首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
武汉东湖生态系中浮游物的营养结构   总被引:4,自引:0,他引:4  
本工作主要探讨东湖水柱浮游物的颗粒有机物在营养结构上量的关系。定量测定武汉东湖浮游物的干重、无灰重及浮游动、植物生物量并进行相应的碳、氮、磷分析。1983和1984两年东湖浮游物总颗粒有机碳现存量(mg/m~3)分别为3993与2819(Ⅰ站),2958与1856(Ⅱ站);总颗粒有机氮为762与584(I站),565与369(Ⅱ站);总颗粒有机磷为105与56(Ⅰ站),59与37(Ⅱ站)。颗粒有机碎屑碳一般占浮游物总颗粒有机碳的50%,占浮游生物活体碳的61%—104%。与浮游植物生物量碳相比,有机碎屑碳是它的2—6倍。  相似文献   

2.
武汉东湖水柱沉降物有机碎屑碳测定初报   总被引:1,自引:1,他引:1       下载免费PDF全文
经沉淀采样器在东湖悬挂24小时采得沉淀物,作总颗粒有机碳分析;用显微镜计量出浮游植物活体体积及浮游动物活体的个体数。把两者换算成有机碳量,然后从总颗粒有机碳量与浮游生物活体碳量之差,求得颗粒有机碎屑碳量。1982年,测得东湖沉降物颗粒有机碎屑碳的沉降速率分别为18.65g·m~(-2)·a~(-1)(站Ⅰ)及23.03g·m~(-2)·a~(-1)(站Ⅱ)。直线迴归表明,沉降物中颗粒有机碎屑碳量与颗粒物量的线性相关很显著。  相似文献   

3.
对"中国第五次北极科考"和"中国第六次北极科考"采集的楚科奇海陆架、海台及海盆区的5个多管样品进行210 Pb、粒度、有机碳(OC)和总氮(TN)含量及有机碳同位素(δ13 C)、总氮同位素组成(δ15 N)分析,初步获得5个多管样品近百年来的沉积速率,陆架区沉积速率为0.19~0.41cm/a,海台和海盆区沉积速率为0.03~0.04cm/a;近百年来陆架有机碳、总氮含量分别为1.21%~1.62%、0.17%~0.21%,有机碳、总氮同位素组成分别为-22.30‰~-22.25‰PDB、7.24‰~8.12‰;海台与海盆区有机碳、总氮含量分别为0.80%~1.26%、0.13%~0.16%,有机碳、总氮同位素组成分别为-22.52‰~-22.07‰PDB、7.38‰~7.81‰。陆架与海台和海盆相比,具有沉积速率高、沉积物颗粒粗、有机碳和总氮含量高的特点。近百年来楚科奇海域陆架、海台和海盆区有机碳以海洋生源输入为主,反映了北极气候变暖,水体初级生产力增加。  相似文献   

4.
2007年在黄河三角洲布设了一口24.6m的浅钻ZK1,对获取的岩芯样品进行了详细的沉积学观测及含水量、有机碳、总碳和营养成分的实验室分析测试。通过ZK1孔的地层分析,将其划分为7种沉积环境,揭示了滨海湿地地质演化过程。并利用AMS 14C测年方法,结合黄河改道的历史记录,运用历史地理学和沉积地质学综合分析的方法对黄河三角洲沉积环境进行了年代划分,并计算了黄河三角洲不同沉积环境沉积物的沉积速率和碳的加积速率。结果表明:总碳和有机碳与除硫和磷元素以外的各营养成分都呈良好的线性相关(R20.7,Ρ0.05);碳、氮、磷的加积速率与沉积物的沉积速率呈极显著正相关关系(R20.95,Ρ0.01),沉积物的沉积速率是碳、氮、磷的加积速率的主控因素;虽然现代黄河三角洲沉积物有机碳浓度较低(1%),但由于沉积物的高沉积速率,现代黄河三角洲沉积物有机碳的平均加积速率达到648.1g/(m2·a),远高于世界其它高有机碳浓度的湿地,因此是很好的碳汇地质体。  相似文献   

