首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The ENE-plunging macroscopic folds, traced by calc gneiss interbanded with marble and sillimanite schist within the Peninsular Gneiss around Suganapuram in the ‘Palghat gap’ in southern India, represent structures of the second generation (D2). They have folded the axial planes of a set of D1 isoclinal folds on stratification coaxially, so that the mesoscopic D1 folds range from reclined in the hinge zones, through inclined to upright in the limb zones of the D2 folds. Orthogonal relation between stratification and axial planar cleavage, and ‘M’ shaped folds on layering locate the hinge zones of the D1 folds, whereas folds on axial planar cleavage with ‘M’ shaped folds are the sites of the D2 fold hinges. Extreme variation in the shapes of the isoclinal D1 folds from class 1B through class 1C to nearly class 2 of Ramsay is a consequence of buckling followed by flattening on layers of widely varying viscosity contrast. The large ENE-trending structures in this supracrustal belt within the Peninsular Gneiss in the ‘Palghat gap’ could not have evolved by reorientation of NS-trending structures of the Dharwar tectonic province to the north by movement along the Moyar-Bhavani shear zone which marks the boundary between the two provinces. This is because the Moyar and Bhavani faults are steep dipping reverse faults with dominant dip-slip component. Deceased  相似文献   

2.
Strongly boudinaged sandstone beds in a Palaeozoic accretionary complex are exposed on Great Keppel Island, off the central Queensland coast. Viewed in profile, the boudins are folded around mesoscopic F2 hinge zones and overprinted by S2 foliation indicating formation either during Late Carboniferous subduction accretion (D1) or during a previously unrecognised discrete early phase of the Permian deformation (D2). Boudin profiles record an average stretch of 1.51, although the contribution of D2 and later deformation is not determined. Viewed in the plane of bedding, vein traces are variable and oblique to boudin necks by an average of 12° anticlockwise. The overall en echelon arrangement of veins in boudin necks is a primary feature of the structure and cannot be attributed to later deformation. This pattern of veining indicates oblique extension of the boudin necks by low‐vorticity non‐coaxial flow within the plane of bedding. One possible setting with such kinematics is the limb of a non‐cylindrical fold.  相似文献   

3.
Alpine inversion in the Bristol Channel Basin includes reverse-reactivated normal faults with hanging wall buttress anticlines. At Lilstock Beach, joint sets in Lower Jurassic limestone beds cluster about the trend of the hinge of the Lilstock buttress anticline. In horizontal and gently north-dipping beds, J3 joints ( 295–285° strike) are rare, while other joint sets indicate an anticlockwise sequence of development. In the steeper south-dipping beds, J3 joints are the most frequent in the vicinity of the reverse-reactivated normal fault responsible for the anticline. The J3 joints strike parallel to the fold hinge, and their poles tilt to the south when bedding is restored to horizontal. This southward tilt aims at the direction of σ1 for Alpine inversion.Finite-element analysis is used to explain the southward tilt of J3 joints that propagate under a local σ3 in the direction of σ1 for Alpine inversion. Tilted principal stresses are characteristic of limestone–shale sequences that are sheared during parallel (flexural-flow) folding. Shear tractions on the dipping beds generate a tensile stress in the stiffer limestone beds even when remote principal stresses are compressive. This situation favors the paradoxical opening of joints in the direction of the regional maximum horizontal stress. We conclude that J3 joints propagated during the Alpine compression caused the growth of the Lilstock buttress anticline.  相似文献   

4.
The sediment-hosted Zn---Pb---Ag deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the Zn---Pb---Ag mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   

5.
G. Xu 《Ore Geology Reviews》1996,11(6):339-361
The sediment-hosted ZnPbAg deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the ZnPbAg mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   

