首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The "surface roller" to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation including diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well. This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natu ral topography.  相似文献   

2.
This paper presents a refined parabolic approximation model of the mild slope equation to simu-late the combination of water wave refraction and diffraction in the large coastal region.The bottom frictionand weakly nonlinear term are included in the model.The difference equation is established with the Crank-Nicolson scheme.The numerical test shows that some numerical prediction results will be inaccurate in com-plicated topography without considering weak nonlinearity;the bottom friction will make wave height damp-ing and it can not be neglected for calculation of wave field in large areas.  相似文献   

3.
A parabolic equation extended to account for rapidly varying topography   总被引:1,自引:0,他引:1  
In this paper, following the procedure outlined by Li (1994. An evolution equation for water waves. Coastal Engineering, 23, 227-242) and Hsu and Wen (2000. A study of using parabolic model to describe wave breaking and wide-angle wave incidence. Journal of the Chinese Institute of Engineers, 23(4), 515–527) and Hsu and Wen (2000) the extended refraction–diffraction equation is recasted into a time-dependent parabolic equation. This model, which includes higher-order bottom effect terms, is extended to account for a rapidly varying topography and wave energy dissipation in the surf zone. The importance of the higher-order bottom effect terms is examined in terms of the relative water depth. The present model was tested for wave reflection in a number of different environments, namely from a plane slope with different inclinations, from a patch of periodic ripples. The model was also tested for wave height distribution around a circular shoal and wave breaking on a barred beach. The comparison of predictions with other numerical models and experimental data show that the validity of the present model for describing wave propagation over a rapidly varying seabed is satisfactory.  相似文献   

4.
Based on the extended mild-slope equation, the wind wave model (WWM; Hsu et al., 2005) is modified to account for wave refraction, diffraction and reflection for wind waves propagating over a rapidly varying seabed in the presence of current. The combined effect of the higher-order bottom effect terms is incorporated into the wave action balance equation through the correction of the wavenumber and propagation velocities using a refraction–diffraction correction parameter. The relative importance of additional terms including higher-order bottom components, the wave–bottom interaction source term and wave–current interaction that influence the refraction–diffraction correction parameter is discussed. The applicability of the proposed model to calculate a wave transformation over an elliptic shoal, a series of parallel submerged breakwater induced Bragg scattering and wave–current interaction is evaluated. Numerical results show that the present model provides better predictions of the wave amplitude as compared with the phase-decoupled model of Holthuijsen et al. (2003).  相似文献   

5.
The RIDE model: an enhanced computer program for wave transformation   总被引:1,自引:0,他引:1  
A wave transformation model (RIDE) was enhanced to include the process of wave breaking energy dissipation in addition to water wave refraction, diffraction, reflection, shoaling, bottom friction, and harbor resonance. The Gaussian Elimination with partial Pivoting (GEP) method for a banded matrix equation and a newly developed bookkeeping procedure were used to solve the elliptic equation. Because the bookkeeping procedure changes the large computer memory requirements into a large hard-disk-size requirement with a minimum number of disk I/O, the simple and robust GEP method can be used in personal computers to handle realistic applications. The computing time is roughly proportional to N1.7, where N is the number of grid points in the computing domain. Because the GEP method is capable of solving many wave conditions together (limited by having the same wave period, no bottom friction and no breaking), this model is very efficient compared to iteration methods when simulating some of the wave transformation process.  相似文献   

6.
我国迄今已记录的中鼓藻属中只有一种——锤状中鼓藻Bellerochea malleus(Bright- well)Van Heurck有详细报导,作者在中国海域进行浮游生物取样时采到本属的另一种钟形中鼓藻Bellerochea horologicalis Stosch,1977.对本种与锤状中鼓藻的重要区别,以及本种的细胞形态、结构、生态习性与分布进行了描述。  相似文献   

7.
推广了Kirby的有环境水流影响的缓坡方程,得到了综合考虑环境水流(水流因子)、非线性弥散影响(非线性因子)、底摩擦波能损失(底摩擦因子)、非缓坡地形影响(地形因子)、折射、绕射、波浪破碎多种变形因素的波浪传播控制方程,并给出了非线性因子、地形因子、底摩擦因子、水流因子的确定方法。基于导出的方程做进一步推导,得到了波高和波向为变量的综合考虑多种变形因素的波浪传播基本方程,该方程有许多优点:1)其绕开了求解波势函数的困难,将椭圆型方程的边值问题化为初值问题;2)直接求解波高和波向;3)可采用有限差分法离散求解,对空间步长没有限制,适合大面积海区波场计算;4)综合考虑了多种波浪变形因素,方程更为合理,5)容易处理波浪破碎问题。  相似文献   