5.
珠江三角洲PD孔沉积物的碳氮记录及其环境意义   总被引:3,自引:0,他引:3  
对位于广州番禺东涌镇PD孔的三角洲沉积物进行了有机碳、陆源有机碳和碳氮比值分析,结合微体古生物和14C年代资料,将岩心划分为4个阶段:阶段Ⅰ(23.88~21.71 kaBP)有机碳、陆源有机碳含量递增,存在大量有孔虫和介形虫,反映海侵作用逐渐减弱;阶段Ⅱ(21.71~3.79 kaBP)是一层花斑黏土,有机质含量极低,指示风化作用强烈;阶段Ⅲ(3.79~2.88 kaBP)碳氮比值、陆源和内源有机碳比值的变化在平衡状态波动,指示海平面上升的海陆过渡环境;阶段Ⅳ(2.88 kaBP以来)陆源有机碳比重和碳氮比值较高,主要为受河流作用控制的陆相沉积,气候温暖湿润,陆源碎屑丰富。  相似文献   

6.
南海的碳通量研究   总被引:6,自引:1,他引:6  
根据水通量的箱式模型,南海由跃层深度和海槛深度分成3个箱子.当海水上升至箱子Ⅰ时,由于生物的同化作用,海水中溶解的无机碳转化成颗粒态有机碳.这部分颗粒碳有一部分在箱子Ⅰ中即分解转化为溶解态的无机碳,而其余部分沉降至箱子Ⅱ,同样在箱子Ⅱ中一部分分解,一部分继续沉降至箱子Ⅲ,在箱子Ⅲ中也进行同样过程,最后的一部分颗粒碳未被溶解而进入沉积物中.由南海的初级生产力、沉积速率、沉积物含碳量及深海盆水溶解氧的平均消耗率计算了南海碳的固-液通量;根据碳在各箱子的质量平衡方程,求得了各箱子碳的通量值,从而建立起南海碳的通量模型.进入南海的碳通量,占总输入碳99%的碳主要经由中层水和底层水进入南海,然后随海水的上升而进入南海上层,在南海上层与河水和雨水带来的,占总输入的1%的碳相汇合.进入南海碳的总量为601×104mol/s,而通过沉积离开南海的碳量为3.8×104mol/s,即有0.6%的碳损失到沉积物中.南海对大气而言,净通量是吸收约为4.4×104mol/s,而南海对全球海洋的净通量是输出约1×104mol/s,碳在南海箱子Ⅰ、Ⅱ、Ⅲ的更新时间分别为1.5a、44a和79.3a.  相似文献   

7.
黄海夏季水域沉降颗粒物垂直通量的研究   总被引:13,自引:1,他引:12  
20 0 2年 8月 ,沿穿过黄海冷水团的青岛至济州岛断面 ,在 4个站位放置沉积物捕获器采集沉降颗粒物。镜检发现无机颗粒物、生物粪球以及混杂聚合体是本断面沉降颗粒物主要类型。测定结果显示沉降颗粒物中的颗粒有机碳 (POC)、颗粒有机氮 (PON)、颗粒碳 (PC)、颗粒氮 (PN)和颗粒磷 (PP)的百分含量均呈现从表层到底层逐渐下降的趋势。采用两个改进的模型对底层颗粒物再悬浮比率进行了计算 ,显示黄海海域夏季底层沉降颗粒物再悬浮比率为 90 %— 96%,表明底层沉降颗粒物主要来源于沉积物的再悬浮。两模型所得结果一致 ,证明用温跃层底部颗粒物沉降通量代表水体中颗粒物净沉降通量的假设是合理的。水体中颗粒物、POC及PON的净沉降通量 (±SE)分别为 ( 1 2 65± 3 5 5 )g/(m2 ·d)、( 0 2 9± 0 0 4 )g/(m2 ·d)和( 0 0 6± 0 0 1 )g/(m2 ·d)。  相似文献   

8.
根据2009年8月在乳山湾及其毗邻海域的综合调查,分析了该海域表层沉积物中有机碳、氮、磷含量及其组成形态的变化,初步探讨了影响底质理化参数变化的原因及对乳山湾外近岸底层低氧形成的影响.结果表明,乳山湾外近海为粉砂质岸滩,以细颗粒为主;底质中有机碳含量介于0.49% ~0.93%,平均值为0.69%;总氮含量介于382~1020 mg/kg,平均值为671 mg/kg;可溶性总氮含量介于23.0 ~ 60.0 mg/kg,平均值为44.0mg/kg,其中可溶性有机氮和氨氮分别占可溶性总氮的58.8%和38.8%;总磷含量介于138~769 mg/kg,平均值为356 mg/kg,有机磷是占有绝对优势的磷形态(62.5%).研究区域沉积物中总氮和湾内相当,有机碳、总磷含量普遍低于乳山湾内,但均明显高于南黄海区域,且呈还原性状态.调查区域内沉积物中相对较高的有机碳、氮、磷可能是在潮流作用下乳山湾与外海的物质交换所致,其耗氧过程是导致底层溶解氧亏损的重要原因,值得进一步关注.  相似文献   

