首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 625 毫秒
1.
考虑土拱效应的挡土墙主动土压力与被动土压力统一解   总被引:1,自引:0,他引:1  
朱建明  赵琦 《岩土力学》2014,35(9):2501-2506
土拱效应对倾斜挡土墙下的主动土压力及被动土压力有重要的影响,但是相关计算理论研究略显不足。为了将土拱效应考虑到倾斜挡土墙下的土压力计算中,首先通过应力摩尔圆及静力平衡法分别给出了考虑土拱效应下主动土压力及被动土压力计算所需的两大因素:侧向土压力系数及竖向平均应力公式。在此基础上建立了考虑土拱效应的倾斜挡土墙主动土压力及被动土压力的统一表达式,并将其应用到求解土压力合力及其作用点高度的计算中。算例表明,土拱效应对于主动土压力与被动土压力的影响不同。随着墙体倾角的增大,主动土压力作用点高度逐渐降低,即土拱效应随着墙体倾角的增大而降低。与前述相反,随着墙体倾角的增大,被动土压力作用点高度逐渐降低,即土拱效应的影响随着墙体倾角的增大而增大。  相似文献   

2.
基于土拱效应原理求解挡土墙被动土压力   总被引:1,自引:0,他引:1  
侯键  夏唐代  孔祥冰  孙苗苗 《岩土力学》2012,33(10):2996-3000
对平移模式下的刚性挡土墙和滑裂面间的楔形土体处于被动极限平衡状态的应力进行分析,考虑墙面和滑裂面之间土体水平力平衡,运用土拱效应原理推导出被动土压力系数和滑裂面水平倾角。并根据水平单元土体的静力平衡条件建立平衡方程,提出被动土压力分布、土压力合力及其作用位置的公式。将公式计算结果与试验结果以及库仑、朗肯理论所得结果进行比较,结果表明,与试验结果接近,验证了所得计算方法的合理性。  相似文献   

3.
王杰  夏唐代  贺鹏飞  黄博 《岩土力学》2014,35(7):1914-1920
以墙后填土为无黏性土的刚性挡土墙为研究对象,考虑墙后土体的土拱效应,修改了Shubhra Geol 抛物线形土拱表达式,推导了对应不同内摩擦角和墙-土摩擦角的挡土墙平动模式下的主动土压力系数。基于水平微分单元法,得到考虑土拱效应的主动土压力分布、合力大小和合力作用点高度的理论表达式,并与现有经典理论解及前人理论研究成果和模型试验数据进行对比分析,结果表明,主动土压力与墙-土接触面摩擦角、土体内摩擦角、土体重度和挡墙高度相关,土压力分布为非线性,与其他结果比较吻合,从而验证了该研究成果的正确性。  相似文献   

4.
《岩土力学》2017,(8):2182-2188
土体滑裂面形状对挡土墙主动土压力有重要影响。以无黏性填土挡墙为研究对象,假设在考虑土拱效应时,极限状态下墙后土体的滑裂面为曲线,基于水平微分单元法推导出平动模式下挡土墙主动土压力的分布。首先将计算与模型试验结果及已有理论研究成果进行对比分析,验证了方法的可靠性;其次,研究土体内摩擦角和墙-土摩擦角对主动土压力分布、合力大小和作用点高度的影响。结果表明:基于曲线滑裂面假设得到的滑动楔体范围略大于采用直线滑裂面的假设;对于不同高度的挡土墙,建议的计算结果与模型试验结果更为符合;对于不同的土体内摩擦角和墙-土摩擦角,土压力的分布形式和合力作用点与Paik解较为接近,但合力略大于Paik解。  相似文献   