8.
结合椭圆型缓坡方程模拟近岸波流场   总被引:9,自引:3,他引:6  
波浪向近岸传播的过程中,由波浪破碎效应所产生的近岸波流场是近岸海域关键的水动力学因素之一.结合近岸波浪场的椭圆型缓坡方程和近岸波流场数学模型对近岸波浪场及由斜向入射波浪破碎后所形成的近岸波流场进行了数值模拟.计算中考虑到波浪向近岸传播中由于波浪的折射、绕射、反射等效应使局部复杂区域波向不易确定,采用结合椭圆型缓坡方程所给出的波浪辐射应力公式来计算波浪产生的辐射应力,在此基础上耦合椭圆型缓坡方程和近岸波流场数学模型对近岸波流场进行数值模拟,从而使模型综合考虑了波浪的折射、绕射、反射等效应且避免了对波向角的直接求解,可以应用于相对较复杂区域的近岸波流场模拟.  相似文献   

9.
An Extended Mild-Slope Equation   总被引:1,自引:0,他引:1  
On the assumption that the vortex and the vertical velocity component of the current aresmall,a mild-slope equation for wave propagation on non-uniform flows is deduced from the basichydrodynamic equations,with the terms of (V_hh)~2 and (V_h~2)h included in the equation.The terms of bot-tom friction,wind energy input and wave nonlinearity are also introduced into the equation.The wind en-ergy input functions for wind waves and swells are separately considered by adopting Wen′s(1989)empiri-cal formula for wind waves and Snyder′s observation results for swells.Thus,an extended mild-slope equa-tion is obtained,in which the effects of refraction,diffraction,reflection,current,bottom friction,wind en-ergy input and wave nonlinearity are considered synthetically.  相似文献   

10.
A numerical model to compute wave field is developed. It is based on the Berkhoff diffraction-refraction equation, in which an energy dissipation term is added, to take into account the breaking and the bottom friction phenomena. The energy dissipation function, by breaking and by bottom friction, is introduced in the Berkhoff equation to obtain a new equation of propagation.The resolution is done with the hybrid finite element method, where lagrangians elements are used.  相似文献   

11.
The present study considers wave scattering phenomena around a cylindrical island mounted on a general axisymmetric topography or a general submerged truncated axi-symmetric shoal based on the mild-slope equation. The method of separation of variables and Taylor series expansion are invoked to find the approximate solution to the variable water depth region which varies proportionally to an arbitrary power of radial distance. Validations against the solutions for the combined wave refraction and diffraction around a cylindrical island mounted on a paraboloidal shoal of Liu et al. in 2004 and the scattering and trapping of wave energy by a submerged truncated paraboloidal shoal of Lin and Liu in 2007 show excellent agreements as the power of radial distance being equal to two. For the solutions of wave refraction and diffraction around a cylindrical island mounted on a shoal with depth proportionally to an arbitrary power of radial distance, good agreements with Zhai et al.'s(2013) solutions are demonstrated. Since the robustness of the assumption of a general axi-symmetric geometry based on an arbitrary power variability of the radial distance, the present solution can be very conveniently employed to investigate the effects of bottom topography on wave scattering and trapping patterns.  相似文献   

12.
多方向不规则波传播变形数值模拟   总被引:2,自引:1,他引:1  
在推广的缓坡方程数学模型基础上建立了多方向不规则波数学模型,综合考虑了波浪折射、绕射、反射、底摩擦和风能输入等因素。基于线性波浪理论,将波浪方向谱在频率和方向上按等能量分割法离散后,分别计算各组成波的传播变形,再计算合成波要素。缓坡方程数学模型采用改进的ADI法求解,计算效率高,稳定性好。采用椭圆形浅滩不规则波模型试验结果和单突堤不规则波绕射理论解对数学模型进行了验证,数值模拟结果和试验值及理论解符合良好。利用该模型进行了某港港内波浪折射、绕射和反射的联合数值模拟,给出了合理的港内波高分布。  相似文献   