9.
福建罗源湾海水悬浮物的研究   总被引:1,自引:0,他引:1  
于1986年11月-1987年9月对福建罗源湾海水悬浮的含量的观测结果表明,水动力条件引起的再悬浮过程和生物活分别是罗源湾冬季和夏季悬浮物分布及性质变化的主要影响因素。底部沉积物的再悬浮对水体营养盐的再生和补充及有机碎屑的提供起重要的作用,夏季颗粒有机碳的学降能量一般占水柱浮游植物初级生产量的67-85%,大部分初级生产的有机碳沉降海底。  相似文献   

10.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

11.
鳚亚目 4 科 33 属 95 种,鰕虎鱼亚目 5 科 98 属 259 种,刺尾鱼亚目 5 科 11 属 65 种,鲈形目 19亚目 104 科 535 属 1799 种。  相似文献   

12.
Soil-sized particulates have been collected on board ship by a mesh technique from the lower troposphere of the North, Equatorial and South Atlantic Ocean, northern and southern Indian Ocean, South and East China Sea and various coastal localities.Spectrographic analysis reveals that, on average, the particulates have concentrations of Mn, Ni, Co, Ga, Cr, V, Ba, and Sr which are of the same order of magnitude as those in average crustal material. In contrast, the average concentrations of Pb, Sn, and Zn are one order of magnitude higher than those in average crustal material.Within this “world-wide” average there are significant geographical variations in the distributions of Pb, Sn, and Zn which may be related to anthropogenic sources.On the basis of trace-element distributions lower tropospheric soil-sized marine particulates have been divided into four genetic components; local, zonal, inter-zonal, and global. The proportions of these components vary geographically, and each component may have both a natural and an anthropogenic fraction.  相似文献   

13.
14.
15.
16.
Tautog, Tautoga onitis, is an abundant species of fish in estuaries of the northeastern United States. Planktonic tautog larvae are abundant in summer in these estuaries, but there is little information on rates of growth of tautog larvae feeding on natural assemblages of food in the plankton. We examined abundance and growth of larval tautog and environmental factors during weekly sampling at three sites along a nearshore‐to‐offshore transect in Buzzards Bay, Massachusetts, USA during summer 1994. This is the first study of a robust sample size (336 larvae) to estimate growth rates of field‐caught planktonic tautog larvae feeding on natural diets, using the otolith daily‐growth‐increment method. The study was over the entire summer period when tautog larvae were in the plankton. The sampling sites contrasted in several environmental variables including temperature, dissolved oxygen (DO), and chlorophyll a concentration. There was a temporal progression in the abundance of tautog larvae over the summer, in relation to location and temperature. Tautog larvae were first present nearshore, with a pronounced peak in abundance occurring at the nearshore sites during the last 2 weeks in June. Larvae were absent at this time further offshore. From late June through August, larval abundance progressively decreased nearshore, but increased offshore although never approaching the abundance levels observed at the nearshore sites. The distribution and abundance of tautog larvae appeared to be related to a nearshore‐to‐offshore seasonal warming trend and a nearshore decrease in DO. Otoliths from 336 larvae ranging from 2.3 to 7.7 mm standard length had otolith increment counts ranging from 0 to 19 increments. Growth of larval tautog was estimated at 0.23 mm·day?1, and length of larvae prior to first increment formation was estimated at 2.8 mm indicating that first increment formation occurs 3–4 days after hatching at 2.2 mm. Despite spatial and temporal differences in environmental factors, there were no significant differences in growth rates at any of three given sites over time, or between sites. Because larval presence only occurred at a narrow range of temperature (17–23.5 °C) and DO (6.5–9.3 mg·l?1), in situ differences in growth did not appear to be because of differences in larval distribution and abundance patterns relative to these parameters.  相似文献   