5.
黏性土填料下考虑土拱效应的非极限主动土压力计算方法   总被引:1,自引:0,他引:1  
娄培杰 《岩土力学》2015,36(4):988-994
不论挡土墙填料采用砂性土,还是黏性土,其墙背主动土压力与墙体倾角和位移关系存在较大的联系,因而研究黏性土填料下的非极限主动土压力计算理论具有重要意义。通过应力状态分析给出了非极限状态下考虑土拱效应的侧向主动土压力系数,然后采用水平微分层析法给出了倾斜墙下非极限主动土压力解析解。通过与室内模拟试验及已有理论进行对比,验证了该方法的合理性。最后研究了相关参数包括位移比?,墙土摩擦角与内摩擦角之比? /?,墙体倾角?,黏聚力c等对主动土压力分布及其作用点高度的影响。结果表明:土体由静止状态向极限主动土压力状态发展时,土拱效应的影响会越来越大。随着? /?的不断增大,土压力分布曲线非线性强度会不断增强,土压力合力作用点高度呈上升趋势,并且? /?对土压力的影响会随着位移比? 的增大而增大。随着挡土墙墙背倾斜角度? 的不断增大,土拱效应对非极限主动土压力的影响减小。随着土体填料黏聚力的不断增大,上部张拉裂缝高度也会随之增加,且土压力合力作用点越低。给出的考虑土拱效应的非极限主动土压力计算方法对于丰富挡土墙土压力计算理论具有重要意义。  相似文献   

6.
挡土墙后三维被动滑裂面的空间形态难以确定。基于数值模拟,取墙-土接触面摩擦角比值δ/?=0(δ为墙-土接触面摩擦角,?为土体内摩擦角),采用薄板光顺样条函数搜索出不同土体内摩擦角下挡土墙端部三维滑裂面,类比地基承载力破坏对不同土体内摩擦角下挡土墙端部三维滑裂面进行函数方程的拟合,拟合效果较好,并归纳总结挡土墙端部三维滑裂面方程。在刚性挡土墙平移模式、墙背直立、填土水平且为无黏性土、δ/?=0等条件下,基于挡土墙端部三维滑裂面方程,求出三维滑裂面的体积。通过力学分析推导了一种三维被动土压力计算方法,并对该方法进行了验证分析。分析结果表明:相较于Soubra被动土压力系数,计算方法得出的三维土压力系数更加接近数值模拟被动土压力系数。三维计算被动土压力系数和朗肯被动土压力系数在挡土墙长深比小于4的时候有明显的差异。随着挡土墙的长深比的增大和土体内摩擦角的减小,三维计算被动土压力系数趋向朗肯被动土压力系数,三维计算被动土压力合力作用点的位置趋向朗肯被动土压力合力作用点位置。  相似文献   

7.
朱建明  林庆涛  高晓将  高林生 《岩土力学》2016,37(12):3417-3426
目前关于临近地下室外墙影响的挡土墙空间土压力的计算理论的研究还比较少,原有的平面应变条件下的理论不能满足挡土墙的长高比B/H较小时的挡土墙土压力计算要求。通过将土拱效应原理引入顾慰慈[8]建立的空间土压力计算模型,建立了考虑土拱效应的临近地下室外墙影响的空间土压力计算模型,根据挡土墙和地下室外墙的间距与土体破裂面状态的关系将该模型分为3种情况,并将各模型划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,通过在各个区域内取水平微分单元体,建立各微分单元体的水平和竖向静力平衡方程,推导出了各区相应的挡土墙空间主动土压力计算公式,该公式可以计算出墙背任意位置的主动土压力;并提出了空间土压力合力及其合力作用点的计算方法。通过算例计算可以直观地看出挡土墙后主动土压力的空间分布,由此可以看出,当空间效应存在时,考虑土拱效应的挡土墙主动土压力沿墙长的分布与平面应变条件时有很大的不同,此时挡土墙两端附近区域的主动土压力远小于平面应变条件下计算出的主动土压力,同时可以看出,考虑空间效应的挡土墙主动土压力合力作用点要比平面应变条件下的位置要高,挡土墙长高比B/H越小,空间效应对主动土压力沿墙长的分布和主动土压力合力作用点位置的影响越大。  相似文献   