6.
The Valhalla uranium deposit, located 40 km north of Mount Isa, Queensland, Australia, is an albitite-hosted, Mesoproterozoic U deposit similar to albitite-hosted uranium deposits in the Ukraine, Sweden, Brazil and Guyana. Uranium mineralisation is hosted by a thick package of interbedded fine-grained sandstones, arkoses and gritty siltstones that are bound by metabasalts belonging to the ca. 1,780 Ma Eastern Creek Volcanics in the Western Succession of the Mount Isa basin. Alteration associated with U mineralisation can be divided into an early, main and late stage. The early stage is dominated by laminated and intensely altered rock comprising albite, reibeckite, calcite, (titano)magnetite ± brannerite. The main stage of mineralisation is dominated by brecciated and intensely altered rocks that comprise laminated and intensely altered rock cemented by brannerite, apatite, (uranoan)-zircon, uraninite, anatase, albite, reibeckite, calcite and hematite. The late stage of mineralisation comprises uraninite, red hematite, dolomite, calcite, chlorite, quartz and Pb-, Fe-, Cu-sulfides. Brannerite has U–Pb and Pb–Pb ages that indicate formation between 1,555 and 1,510 Ma, with significant Pb loss evident at ca. 1,200 Ma, coincident with the assemblage of Rodinia. The oldest ages of the brannerite overlap with 40Ar/39Ar ages of 1,533 ± 9 Ma and 1,551 ± 7 Ma from early and main-stage reibeckite and are interpreted to represent the timing of formation of the deposit. These ages coincide with the timing of peak metamorphism in the Mount Isa area during the Isan Orogeny. Lithogeochemical assessment of whole rock data that includes mineralised and unmineralised samples from the greater Mount Isa district reveals that mineralisation involved the removal of K, Ba and Si and the addition of Na, Ca, U, V, Zr, P, Sr, F and Y. U/Th ratios indicate that the ore-forming fluid was oxidised, whereas the crystal chemistry of apatite and reibeckite within the ore zone suggests that F and were important ore-transporting complexes. δ18O values of co-existing calcite and reibeckite indicate that mineralisation occurred between 340 and 380°C and involved a fluid having δ18Ofluid values between 6.5 and 8.6‰. Reibeckite δD values reveal that the ore fluid had a δDfluid value between −98 and −54‰. The mineral assemblages associated with early and main stages of alteration, plus δ18Ofluid and δDfluid values, and timing of the U mineralisation are all very similar to those associated with Na–Ca alteration in the Eastern Succession of the Mount Isa basin, where a magmatic fluid is favoured for this style of alteration. However, isotopic data from Valhalla is also consistent with that from the nearby Mount Isa Cu deposit where a basinal brine is proposed for the transport of metals to the deposit. Based on the evidence to hand, the source fluids could have been derived from either or both the metasediments that underlie the Eastern Creek Volcanics or magmatism that is manifest in the Mount Isa area as small pegmatite dykes that intruded during the Isan Orogeny.  相似文献   

7.
Quartz c-axis fabrics have been investigated within a suite of quartz veins and monomineralic layers around a major post-nappe fold hinge (the Wandfluhhorn Fold) in the Bosco area (Swiss-Italian border) within the lower Penninic nappes.Two kinematic domains which are separated by the axial plane trace of the Wandfluhhorn Fold are recognized; on the lower limb the measured quartz c-axis fabric asymmetry indicates a sense of shear in which the overlying layers move to the southwest (i.e. top-to-SW) whereas on the upper limb the shear sense is reversed with the top moving to northeast. The shear direction (N60°E–N80°E), however, is constant in both areas and oblique to an older stretching lineation as well as to the D3 fold hinge. Such a distribution of asymmetric quartz c-axis fabrics and the constant orientation of their interpreted shear direction, which is apparent only from the fabric data and not from field evidence, indicates fabric development pre- or early syn-Wandfluhhorn folding, with subsequent folding and modification of the existing textures and possibly rotation of the initial fold axis.An overall westward-directed shear has been suggested for the whole of the Lepontine Alps. However, this study demonstrates that this simple general pattern has been modified locally by later folding. It also demonstrates that the dominant lineation may be a finite stretching lineation due to more than one phase of deformation and is not necessarily related to any particular transport direction.  相似文献   

