope of prospecting for new mineralized sectors in old deposits and the possibility of discovery of new deposits.  相似文献   

13.
The Pancarli Ni-Cu mineralization is located in the metamorphic sequence of the Bitlis massif consisting of biotite gneiss, quartz-feldspar gneiss, amphibolite, and metagranitic rocks. The rocks are probably Precambrian in age and have been affected by regional amphibolite-facies metamorphism and by a later cataclasis. There is also evidence of an earlier eclogite-facies metamorphism. The Ni-Cu mineralization occurs as massive sulfide lenses aligned parallel to the penetrative foliation along various levels. The lenses are up to 3 m in length and 2 m in width. The host rock in the immediate vicinity of the orebodies is generally quartz-feldspar gneiss or more rarely quartz-feldspar gneiss and amphibolite. The mineral paragenesis of the ore consisting of pyrrhotite, pentlandite, and chalcopyrite and the low As and Co contents of the ore indicate an orhomagmatic origin of the mineraliza tion. The textures and chemistry of the spinel minerals in the Pancarli deposit together with Cu/(Cu+Ni) ratio of 0.29 of the ore suggest that the mineralization is genetically related to a basic magma. The only mafic rocks in the area are amphibolites that are characterized by a tholeiitic basaltic chemical composition. However, no imprignation and network ores are present in any of the amphibolite bodies. A model based on the segregation of a sulfide melt fraction from a basaltic magma in a magma chamber has been proposed. The subsequent and independent intrusions of the two fractions into the country rocks account for the absence of the impregnation and network ores in the amphibolites, and explain the similarities in geologic setting of the ore and amphibolites as well as their observed field relationships. Structural and textural features of the ores indicate that they have been subjected to regional metamorphism and the later cataclastic deformation that affected the country rocks. The author believes that the ores probably formed during the Pan-African orogenic development of the Bitlis massif in Late Precambrian time. In their present state, the Pancarli ores exhibit varying degrees of weathering with supergene assemblages.Formerly with the Middle East Technical University, Ankara, Turkey  相似文献   

14.
Central Alborz Metallogenic Belt is a major mineral province of northern Iran placed at the northern margin of the Arabia-Eurasia collision zone. This study aimed to at recognition the affiliation between reverse/thrust faults and Pb-Zn carbonate-hosted mineral deposition using fractal modeling. Thrusting is the major mechanism of faulting in this region in terms of length, frequency and density. The carbonate-hosted Pb and Zn occurrence/deposit were classified using the concentration-number fractal method. All faults then are categorized based on fault density, and concentration-area fractal methods are utilized for the thrust faults. According to our analysis, main fault density zones are situated at the central and western parts of the Alborz Mountains. Relationship among the major fault density zones and the Pb-Zn carbonate-hosted occurrences/deposits using logratio matrix reveals that there is a proper connection between reverse/thrust faults and the Zn-Pb carbonate-hosted occurrences/deposits. Moreover, the results were controlled by four ore deposits/prospects in this region which shows high-grade ores directly relate to faults especially reverse/thrust faults based on their distribution. This research indicates that this method can be used for other various ore deposit types that have been distributed by faulting.  相似文献   

15.
刘芳 《地质与勘探》2023,59(1):27-42
为深入理解岩盐矿床复合成矿作用,研究宁夏固原凹陷岩盐矿成矿规律和成矿模式,在野外地质调查的基础上,通过镜下观察、扫描电镜分析、电子探针能谱分析、X射线粉晶衍射分析,结合岩石学和矿物学研究,对该矿床矿石结构构造特征和矿物特征进行对比研究,并对其岩盐矿成矿期次进行了划分。结果表明,固原凹陷岩盐矿矿石具有原生沉积和后生改造结构构造。矿石结构中自形细晶结构为原生沉积结构,自形粗晶、港湾和蠕虫交代结构为后生改造结构。矿石构造中纹层、条带、团块状构造为原生沉积构造,块状、角砾状和网脉状构造为后生改造构造。岩盐矿床矿物组合主要有石盐、钙芒硝、硬石膏、无水芒硝以及粘土矿物、钠长石、白云石,具有原生沉积和后生改造的矿物组合特征,盐类矿物均可见原生沉积型和后生改造型矿物。岩相学和矿物学研究证实,固原凹陷岩盐矿床是一个典型的原生沉积-后生改造型矿床。钙芒硝和硬石膏矿主要由早期沉积作用形成矿化体,经历了后期微弱的改造作用;而石盐矿主要由早期沉积作用形成矿体,在后期盆地构造变化中发生塑性流动、溶解-重结晶或构造变形而充填于围岩的裂隙或构造活动形成的有利空间中成矿,表明矿床经历了原生沉积成矿期和后生改造成矿期两个...  相似文献   

16.
The Ohori deposit, one of the base metal deposits in the Green-Tuff region, NE Japan, is composed of two types of mineralization; a skarn-type (Kaninomata orebody) made by the replacement of the Miocene calcareous layer, and a vein-type (Nakanomata orebody). While the ore mineral assemblage of the deposit (chalcopyrite, pyrite, sphalerite and galena) has been known for being rather simple, some Pb-Bi-S minerals have been discovered for the first time in the present study. The minerals mainly occur in the chalcopyrite-rich ores of both orebodies. They essentially belong to the Pb-Bi-S system and contain Cu and Ag in minor amounts, which correspond to the lillianite–gustavite solid solution series (phases Z and X), cosalite, neyite, felbertalite, krupkaite and Bi-bearing galena. The chalcopyrite-rich (Bi-bearing) ores from both orebodies are richer in chalcopyrite, pyrite and chlorite, and have higher homogenization temperatures (>300°C) of fluid inclusions, and higher FeS contents in sphalerite compared to the Bi-free ores. In the Green-Tuff region, Bi-minerals have been reported from many base metal deposits. Most of these Bi-bearing ore deposits are referred to as xenothermal-type deposits, and are characterized by the following common features; composite mineralization of high- and low-temperatures in the shallower environments, and close relationships with the Tertiary granitic rocks. The whole mineralization at the Ohori deposit also has a similar xenothermal character because of the coexistence of high-temperature chalcopyrite-rich ores with Pb-Bi-S minerals, which were formed by the influence of the Tertiary granitic rocks at a shallow depth.  相似文献   

