首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
North American Trends in Extreme Precipitation   总被引:6,自引:0,他引:6  
Kunkel  Kenneth E. 《Natural Hazards》2003,29(2):291-305
An analysis of extreme precipitation events indicates that there has been a sizable increase in their frequency since the 1920s/1930s in the U.S. There has been no discernible trend in the frequency of the most extreme events in Canada, but the frequency of less extreme events has increased in some parts of Canada, notably in the Arctic. In the U.S., frequencies in the late 1800s/early 1900s were about as high as in the 1980s/1990s. This suggests that natural variability of the climate system could be the cause of the recent increase, although anthropogenic forcing due to increasing greenhouse gas concentrations cannot be discounted as another cause. It is likely that anthropogenic forcing will eventually cause global increases in extreme precipitation, primarily because of probable increases in atmospheric water vapor content and destabilization of the atmosphere. However, the location, timing, and magnitude of local and regional changes remain unknown because of uncertainties about future changes in the frequency/intensity of meteorological systems that cause extreme precipitation.  相似文献   

2.
Adaptation to climate change, particularly flood risks, may come to pose large challenges in the future and will require cooperation among a range of stakeholders. However, there presently exists little research especially on the integration of the private sector in adaptation. In particular, recently developed state programs for adaptation have so far been focused on the public sector. Insurance providers may have much to contribute as they offer other parts of society services to appropriately identify, assess and reduce the financial impacts of climate change-induced risks. This study aims to explore how the institutional distribution of responsibility for flood risk is being renegotiated within the UK, Germany and Netherlands. Examining how the insurance industry and the public sector can coordinate their actions to promote climate change adaptation, the study discusses how layered natural hazard insurance systems may result from attempts to deal with increasing risks due to increasing incidences of extreme events and climate change. It illustrates that concerns over the risks from extreme natural events have prompted re-assessments of the current systems, with insurance requiring long-term legislative frameworks that defines the objectives and responsibilities of insurers and the different political authorities.  相似文献   

3.
Under the background of climate change, extreme weather events (e.g., heavy rainfall, heat wave, and cold damage) in China have been occurring more frequently with an increasing trend of induced meteorological disasters. Therefore, it is of great importance to carry out research on forecasting of extreme weather. This paper systematically reviewed the primary methodology of extreme weather forecast, current status in development of ensemble weather forecasting based on numerical models and their applications to forecast of extreme weather, as well as progress in approaches for correcting ensemble probabilistic forecast. Nowadays, the forecasting of extreme weather has been generally dominated by methodology using dynamical models. That is to say, the dynamical forecasting methods based on ensemble probabilistic forecast information have become prevailing in current operational extreme weather forecast worldwide. It can be clearly found that the current major directions of research and development in this field are the application of ensemble forecasts based on numerical models to forecasting of extreme weather, and its improvement through bias correction of ensemble probabilistic forecast. Based on a relatively comprehensive review in this paper, some suggestions with respect to development of extreme weather forecast in future were further given in terms of the issues of how to propose effective approaches on improving level of identification and forecasting of extreme events.  相似文献   

4.
Extreme weather events present environmental and social challenges across the Eurasian steppe. In Mongolia much attention is given to drought and dzud (severe winter conditions) impact on rural livelihoods, landscapes and governance. A link between the two events, fostered by international and state agencies, speculates that drought leads to dzud; this has become the widely accepted doctrine. However, the relationship between the two events is assumed rather than analysed. Whilst there may be natural links between climate events, causality is more difficult to establish yet often claimed post-event. This paper stresses Mongolia’s destructive dzuds of 1999–2001 and 2009–2010 in examining drought frequency before dzud events. Findings question the hazard connection as just 3 of 32 examined dzud events were preceded by drought. Investigation did not document a relationship between the disasters; linkages between extreme events were implied rather than established. The human role in disaster also needs to be assessed as preparation, and response are key factors for mitigation. Study results identified a lack of causality between the disasters, suggesting more assiduous investigation of hazards is needed in Mongolia. This can clarify causal factors, identify risk and improve disaster mitigation strategies in Mongolia.  相似文献   