8.
章瑞文  徐日庆  郭印 《岩土力学》2006,27(Z2):119-124
对挡土墙背离填土绕墙脚转动时墙后滑裂土体的应力状态进行了详细分析,建立了墙后滑裂体水平土层墙面反力、滑裂面反力、土层间剪力和土层竖向土压力强度之间的关系式。为了考虑挡土墙绕墙脚转动时墙脚局部土体并未达到极限状态,对墙面摩擦角、滑裂面土体的内摩擦角予以折减。在水平土层单元法的基础上,考虑水平土层间剪力作用、每一土层的墙面摩擦角和滑裂面水平倾角等的变化,建立了土层竖向土压力强度的逐层渐近的计算方法,并给出了挡土墙主动土压力强度、土压力合力及其作用位置的计算公式。经比较表明:挡土墙主动土压力分布曲线与试验结果基本一致,计算得的主动土压力系数与试验结果很接近,比库仑解大;计算得出的滑裂面为一曲面,其顶部开裂宽度比库仑滑裂面小,与工程实际相符。  相似文献   

9.
张国祥 《岩土力学》2014,299(2):334-338
采用旋转挡土墙计算模型的变换法,将在地震和拟静力法条件下主动土压力的求解问题转化为在静力条件下主动土压力的求解问题。根据在静力条件下水平层分析法的主动土压力推导结果,直接获得在地震条件下主动土压力强度分布、土压力合力及其作用点位置的表达式,并运用图解法得到了临界破裂角的解析解。公式可考虑水平和垂直地震加速度、不同墙背倾角、墙背和坡面倾角与填料存在黏结力和外摩擦角、存在均布超载等诸多因素的影响,公式可以适用于在常用边界和地震条件下黏性土的主动土压力计算。旋转地震角法是将在地震和拟静力法条件下挡土墙计算模型旋转为在静力条件下挡土墙计算模型,但旋转挡土墙计算模型并不改变挡土墙和墙后填土的应力状态,按在静力条件下挡土墙主动土压力求解方法求解在地震和拟静力法条件下主动土压力,该方法大大简化了在地震和拟静力法条件下的主动土压力计算公式推导过程,统一了在拟静力法条件下的地震土压力求解,理论更加完善。  相似文献   

10.
考虑土拱效应刚性挡墙土压力研究   总被引:6,自引:0,他引:6  
彭述权  周健  樊玲  刘爱华 《岩土力学》2008,29(10):2701-2707
基于库仑土压力理论,假定刚性挡墙后主应力拱迹线为抛物线,推导了主、被侧土压力系数和水平微分单元间摩擦系数的理论公式,得到改进的主、被动土压力计算公式。研究表明:考虑土拱效应计算结果与模型试验结果吻合比较好。主动极限状态下,土体内摩擦角越小,墙土接触面上外摩擦角越大,土拱效应越明显,主动土压力合力作用点越上移;被动极限状态下,土体内摩擦角和墙土接触面上外摩擦角越大,土拱效应越明显,被动土压力合力点越往下移。  相似文献   

11.
赵琦  朱建明 《岩土力学》2014,35(3):723-728
当挡土墙附近存在临近建筑地下室外墙时,其挡土墙土压力与传统的Rankine理论基于无限半空间体假定不符,因而在这种新的工程背景下需要采用合适的理论来计算挡土墙土压力及其作用点高度。已有的研究表明,这种条件下土体的变形趋势可分为上、下两大部分:上部土体变形类似于Terzaghi的活动门试验,土体沿着墙体下滑,而下部土体则沿着土楔形体而变形。因而将土拱效应用于求解挡土墙土压力的计算分成了上、下两大部分考虑。假定土拱形状为圆弧,基于主应力旋转概念分别给出了上、下两部分的侧向土压力系数,运用水平微分层析法基于静力平衡思想给出了两部分的水平向主动土压力分布公式。最后通过坐标平移的方式给出了主动土压力合力及其作用点高度的表达式。算例表明,计算结果与数值计算结果较为接近,其结果对实际工程有一定的参考价值。  相似文献   