13.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

14.
港域波浪数学模型的改进与验证   总被引:2,自引:0,他引:2  
通过物理模型对改进的港内波浪传播变形数学模型进行验证。该数学模型以推广的时变缓坡方程为控制方程,采用含松弛因子的ADI法求解,并对波浪反射和透射边界模拟方法进行改进。先通过物理模型试验确定斜向浪入射条件下抛石防波堤前的波浪反射系数,作为数学模型中部分反射边界模拟的依据。然后进行了一个典型港口内波浪折射、绕射和反射的模型试验,测量港内波浪分布。对比模型试验和数学模型计算的结果表明,数学模型可较好地模拟港内复杂地形和边界条件下规则波和不规则波的传播变形。  相似文献   

15.
This paper presents a technique to generate waves at oblique angles in finite difference numerical models in a rectangular grid system by using internal generation technique [Lee, C., Suh, K.D., 1998. Internal generation of waves for time-dependent mild-slope equations. Coast. Eng. 34, 35–57.] along an arc-shaped line source. Tests were made for four different types of wave generation layouts. Quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 32, 91–117.]. The fourth layout type consisting of two parallel lines connected to a semicircle showed the best solutions, especially for a small grid size. This technique is useful for the numerical simulation of irregular waves with broad-banded directional spectrum using conventional spectral wave models for the reasonable estimation of bottom friction and wave-breaking.  相似文献   

16.
一般曲线坐标系下波浪传播的数值模拟   总被引:9,自引:2,他引:9       下载免费PDF全文
在曲线坐标系下,建立了缓变水深水域波浪传播的数值模拟模型.模型适宜于复杂变化的边界形状,克服了各种代数坐标变换的局限性.在建立模型时,将原始的椭圆型缓坡方程的近似型式——依赖时间变化的抛物型方程,作为控制方程,既克服了一般抛物近似方法的缺点,又便利了方程的求解;从开边界条件、不同反射特性的固壁边界条件相统一的表达式出发,对边界条件进行处理;用ADI法数值求解控制方程.对模型的验证表明,数值解与物模实验值吻合良好,模型对于具有复杂边界的工程实际有较强的适应性.  相似文献   

17.
- This paper considers the effects of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results show that the friction factor formula adopted in this paper is of higher numerical accuracy than that introduced by Dalrymphe (1984), and it can be used to compute wave propagation over large open areas.  相似文献   

18.
基于抛物型缓坡方程模拟近岸植被区波浪传播   总被引:7,自引:2,他引:5       下载免费PDF全文
唐军  沈永明  崔雷 《海洋学报》2011,33(1):7-11
植被对波浪传播运动有重要影响。考虑近岸波浪在植被区传播中的折射、绕射、破碎及植被引起的波能耗损效应,基于抛物型缓坡方程建立了模拟近岸植被区波浪传播的数学模型,对模型进行了数值模拟验证,采用数值模拟试验分析了植被对波浪传播的影响。数值模拟结果表明,波浪在近岸植被区传播时,随着植被密度和植被高度的增加,波浪传播中的波高衰减增大,波能耗损增加;不同周期波浪在植被区传播中的波高衰减过程也明显不同。  相似文献   

19.
Wave-Current Propagation over a Frictional Topography   总被引:1,自引:0,他引:1  
—In this paper the parabolic approximation model based on mild-slope equation is used tostudy wave propagation over a slowly varying and frictional topography under wave-current interaction.A governing equation considering the friction effects is derived by the authors for the first time.A simpli-fied form for the rate of wave energy dissipation is presented on the basis of the wave-current action conser-vation equation and the bottom friction model given by Yoo and O'connor(1987).Examples reveal thatthe present computational method can be used for the calculation of wave elements for actual engineeringprojects with large water areas.  相似文献   

20.
考虑底摩擦的波浪折射计算   总被引:2,自引:0,他引:2  
本文用考虑底摩擦的折射模式计算了浅水中波高和波向分布。作为一个例子,根据不同的摩擦系数和不同的边界条件计算了一种简单海底地形的折射系数、衰减系数和折射角,所得结果与不考虑底摩擦的折射模式结果进行比较,发展它们之间存在一些差异,表明在浅水中底摩擦对波高有一定影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号