5.
A new major frontier of geological research, which was initiated in the 1970's, involves predicting future geologic trends or events through study of the present and past, rather than trying to understand the past, often using what one knows about the present. Like most scientific frontiers, this one began from practical considerations—environmental concerns. The lack of formal recognition of this frontier results from fragmentation among many Federal agencies and highly focused mission-oriented programs (e.g., earthquake prediction, CO2, nuclear-energy safety, etc.). Most programs aim to predict only the next 50–100 years, but much longer periods of the past need to be studied to do this. Nuclear-waste disposal has sometimes been considered in terms of the next million years, a period of time permitting significant and broad geologic changes. Decreasing public interest in environmental concerns relegates many questions from the realm of applied research back to that of basic research. Most of these questions are so fascinating, however, that the frontier is still worth pursuing. Such questions include whether a phenomenon will or will not take place and the rates at which it can develop (e.g., how fast do rifts form, how fast can a caldera event begin, and how quickly can a glacial maximum arrive?). Common elements of all studies include the historic record, trends in the Quaternary, analogues in various periods of the geologic time scale, and allowance for phenomena never experienced before. Other examples of studies include the Cretaceous as a period of a climatic extreme, an especially interesting time period; establishing the amount of paleocloudiness, a particularly challenging and important research area; acid rain as a possible new phenomenon. Geochemistry has much to contribute to this frontier science.  相似文献   

6.
《Comptes Rendus Geoscience》2005,337(1-2):193-202
At the planetary scale, the models consistently simulate an intensification of the hydrological cycle in a future climate, warmer than the present-day one. However, this intensification might be accompanied by its slowing down due to an increase of the residence time of water vapour in the atmosphere. The impact of climate change on extreme events is even more difficult to evaluate, as results are dependent on methods, emission scenarios and, above all, on models. However, the increase of extreme winter precipitation over northern Europe is a common feature of these evaluations. The hydrological cycle, through the geographical distribution of continental surface humidity, seems to play a key role on the possibility to detect the warming in France. To cite this article: S. Planton et al., C. R. Geoscience 337 (2005).  相似文献   

7.
The 2007 Intergovernmental Panel on Climate Change (IPCC) Assessment Report 4 found an average increase in global surface temperature of 0.74°C between 1906 and 2005. There is general agreement in the literature that the frequency of extreme precipitation events in Southeast Asia will increase with global warming. In particular, the potential impact of associated storm hazards will render the densely populated countries in Southeast Asia vulnerable to such changes in precipitation events. One main adaptation strategy given such impending changes is preparedness. Using existing literature and historical meteorological data, this paper establishes that Southeast Asia is indeed experiencing storms of higher intensities and more frequently. Two case of extreme storm event in Southeast Asia, the extreme high rainfall event in December 2006 in Southern Johor and Typhoon Vamei, are presented to consider the implications of the increased storm activities due to global warming. These two examples also discuss the need for preparedness in adapting to the impact of global warming.  相似文献   

8.
At a time when the concept of ‘human and environmental symbiosis’ has taken on much significance, protection of suburban forests (i.e. forests adjacent to or near developed areas) is a topic that has drawn much attention. Suburban forests have, since ancient times, been places where people have gathered firewood and cultured trees. As a result, the vegetation of suburban forests is only partially natural and continues to change as the forms of human activity in and around them changes. Accurate forecasts of how suburban forests will change are, therefore, an important element in the debate over how to protect them. In this study, a suburban forest was analyzed with laser radar sensing, multi-spectrum scanning, digital photogrammetry analysis, aerial photograph interpretation, and a field survey. Data gathered using these techniques were compiled on a GIS to forecast future changes in the forest. Aerial photographs taken over the past 50 years were analyzed to illuminate changes in the forest over that period. Specifically, comparisons of precise Digital Elevation Models (DEMs) measured by using digital photogrammetry workstations made it possible to estimate growth in forest height. The possible future conversion of such results to estimates of amounts of carbon dioxide consolidated by forests should be very significant for discussions of global environmental problems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Ivan G. Wong 《Natural Hazards》2014,72(3):1299-1309
The occurrence of several recent “extreme” earthquakes with their significant loss of life and the apparent failure to have been prepared for such disasters has raised the question of whether such events are accounted for in modern seismic hazard analyses. In light of the great 2011 Tohoku-Oki earthquake, were the questions of “how big, how bad, and how often” addressed in probabilistic seismic hazard analyses (PSHA) in Japan, one of the most earthquake-prone but most earthquake-prepared countries in the world? The guidance on how to properly perform PSHAs exists but may not be followed for a whole range of reasons, not all technical. One of the major emphases of these guidelines is that it must be recognized that there are significant uncertainties in our knowledge of earthquake processes and these uncertainties need to be fully incorporated into PSHAs. If such uncertainties are properly accounted for in PSHA, extreme events can be accounted for more often than not. This is not to say that no surprises will occur. That is the nature of trying to characterize a natural process such as earthquake generation whose properties also have random (aleatory) uncertainties. It must be stressed that no PSHA is ever final because new information and data need to be continuously monitored and addressed, often requiring an updated PSHA.  相似文献   