8.
The supracrustal enclave within the Peninsular Gneiss in the Honakere arm of the Chitradurga-Karighatta belt comprises tremolite-chlorite schists within which occur two bands of quartzite coalescing east of Jakkanahalli(12°39′N; 76°41′E), with an amphibolite band in the core. Very tight to isoclinal mesoscopic folds on compositional bands cut across in the hinge zones by an axial planar schistosity, and the nearly orthogonal relation between compositional bands and this schistosity at the termination of the tremolite-chlorite schist band near Javanahalli, points to the presence of a hinge of a large-scale, isoclinal early fold (F1). That the map pattern, with an NNE-plunging upright antiform and a complementary synform of macroscopic scale, traces folds 'er generation (F 2),is proved by the varying attitude of both compositional bands (S0) and axial pranar schistosity (S 1), which are effectively parallel in a major part of the area. A crenulation cleavage (S 2) has developed parallel to the axial planes of theF 2 folds at places. TheF 2 folds range usually from open to rarely isoclinal style, with theF 1 andF 2 axes nearly parallel. Evidence of type 3 fold interference is also provided by the map pattern of a quartzite band in the Borikoppalu area to the north, coupled with younging directions from current bedding andS 0 -S 1 inter-relation. Although statistically theF 1 andF 2 linear structures have the same orientation, detailed studies of outcrops and hand specimens indicate that the two may make as high an angle as 90°. Usually, in these instances, theF 1 lineations are unreliable around theF 2 axes, implying that theF 2 folding was by flexural slip. In zones with very tight to almost isoclinalF 2 folding, however, buckling attendant with flattening has caused a spread of theF 1 lineations almost in a plane. Initial divergence in orientation of theF 1 lineations due to extreme flattening duringF 1 folding has also resulted in a variation in the angle between theF 1 andF 2lineations in some instances. Upright later folding (F3) with nearly E-W strike of axial planes has led to warps on schistosity, plunge reversals of theF 1 andF 2 axes, and increase in the angle between theF 1 andF 2 lineations at some places. Large-scale mapping in the Borikoppalu sector, where the supposed Sargur rocks with ENE ‘trend’ abut against the N-‘trending’ rocks of the Dharwar Supergroup, shows a continuity of rock formations and structures across the hinge of a large-scaleF 2 fold. This observation renders the notion, that there is an angular unconformity here between the rocks of the Sargur Group and the Dharwar Supergroup, untenable.  相似文献   

9.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

10.
Four phases of deformation are recorded by minor structures in the New Harbour Group (NHG) of southern Holy Island. The regional schistosity in these rocks is a differentiated crenulation cleavage of D2 age. An earlier preferred orientation (S1) is commonly preserved as crenulations within the Q-domain microlithons of the S2 schistosity and is demonstrably non-parallel to bedding. F3 folds are widely developed in S2 and, to a lesser extent, in bedding. S3 crenulation cleavage is sporadically developed but can be intense locally. A major antiformal fold exists in the NHG near Rhoscolyn. This fold is of D3 age since it clearly deforms S2 schistosity and is consistent with the vergence of F3 minor structures. All planar structures are deformed by folds of D4 age. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Twenty eight electron microprobe analyses of freibergite from the Mount Isa (Queensland) Pb-Zn-Ag stratiform orebody, range in silver content from 18.4 to 42.5 wt. % Ag. These values significantly extend the tetrahedrite-freibergite series. The compositional range based on twenty-one complete analyses is indicated by the formula (Ag,Cu)9.21–11.44(Fe,Zn)1.59–2.31(Sb,As)3.87–4.43S13.0. As far as could be determined, Mount Isa freibergite is homogeneous and no marked compositional changes were detected either across individual grains, or in different grains of the same electron microprobe sample. The linear, atom for atom, replacement of copper by silver reported for lower silver bearing tetrahedrites continues in Mount Isa freibergite. A maximum silver content of about 51 wt. % Ag is predicted. X-ray investigations indicate however that in contrast to the structural expansion with increasing silver content reported for argentian tetrahedrite, Mount Isa freibergite contracts with increase in silver. The extrapolated lattice parameter for the theoretical freibergite (Ag10(Fe,Zn)2Sb4S13) end member is of the same order as tetrahedrite.  相似文献   