17.
In June 1981, dissolved Zn, Cd, Cu, Ni, Co, Fe, and Mn were determined from two detailed profiles in anoxic Baltic waters (with extra data for Fe and Mn from August 1979). Dramatic changes across the O2H2S interface occur in the abundances of Cu, Co, Fe, and Mn (by factors of ?100). The concentrations of Zn, Cd, and Ni at the redox front decrease by factors between 3 to 5.Equilibrium calculations are presented for varying concentrations of hydrogen sulfide and compared with the field data. The study strongly supports the assumption that the solubility of Zn, Cd, Cu, and Ni is greatly enhanced and controlled by the formation of bisulfide and(or) polysulfide complexes. Differences between predicted and measured concentrations of these elements are mainly evident at lower ΣH2S concentrations.Cobalt proved to be very mobile in anoxic regions, and the results indicate that the concentrations are limited by CoS precipitation. The iron (Fe2+) and manganese (Mn2+) distribution in sulfide-containing waters is controlled by total flux from sediment-water interfaces rather than by equilibrium concentrations of their solid phases (FeS and MnCO3). The concentrations of these metals are therefore expected to increase with prolonged stagnation periods in the basin.  相似文献   

18.
Concentrations of dissolved nutrients (NO3, PO4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The GeSi ratio taken up by diatoms is about 0·7 × 10?6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays deposited in the harbor after catastrophic phosphate slime spills into the Peace River.  相似文献   

19.
Results of trace-metal analyses of water samples obtained during a cruise with the Soviet R.V. “Akademik Kurchatov” in the Indian Ocean are presented. The determinations were performed on board with atomic absorption spectrophotometry after a two-stage dithiocarbamate—Freon extraction procedure. Trace-metal concentrations found are in the same range as those found recently for similar open-ocean areas by other workers. The values for lead and zinc are probably high due to contamination. Vertical profiles indicate biogenic processes as controlling factors for the increase of cadmium, copper and nickel concentrations with depth. Iron shows an irregular depth distribution as a result of large random variations in concentration.  相似文献   

20.
Exploration for oil at Northstar has been long and costly. Northstar leases were first acquired in 1979 at a joint state and federal sale by Shell Oil, Amerada Hess, and Texas Eastern. The Northstar Unit is 6 mi offshore and about 4 mi northeast of the Point McIntyre Field. Oil was first discovered in Shell's Seal Island 1 in 1983. Five additional appraisal wells were drilled (1983-1986) from two man-made gravel islands in 40 ft of water. Early engineering estimates put the cost of development at $ 1.6 billion. In February 1995, BP Exploration (Alaska) acquired a 98 % interest in the Northstar Unit from Amerada Hess and Shell Oil. When developed by BP, Northstar will be the first oil produced from federal leases in Alaska. To date, the oil industry has invested in excess of $ 140 million in exploration and appraisal operations. An additional $ 90 million was spent on lease bonus bids. The giant Prudhoe Bay and Kuparuk Fields lie along the Barrow Arch. This arch is bounded to the north by a rift margin that deepens into the present-day offshore region. Northstar is located among a series of down-stepping faults off this northern rift margin of the Prudhoe Kuparuk high. The structure is a gently south-dipping northwest-trending faulted anticline. The crest of the structure is located near 10,850 ft subsea. The primary reservoir is the Ivishak Formation (325 ft thick) of the Sadlerochit Group. This is the same primary reservoir at Prudhoe Bay, approximately 12 mi to the south. At Northstar the Ivishak is a high-energy, coarse-grained conglomeratic facies of the Ivishak Formation. The primary lithology is a pebbly chert to quartz conglomerate with occasional sandstone. This very high net to gross reservoir appears to contain no regionally continuous permeability barriers. Cementation has reduced primary porosity to less than 15 %. Accurate porosity estimates are difficult to make due to the coarse-grained nature of the lithology and the presence of kaolinite and microporous chert. Permeability is highly variable, but averages 10 to 100 mDarcies. Oil is a very light and volatile 42 API crude with approximately 2,100 ft3 of gas per stock tank barrel of oil. This oil is very different from the heavier oils (26) found to the south in Prudhoe Bay. Estimated recoverable oil reserves range from 100 to 160 million barrels. A free-standing drilling rig is required at Northstar because the reserves are beyond extended-reach drilling techniques from shore-based facilities. The current development plan is to expand the existing Seal Island to about 5 acres. This is significantly less than Endicott's 40-acre island. The proposed drilling and produc tion island will be accessed by summer barges and winter ice roads. Oil, gas, and water will be processed at a stand-alone facility and then sent to shore via a subsurface pipeline. Northstar will have the first Arctic subsea pipeline in Alaska to transport oil to shore facilities (TAPS). Preliminary tests in Spring 1996 were very successful in demonstrating the technology to successfully bury a subsea pipeline safely in the Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号