10.
《Comptes Rendus Geoscience》2008,340(9-10):621-628
Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21st century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research.  相似文献   

11.
In recent years in Mexico and around the world, the scientific community has shown great interest in acquiring knowledge regarding the behavior of extreme climate events due to their increasing number and intensity. The objective of this research was to analyze variations in extreme temperature events using extreme climate indices. We conducted a case study for the municipality of Apizaco, Tlaxcala, Mexico, using data sets of the daily maximum and minimum temperatures for the period from 1952 to 2003. Six indices related to maximum and minimum temperatures were calculated: frost days, summer days, warm days, cool days, warm nights and cool nights. All of the index results were evaluated annually and only four of the indices were analyzed according to the seasons. A trend based on a linear least squares regression model was fit to the indices to determine their behavior. The index results showed that extreme events related to maximum temperatures corresponded to greater changes and an increased number of summer days and decreased cool days. Additionally, there was an increase of frost days, associated with a greater number of days with minimum temperatures below 0 °C. In general, the results indicated that warmer and colder extreme temperatures are occurring. The detection of those trends in the extreme events can be seen as a first step in any study of the attribution of those observed changes (e.g., land use change, regional climate change, etc.). This attribution aspect will not be discussed in the present study.  相似文献   

12.
《Comptes Rendus Geoscience》2008,340(9-10):591-594
Evolutionists have often had a marked tendency to think that, in the course of time, planetary events were not very different from those occurring during a human life. However, when a ‘non-human’ timescale is used, the history of our planet appears profoundly and frequently disturbed by extreme events. These events, even not always instantaneous, impose – because of their amplitude – a severe sorting, not between individuals of a species, but between species, or even between phyla. In the face of an extreme event, intraspecific diversity counts little: it is the interspecific diversity that makes the difference. As shown by mass extinctions, extreme events open ecological niches and redistribute the cards of life, giving survivors opportunities to radiate. The capacity to cope with extreme ecological conditions favours certain species in ecosystems, not certain individuals in populations. This is not a macroevolutionary process in terms of acquiring new adaptations, but a macroevolutionary process in terms of sorting entire sections of life. The most important is perhaps that the current ‘mediatisation’ of a limited number of mass extinctions dissimulates less important extinctions caused by less extreme and more localized events that were possibly responsible for many changes in the composition and structure of communities throughout the evolution. The term of ‘pre-adaptation’ has been neglected, because it gives an impression of finalism, but it expresses well that, when an unexpected event occurs, a particular species has or has not the ‘right genes’ to continue to sustain viable populations. The role of extreme events in modifying the course of evolution should not be underestimated.  相似文献   

13.
闫小月  姜逢清  刘超  王大刚 《冰川冻土》2022,44(5):1539-1557
全球变暖背景下,偶发极端冷事件产生的重大灾害损失不容忽视。探究区域极端冷事件的大尺度驱动因子的耦合影响,对预估和应对气候变化产生的极端灾害具有重要意义。本文基于新疆1961—2016年53个气象站点的逐日气温资料,通过反距离加权等方法对极端冷事件的时空演变特征进行分析;利用交叉小波变换对6个极端冷指数与大尺度驱动因子——北极涛动(AO)、北大西洋涛动(NAO)和厄尔尼诺-南方涛动(ENSO)进行多尺度分析;使用参数假设检验对大尺度驱动因子单一/耦合模态下的冷指数变化进行统计学显著性检验,随后对大尺度环流机制进行距平合成分析。结果表明:年均冷指数在时间尺度上均有显著性变化,新疆气温有明显的变暖趋势;空间尺度上冷指数在北疆、东疆和伊犁河谷地区的变化幅度远大于其他区域,存在空间差异性。AO、NAO与冷指数的相关性较强,ENSO与冷指数相关关系最弱但存在明显的时滞效应,大尺度驱动因子对极端冷指数的总体影响程度为AO>NAO>ENSO。单一模态下,极端冷事件在AO负位相、NAO负位相和La Ni?a事件期间易发生。耦合模态下,EI Ni?o-AO正位相和EI Ni?o-NAO正位相配置下冷日日数偏多;EI Ni?o-NAO负位相配置时极端低温值更小;La Ni?a-AO负位相和La Ni?a-NAO正位相时极端冷事件发生的可能性更大。EI Ni?o(La Ni?a)事件对AO(NAO)有一定的调制作用。新疆极端冷事件更易出现在La Ni?a-AO负位相、La Ni?a-NAO正位相时期,成因与亚欧大陆中高纬度位势异常导致冷空气路径偏西、乌拉尔阻塞加强与偏北气流影响新疆有关。  相似文献   