12.
Many of the faults within the Lake Moondarra area cropout as wide zones which are filled with massive or fibrous milky quartz. Additionally, a variety of rock fragments from the surrounding metasediments are present in the fault zones. The second regional slaty cleavage, S2, is locally observed through the quartz and country rock fragments within some of the zones, indicating that these fault fills originated pre- or early syn-S2. The absence of the first regional slaty cleavage, S1, suggests that the fault fills developed post or late syn-S1. Evidence supporting an early syn-S2 timing for the development of these fills is provided by the results of oxygen isotope analysis carried out on quartz specimens collected from the faults and also by the nature of the quartz. Specimens of quartz taken from the various fault zones have δ18O values between 12.4 and 14.5‰. This suggests that metamorphic water isotopically equilibrated with connate formation water was the aqueous fluid which transported the silica. δ18O values for the silica in the quartz-rich, sometimes dolomitic, metasediments of the Mount Isa and Haslingden Groups within the Lake Moondarra area are similar to the quartz within the fault fills. The lack of any metamorphic event between the first and second deformation, together with the sometimes fibrous nature of the fault-filling material with fibres parallel to the mineral elongation in S2 (i.e. L22), suggests that the quartz in the faults was derived syntectonically at grain to grain contacts in the metasediments within the Lake Moondarra area, early in the development of S2. The quartz is believed to have moved by the process of solution transfer to the faults as they underwent dilation during D2. Subsequently the quartz was precipitated as a result of a chemical potential gradient.  相似文献   

13.
The Mellish Park Syncline is located in the northern part of the Mt Isa terrane. It has an axial trace that transects the remnants of the unconformity‐bounded Palaeoproterozoic Leichhardt and Isa Superbasins. The syncline is separated into a lower and upper component based upon variation in fold geometry across the basin‐bounding unconformity. The lower syncline, in the Leichhardt Superbasin, is tight and has an inclined west‐dipping axial plane. The upper syncline, in the Isa Superbasin, is open and upright. The geometry of the lower syncline is a consequence of a period of shortening and basin inversion which post‐dated the Leichhardt Rift Event (ca 1780–1740 Ma) and pre‐dated the Mt Isa Rift Event (ca 1710–1655 Ma), forming an open and upright north‐oriented syncline. Subsequent southeast tilting and half‐graben development during the Mt Isa Rift Event resulted in the lower syncline being tilted into its inclined geometry. Sequences of the Isa Superbasin were then deposited onto the eroded syncline. The geometry of the upper syncline reflects regional east‐west shortening during the Isan Orogeny (ca 1590–1500 Ma). The position of the upper syncline was largely controlled by the pre‐existing lower syncline. At this time the lower syncline was reactivated and tightened by flexural slip folding.  相似文献   

14.
Structural mapping integrated with interpretation and forward modelling of aeromagnetic data form complimentary and powerful tools for regional structural analysis because both techniques focus on architecture and overprinting relationships. This approach is used to constrain the geometry and evolution of the sparsely exposed Mount Woods Inlier in the northern Gawler Craton. The Mount Woods Inlier records a history of poly-phase deformation, high-temperature metamorphism, and syn- and post-orogenic magmatism between ca. 1736 and 1584 Ma. The earliest deformation involved isoclinal folding, and the development of bedding parallel and axial planar gneissic foliation (S1). This was accompanied by high-temperature, upper amphibolite to granulite facies metamorphism at ca. 1736 Ma. During subsequent north–south shortening (D2), open to isoclinal south–southeast-oriented F2 folds developed as the Palaeoproterozoic successions of the inlier were thrust over the Archaean nuclei of the Gawler Craton. The syn-D2 Engenina Adamellite was emplaced at ca. 1692 Ma. The post-D2 history involved shear zone development and localised folding, exhumation of metamorphic rocks, and deposition of clastic sediments prior to the emplacement of the ca. 1584 Ma Granite Balta Suite. The Mount Woods Inlier is interpreted as the northern continuation of the Kimban Orogen.  相似文献   

15.
Joints in the Mesozoic sediments around the Bristol Channel Basin   总被引:1,自引:0,他引:1  
Analysis has been carried out at four locations on the edges of the Bristol Channel Basin to illustrate the later phases of deformation of a sedimentary basin, and to illustrate the control on joint patterns of subtle changes in the stress system. The characteristics of the joints are described and influences on joints are determined, including the roles of faults, folds and beds. There is a low coefficient of correlation between joint spacing and bed thickness, except in very thin limestone beds, which have a high density of joints. The lengths and spacings of earlier joint phases are usually greater than those of later phases. Later joints normally abut against earlier joints.The joints abut the latest faults but are not displaced by them, so the joints post-date the main Alpine contraction. The joints formed in five main phases during reduction of the Alpine stresses. Phase 1 joints are sub-parallel to the regional compression direction (160–180°). Phase 2 joints are perturbed by faults, often curving towards points of stress concentrations along the faults. Phase 3 joints are sub-parallel to the earlier E–W-striking fold axes. Phase 4 joints are cross-joints, and phase 5 joints form polygonal patterns within joint-bound blocks. Phases 2 and 3 do not occur in the absence of faults and folds, and correspond with a reduction in horizontal compression and an increase in the importance of local factors. Phases 4 and 5 occur at all locations.  相似文献   