12.
研究了考虑土拱效应的黏性填土排桩桩后总土压力的计算方法。以黏性填土的单排支护桩为研究对象,将考虑土拱效应的桩后总土压力分为直接土压力和间接土压力。首先,针对已有土压力计算方法的不足,借鉴并改进了挡土墙的主应力旋转理论,认为主应力旋转后大小会发生改变,通过对土拱单元的应力分析和平衡微分方程的求解,推导出了黏性填土排桩桩后直接土压力的解析式,并将计算结果与前人的解析解和试验数据进行对比,表明改进后的方法与实测数据更加吻合。然后,将改进后的方法应用在黏性土间接土压力的分析中,通过将间接土压力看作是由桩间土体滑裂面上的剪应力沿滑裂面的积分,推导出考虑水平土拱效应的桩后间接土压力和总土压力解析式。最后,探究了总土压力随黏聚力和桩土摩擦角的变化规律,结果表明,土拱效应主要影响桩体H/3深度以下部分,使该部分土压力减小,且越靠近桩底,减小速率越大。该研究可为排桩结构的合理设计提供依据。  相似文献   

13.
陈建旭  宋文武 《岩土力学》2019,40(6):2284-2292
针对平动模式下墙背倾斜的挡土墙,假定墙后所形成的土拱为圆弧形,建立位移同内摩擦角、外摩擦角的非线性函数,并考虑土层间剪应力作用,通过水平层分析法,得出了挡土墙平动模式下非极限主动土压力分布、合力、作用点高度的解答,其解析解与试验值较其他方法吻合得更好,验证了该方法的合理性。结果表明:是否考虑土层间剪应力,土压力的大小均随墙体位移的增大而减小,不会影响土压力合力大小,仅影响土压力的分布,且考虑剪应力作用的土压力在墙体上部较不考虑剪应力要小,下部反之。剪应力对土体起阻碍作用,随内摩擦角的增大,剪应力出现先显著增大后略微减小的状态;随外摩擦角、位移的增大,剪应力增大;随着墙背倾角的增大,剪应力先减小,再反向增大,土压力随之增大。同时考虑土拱效应与剪应力所得出的合力作用点高度介于仅考虑土拱效应与库仑解之间。  相似文献   

14.
考虑土拱效应预应力锚拉桩土压力研究   总被引:2,自引:1,他引:1  
李成芳  叶晓明  李有文 《岩土力学》2011,32(6):1683-1689
针对预应力锚拉桩设计中土压力计算模式存在的问题,借鉴工程设计中的点锚和格构锚原理,提出了一种新的计算方法--基于三维土拱效应的土压力计算模式。利用土条极限平衡原理,推导了作用在桩及挡板上的土压力,建立了表征土压力强度的1阶线性微分方程,得到了沿桩身轴线的土压力分布曲线,并从参数 和 的变化对土压力的影响方面,与《重庆市地质灾害防治工程设计规范》[1]和《建筑边坡工程技术规范》[3]的计算结果进行了对比分析,结果表明桩板上所受土压力沿桩板竖向呈锯齿状分布,土压力强度计算值远小于规范计算值; 的变化对土压力有明显影响,工程设计中不应忽略 对减小土压力的贡献;考虑土拱效应更符合工程实际受力特性  相似文献   

15.
考虑土拱效应的倾斜滑移面间竖向应力研究   总被引:1,自引:0,他引:1  
陈国舟  周国庆 《岩土力学》2013,34(9):2643-2648
假定两滑移面相互平行,且与水平面呈一定角度?,对滑移面间土体沿竖向取水平薄层作为微分单元体,通过作用在单元体上的水平力和竖向力的平衡条件,基于土体主应力轴旋转理论,得到考虑土拱效应及倾斜角度的倾斜滑移面间竖向应力的理论公式,及对应不同倾斜角度及滑移面-土摩擦角的土侧压力系数。将得到的理论公式与Handy等公式进行比较,验证了该公式的合理性。研究结果表明:对于无黏性土,竖向应力沿深度先近似线性增大,后增加缓慢并逐渐趋于定值。竖向应力随着倾斜角度和滑移面间距的增大而增大,随滑移面-土摩擦角的增大而减小;土侧压力系数随着滑移面-土摩擦角的增大而增大,而随内摩擦角的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号