14.
1961-2015年青藏高原降水量变化综合分析   总被引:2,自引:0,他引:2  
冀钦  杨建平  陈虹举 《冰川冻土》2018,40(6):1090-1099
降水量及其季节分配与降水形式变化一直是全球气候变化研究的热点之一。使用青藏高原72个气象站点1961-2015年的逐日降水量资料,基于趋势、波动特征和极端事件相结合的新视角,全面剖析了该地区近55年降水量的趋势、波动与极端事件变化。结果表明:(1)时间上,近55年青藏高原年降水量、年最大日降水量和一年中日降水量≥ 10 mm的天数分别以6.59 mm·(10a)-1、0.33 mm·(10a)-1和0.26 d·(10a)-1的速率显著增加,增幅分别达到36.2 mm、1.8 mm和1.4 d。(2)空间上,过去55年青藏高原绝大部分地区年降水量增加,不稳定性增强。但波动变化存在较大的地区差异,广大的中西部地区年降水量波动缓慢增强,而高原东部地区自北向南波动快速增强区与快速减弱区相间分布,极端降水强度与频数亦有类似的变化格局。(3)趋势、波动与极端变化三者组合预示,青藏高原东部的祁连山地区、柴达木盆地东部、青海湖流域与长江源区极端降水事件将明显增加,高原中西部地区发生强降水的可能性亦增加,而高原东南缘地区干旱事件将增多。  相似文献   

15.
The Geomechanics of CO2 Storage in Deep Sedimentary Formations   总被引:1,自引:0,他引:1  
This paper provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large power plants will require injection at a much larger scale. For such large-scale injections, a staged, learn-as-you-go approach is recommended, involving a gradual increase of injection rates combined with continuous monitoring of geomechanical changes, as well as siting beneath a multiple layered overburden for multiple flow barrier protection, should an unexpected deep fault reactivation occur.  相似文献   

16.
In recent decades, there have been discussions and predictions regarding the impact of climate on floods, due to its socioeconomic and environmental consequences. For accurate prediction of future flood events and their impacts, it is crucial to have an improved understanding on past flood events. Lacustrine sediments have been used as a natural archive to study the past flood events. Here, we study the impact of 1954 flood event on the lacustrine environment of Bengas and Rupa Lake in central Nepal based on X-ray fluorescence spectrometry (XRF) element analysis, magnetic susceptibility (MS), total organic carbon (TOC) and the biomarker molecular compositions. Results showed that 1954 flood event had significant impacts on the two lakes in terms of detrital input, organic matter deposition and aquatic production. Before the flood event, both two studied lakes had relatively lower catchment erosion rate, lower organic matter deposition and aquatic production. During the flood event, catchment erosion and aquatic production increased in both lakes due to mass transport deposits and the increased nutrition loading attributed to flood event. Following the flood event, Begnas Lake showed the sharp increase in organic matter deposition, whereas in the Rupa Lake organic matter deposition showed minor changes. The difference in organic matter deposition in lakes during flooding event is likely due to detrital material brought and deposited by the flood activity. Overall our results suggest that lacustrine sediments are sensitive to the extreme event and would be an ideal archive for the reconstruction of flood events.  相似文献   