16.
Mount Isa is a major Australian and world Pb‐Zn‐Ag mineral province. The wide varieties of mineralization in the province are believed to be closely related to the geodynamic processes of Isan Orogeny, which occurred between ca 1500 and 1620 Ma. In order to understand the geodynamic processes associated with the Isan Orogeny and the giant mineralization systems in the Mount Isa district, a series of numerical models has been constructed to simulate coupled mechanical–hydrological processes, using Fast Lagrangian Analysis of Continua (FLAC), a finite difference computer code. The numerical modeling results have demonstrated that the most probable far‐field stress orientation during the Isan Orogeny is the asymmetrical E–W shortening, which led to greater easternward tectonic movement at the west boundary of the district in comparison with westward movement at the east boundary. During the initial and early stage of the Isan Orogeny, the mechanical and hydrological conditions in the Leichardt Fault Trough of the West Fold Belt are much more favorable for fluid accumulation and mineralization than in the East Fold Belt. The Mount Isan fault zone developed as a high dilation shear zone where the fluids were focused. As the asymmetrical shortening progressed, shortening deformation and shear strain localization became intensified in the eastern part of the orogenic district. The eastern region therefore became a more favorable locality for hydrothermal mineralization. This structural development feature seems to explain why mineralization in the East Fold Belt is generally later than in the West Fold Belt. Fluid production from the Williams–Naraku granites could result in fluid over‐pressuring, and this probably contributed to the extensive brecciation and related mineralization in the East Fold Belt.  相似文献   

17.
田忠华  刘利双  董永胜 《岩石学报》2017,33(9):2758-2774
华北克拉通东部陆块中胶-辽-吉构造带在古元古代经历了复杂的变形-变质-岩浆事件。前人工作中,对于辽河群早期构造事件(D_1)的形成背景还存在较大的争议。本文针对辽河群第一期变形(D_1)中产生的各种构造要素,进行了详细的野外构造解析工作。D_1中构造要素主要包括了透入性面理S_1、褶皱F_1及其剪切带SZ_1。其中变泥质岩透入性S1面理劈理域主要由石英、云母、长石和石榴子石等矿物定向排列组成,矿物组合显示了绿片岩相变质作用。F_1褶皱包含了紧闭褶皱、倒转褶皱、鞘褶皱和平卧褶皱等。与D_1相关构造要素的几何学及其运动学特征都指示了D_1形成于挤压环境的动力学背景。此外,研究区辽河群内不仅可以观察到大量的倒转地层,还可见与第一期构造事件(D_1)相关的逆冲断层及其断层相关褶皱,同样指示了D_1形成于挤压环境。结合区域上变质作用和岩浆作用的资料,本研究认为:(1)南、北辽河群中泥质岩及其基性岩都经历了顺时针的P-T-t演化轨迹,M_2变质级别达到了中压环境,过程与地壳的挤压增厚相关,而不是与裂谷过程的低压变质作用相关;(2)花岗岩和基性岩的地球化学和年代学特征显示了胶-辽-吉构造带中段古元古代经历了俯冲作用的影响。综上,辽河群早期构造事件(D_1)受到俯冲挤压的影响,形成于俯冲(造山)背景。  相似文献   

18.
Progressive ductile shearing in the Phulad Shear Zone of Rajasthan, India has produced a complex history of folding, with development of planar, non-planar and refolded sheath folds. There are three generations of reclined folds, F1, F2 and F3, with a striping lineation (L1) parallel to the hinge lines of F1. The planar sheath folds of F1 have long subparallel hinge lines at the flanks joining up in hairpin curves at relatively small apices. L1 swerves harmoniously with the curving of F1 hinge line. There is a strong down-dip mineral lineation parallel to the striping lineation in most places, but intersecting it at apices of first generation sheath folds. Both the striping and the mineral lineation are deformed in U-patterns over the hinges of reclined F2 and F3. Folding of axial surfaces and hinge lines of earlier reclined folds by later folds was accompanied by very large stretching and led to the development of non-planar sheaths. The reclined folds of all the three generations were deformed by a group of subhorizontal folds. Each generation of fold initially grew with the hinge line at a very low angle with the Y-axis of bulk non-coaxial strain and was subsequently rotated towards the down-dip direction of maximum stretching. The patterns of deformed lineations indicate that the stretching along the X-direction was extremely large, much in excess of 6000 percent.  相似文献   