17.
Enrichment iron ore of the Hamersley Province, currently estimated at a resource of over 40 billion tonnes (Gt), mainly consists of BIF (banded iron-formation)-hosted bedded iron deposits (BID) and channel iron deposits (CID), with only minor detrital iron deposits (DID). The Hamersley BID comprises two major ore types: the dominant supergene martite–goethite (M-G) ores (Mesozoic–Paleocene) and the premium martite–microplaty hematite ores (M-mplH; ca 2.0 Ga) with their various subtypes. The supergene M-G ores are not common outside Australia, whereas the M-mplH ores are the principal worldwide resource. There are two current dominant genetic models for the Hamersley BID. In the earlier 1980–1985 model, supergene M-G ores formed in the Paleoproterozoic well below normal atmospheric access, driven by seasonal oxidising electrochemical reactions in the vadose zone of the parent BIF (cathode) linked through conducting magnetite horizons to the deep reacting zone (anode). Proterozoic regional metamorphism/diagenesis at ~80–100°C of these M-G ores formed mplH from the matrix goethite in the local hydrothermal environment of its own exhaled water to produce M-mplH ores with residual goethite. Following general exposure by erosion in the Cretaceous–Paleocene when a major second phase of M-G ores formed, ground water leaching of residual goethite from the metamorphosed Proterozoic ores resulted in the mainly goethite-free M-mplH ores of Mt Whaleback and Mt Tom Price. Residual goethite is common in the Paraburdoo M-mplH-goethite ores where erratic remnants of Paleoproterozoic cover indicate more recent exposure.

Deep unweathered BIF alteration residuals in two small areas of the Mt Tom Price M-mplH deposits have been used since 1999 for new hypogene–supergene modelling of the M-mplH ores. These models involve a major Paleoproterozoic hydrothermal stage in which alkaline solutions from the underlying Wittenoom Formation dolomite traversed the Southern Batter Fault to leach matrix silica from the BIF, adding siderite and apatite to produce a magnetite–siderite–apatite ‘protore.’ A later heated meteoric solution stage oxidised siderite to mplH + ankerite and magnetite to martite. Weathering finally removed residual carbonates and apatite leaving the high-grade porous M-mplH ore. Further concepts for the Mt Tom Price North and the Southern Ridge Deposits involving acid solutions followed, but these have been modified to return essentially to the earlier hypogene–supergene model. Textural data from erratic ‘metasomatic BIF’ zones associated with the above deposits are unlike those of the typical martite–microplaty hematite ore bodies. The destiny of the massive volumes of dissolved silica gangue and the absence of massive silica aureoles has not been explained. Petrographic and other evidence indicate the Mt Tom Price metasomatism is a localised post-ore phenomenon. Exothermic oxidation reactions in the associated pyrite-rich black shales during post-ore removal by groundwater of remnant goethite in the ores may have resulted in this very localised and erratic hydrothermal alteration of BIF and its immediately associated pre-existing ore.  相似文献   

18.
Abstract. The Takara volcanogenic massive sulfide (VMS) deposit occurs in Miocene formation of the Misaka Mountain, the South Fossa Magna region, central Japan. The tectonic setting of the Misaka Mountain is reconstructed to be a part of the paleo Izu-Ogasawara arc which collided with the Honshu arc and to form accreted body in the present position. The Takara deposit, therefore, is considered to have formed in the paleo Izu-Ogasawara arc.
The ores from the Takara deposit are classified into pyrite-type ore, chalcopyrite-type ore, and sphalerite-type ore on the basis of chemical composition and their mineral assemblages. Some pyrite-type ores are characterized by their high Au content. The Au content is hardly recognized in the chalcopyrite-type and sphalerite-type ores.
The ores from the Takara deposit have intermediate bulk chemical composition between those from the Besshi-type deposits and the Kuroko-type deposits that are two representative VMS deposits. However, the bulk chemical composition is closer to that from the Kuroko-type deposits. And moreover, chemical composition of tetrahedrite-tennantite series minerals (tetrahedrite) is similar to that from the Kuroko-type deposits. The bulk chemical composition (Cu, Zn, Co, Pb, and As contents) of ores is affected by the chemical composition of volcanic rocks associated with VMS deposits.  相似文献   

19.
Accumulations of magnetite ores in contacts of compositionally and chronologically different intrusions, with their different sedimentary host rocks and anomalously high chlorine content of certain minerals associated with the ores, suggest the possibility of a common source of iron in the magnetites and a common source of chlorine in the minerals, with allowances for a degree of assimilation of Fe and Cl from the hosts. The ferruginous Kuvay series at the base of the section may have functioned as the source of iron for the magnetite deposits. Chlorine, an important carrier of iron, under the given conditions may have been borrowed by the magmatic solutions from the saline rocks in the depths. —V.P. Sokoloff.  相似文献   

20.
This paper, taking the finely disseminated gold deposits in southwestern Guizhou and northwestern Guangxi as examples, discusses the difference between the occurrence of primary ores and that of oxidized ores, analyzes the occurrence mechanism in terms of crystallochemistry and geochemistry, and especially studies the chemical model for supergene leaching transformation of clay minerals in the two types of ores. This study proposes a new idea for dressing and smelting technology for primary gold ores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号