17.
Zhang  Liangliang  Zhang  Zhao  Chen  Yi  Wei  Xing  Song  Xiao 《Natural Hazards》2018,91(3):1257-1272

Driven by increasing demand for food and industrial consumption, world’s maize supply is under stress. Besides, the extreme temperature events are now exposing more threat to maize yield with ongoing climate change. Thus, a comprehensive analysis on maize exposure (exposure is defined as the cultivated area which is exposed to extreme temperature stress), vulnerability (here it means how much yield losses with each temperature increase/decrease at a national scale), and adaptation to extreme temperature is essential to better understand the effects on global maize production, especially in major production countries. It was found that warming trends during the growing season have extensively dominated the main maize-growing areas across the globe. And along with this mean temperature trend was the increasing heat stress and decreasing cold stress among most regions. Moreover, from 1981 to 2011, maize yield losses caused by heat stress in China, India, and the USA were 1.13, 0.64 and 1.12% per decade, respectively, while Mexico has been experiencing a reduction of yield loss due to decreased cold stress of 0.53% per decade. Furthermore, during the period of 2021–2051, the extreme heat stress would increase substantially, while the low temperature was estimated to drop slightly during the growing seasons. Such pattern had also been found over the key reproductive stage of maize. Accordingly, through the sensitivity test of two adaption measures, improved high-temperature-tolerant varieties and changing maize calendar earlier could both mitigate extreme meteorological stress on maize, while the former method would be the most effective way to do so. Our study could provide a paradigm for other crops and other countries in the world to analyze their exposure and vulnerability to the temperature stress and make corresponding adaptation measures.

  相似文献   

18.
Owing to fragile geo-morphology, extreme climatic conditions, and densely populated settlements and rapid development activities, West Java Province is the most landslide hazardous area in Indonesia. So, a landslide risk map for this province bears a great importance such as for land-use planning. It is however widely accepted that landslide risk analysis is often difficult because of the difficulties involved in landslide hazard assessment and estimation of consequences of future landslide events. For instance, lack of multi-temporal inventory map or records of triggering events is often a major problem in landslide hazard mapping. In this study, we propose a simple technique for converting a landslide susceptibility map into a landslide hazard map, which we have employed for landslide risk analysis in one ideally hazardous part of volcanic mountains in West Java Province. The susceptibility analysis was carried out through correlation between past landslides and eight spatial parameters related to instability, i.e. slope, aspect, relative relief, distance to river, geological units, soil type, land use and distance to road. The obtained susceptibility map was validated using cross-time technique, and was collaborated with the frequency-area statistics to respond to ‘when landslide will occur’ and ‘how large it will be’. As for the judgment of the consequences of future landslides, expert opinion was used considering available literature and characteristic of the study area. We have only considered economic loss in terms of physical damage of buildings, roads and agricultural lands for the landslide risk analysis. From this study, we understand the following: (1) the hazard map obtained from conversion of the susceptibility map gives spatial probability and the area of an expected landslide will be greater than 500m2 in the next 2 years, (2) the landslide risk map shows that 24% of the total area is in high risk; 30% in moderate risk; 45% in low risk and no risk covers only 1% of the total area, and (3) the loss will be high in agricultural lands, while it will be low in the road structures and buildings.  相似文献   

19.
Climate Change,Extreme Events and the Canadian Insurance Industry   总被引:2,自引:0,他引:2  
White  Rodney  Etkin  David 《Natural Hazards》1997,16(2-3):135-163
Natural Hazards - At the same time that a scientific consensus has arisen that the world will most likely experience a changing climate in the near future, with more frequent extreme events of some...  相似文献   

20.
21世纪初极端天气气候事件研究进展   总被引:22,自引:0,他引:22  
胡宜昌  董文杰  何勇 《地球科学进展》2007,22(10):1066-1075
由于极端天气气候事件的严重影响,越来越多的研究开始关注其变化情况。从观测分析到模拟研究,几乎都发现极端气温、降水事件发生了显著变化,而且在全球变暖的大背景下,未来有些极端事件可能会发生频数更高或强度更强。当然,研究结论也存在一定程度的不确定性,从模式模拟来看,目前模拟结果仍存在不确定性,不同模式的结果间常常存在较大的差异;而从观测分析来看,研究主要局限于20世纪后半叶,如果对更长时间作分析,结论或许会有所不同。文章从最基本的极端天气气候事件的定义出发,结合观测事实和模拟研究两个主要方面来介绍近几年来极端事件研究取得的主要进展,最后简单地总结了这些进展,并提出了进一步研究的思路。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号