19.
The so-called apparent rotation was defined as the angular deviation between a local paleomagnetic direction (after the standard bedding correction) and their corresponding paleomagnetic reference [J. Geophys. Res. 85 (1980) 3659]. In this paper, we make a theoretical exploration on this concept and we conclude that (depending on the number, sequence, orientation and magnitude of the deformation axes that have affected to the rock volume) the apparent rotation may be the addition of a vertical-axis rotation plus a spurious rotation. The later is an error whose origin is the inappropriate application of the bedding correction during the restoration (which does not fit the reverse sequence of deformations). Then, Apparent rot. (s.l.) (δ)=Spurious rot. (θ)+Vertical-axis rot. (β).Conical folds are complex geometries that cannot be restored by using the bedding correction. However, appearance of apparent and spurious rotations has not been studied even though the presence of this kind of folds is very common in fold and thrust belts. In this paper, we show a way to restore these structures and its associated paleomagnetic data by means of forward modelling on a stereographic projection. The modelling has to be based on a good characterization of the geometry (fold axis orientation) and understanding of the kinematics of the fold. General modelling has also allowed us to predict the apparent rotation in conical synclines. Its magnitude depends on the semiapical angle and on the degree of development of the fold; the sense of the rotation (clockwise or counter-clockwise) will depend on the sense of rotation the fold axis.The western External Sierras provide an excellent case study of apparent rotations due to the presence of a conical fold in the footwall (Ebro foreland basin) of the South Pyrenean sole thrust. In addition, a vertical-axis clockwise rotation up to 47° (32° in average) has been detected in the hagingwall. An apparent rotation up to 28° (20° in average) is observed in the footwall of the structure when a simple bedding correction is used. This deviation does not fit with the expected Ebro basin direction (reference) and is caused by the effect of the Riglos conical syncline, developed by the flexure of the foot wall ramp of the South Pyrenean sole thrust. The forward modelling carried out considering the geometry and kinematics (non significant rotations in the autochthonous foot wall) of this structure predicts very well the paleomagnetic observations in the field (geographic coordinates) with angular departures of only 5° (in average). The only application of the bedding correction would introduce errors (spurious rotations up to 21°, 12 in average) related to the conical geometry that would not allow the differentiation of these distinct structural units.  相似文献   

20.
Polyphase deformation chronologies established within the mid-crustal portions of orogenic belts have classically been attributed to regional-scale ‘events’ which generate distinct structural sequences that can be directly correlated across large tracts of the orogenic belt. However, concepts of progressive deformation in which minor structures may be continually generated, amplified and redeformed within a unifying kinematic framework suggest that regional correlation of minor structures is both misguided and misleading. Detailed structural analysis of lower amphibolite facies Dalradian metasediments in north-west Ireland does, however, demonstrate that a coherent and meaningful deformation chronology can be established within the framework of individual fold nappes. Protracted deformation has resulted in the generation of a series of overprinting, secondary structures (D4–D9), which are kinematically linked to the continued structural evolution and south-east directed translation of the crustal-scale (D3) Ballybofey (fold) Nappe. Secondary (D4) crenulation axes initiated at an oblique angle to the direction of nappe transport both rotate and amplify into larger scale folds, which are subparallel to transport and demonstrate successive stages of diachronous folding. Continued nappe-related deformation induces southwards verging contractional (D5) folds, which are particularly well developed and focused into reactivated ductile (D3) thrust zones generated during the initial stages of nappe translation. Subsequent to thickening-induced ductile extension and collapse of the nappe, a return to contractional tectonics is marked by major episodes of broad, open buckle folding developed orthogonal to both the overturned limb (D7) and upper limb (D8) of the nappe. Detailed structural analysis and investigation of secondary folds and overprinting fabrics provides a valuable insight into the protracted kinematic evolution of major fold nappes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号