首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent robotic missions to Mars have offered new insights into the extent, diversity and habitability of the Martian sedimentary rock record. Since the Curiosity rover landed in Gale crater in August 2012, the Mars Science Laboratory Science Team has explored the origins and habitability of ancient fluvial, deltaic, lacustrine and aeolian deposits preserved within the crater. This study describes the sedimentology of a ca 13 m thick succession named the Pahrump Hills member of the Murray formation, the first thick fine‐grained deposit discovered in situ on Mars. This work evaluates the depositional processes responsible for its formation and reconstructs its palaeoenvironmental setting. The Pahrump Hills succession can be sub‐divided into four distinct sedimentary facies: (i) thinly laminated mudstone; (ii) low‐angle cross‐stratified mudstone; (iii) cross‐stratified sandstone; and (iv) thickly laminated mudstone–sandstone. The very fine grain size of the mudstone facies and abundant millimetre‐scale and sub‐millimetre‐scale laminations exhibiting quasi‐uniform thickness throughout the Pahrump Hills succession are most consistent with lacustrine deposition. Low‐angle geometric discordances in the mudstone facies are interpreted as ‘scour and drape’ structures and suggest the action of currents, such as those associated with hyperpycnal river‐generated plumes plunging into a lake. Observation of an overall upward coarsening in grain size and thickening of laminae throughout the Pahrump Hills succession is consistent with deposition from basinward progradation of a fluvial‐deltaic system derived from the northern crater rim into the Gale crater lake. Palaeohydraulic modelling constrains the salinity of the ancient lake in Gale crater: assuming river sediment concentrations typical of floods on Earth, plunging river plumes and sedimentary structures like those observed at Pahrump Hills would have required lake densities near freshwater to form. The depositional model for the Pahrump Hills member presented here implies the presence of an ancient sustained, habitable freshwater lake in Gale crater for at least ca 103 to 107 Earth years.  相似文献   

2.
《Sedimentology》2018,65(4):993-1042
Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca 10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded.  相似文献   

3.
To study sedimentary phenomena, we introduce random-genetic models in which genetic hypotheses and structural random elements occur for the main part. Starting from geologic hypotheses we choose principal factors which may be random functions or random variables. These factors are: depth, nature of the facies, sedimentation rate, and subsidence. Equations of evolution link the factors. Depth is a Markov process, but generally the resultant sequence does not make a Markov chain or Markov process. Three examples of such models are given with the results of simulations.  相似文献   

4.
The concept of stratigraphic base level, or the ratio between accommodation and sediment supply (A/S ratio), has been used to analyse the Rusty and Canyon Creek Members of the Campanian Ericson Sandstone in the Rock Springs Uplift, SW Wyoming, USA. The Ericson Sandstone was deposited under fluvial to estuarine conditions in a foreland basin setting influenced both by Sevier-style (thrust belt) tectonism and by more local, Laramide-style, foreland uplifts. The depositional setting was situated several tens to a few hundred kilometres from the nearest shoreline. Therefore, sea level change at the contemporaneous shoreline probably had little, if any, influence on the development of the sedimentary architecture. The Rusty Member shows an alternation between incised valleys filled by multi-storey estuarine channel sandstones showing palaeoflow to the south and delta plain sediments with single-storey channels with no evidence of tidal influence, which show palaeoflow to the east. This cyclicity is interpreted as recording repeated uplift of the Wind River Range to the north, causing valley incision and reduction of the A/S ratio. During quiescent periods, the A/S ratio increased allowing the valleys to fill and delta plain conditions to be subsequently re-established because of increased sediment supply from the thrust belt in the west. A regional unconformity at the base of the Canyon Creek Member truncates the Rusty Member, and represents a significant reduction of the A/S ratio caused by Laramide tectonic uplift. The Canyon Creek Member is a multi-storey, multi-lateral fluvial channel sandstone, where channel preservation and thickness increase upwards, suggesting an increase of the A/S ratio. The Canyon Creek Member channels are interpreted to have been sinuous, meandering channels from the observed sedimentary structures and fill patterns, despite their sand-rich nature. It is argued that grain size is a poor indicator of channel planform, and that there was very low preservation potential for fine material because of a relatively low A/S ratio. The top of the Canyon Creek Member is a regionally correlative surface marking an abrupt increase of the A/S ratio. This surface is termed an expansion surface, denoting an abrupt increase in accommodation. The overlying Almond Formation shows a single-storey alluvial architecture with a very high preservation of fine-grained material. An assumed correspondence in time of the Late Absaroka thrust phase in the Sevier belt to the west and the formation of the sharp top of the Canyon Creek Member suggests that the thrust phase caused a basin-wide abrupt increase of subsidence that changed the alluvial architecture. As an alternative to sequence stratigraphic nomenclature defined for strata controlled by shoreline movements, a scheme relating systems tracts and surfaces to changes in stratigraphic base level is proposed. Such a scheme is useful where correlations to shoreline strata are ambiguous or cannot be made, or where tectonics and climate are important controls.  相似文献   

5.
Lithofacies paleogeography is a data-intensive discipline that involves the interpretation and compilation of sedimentary facies. Traditional sedimentary facies analysis is a labor-intensive task with the added complexity of using unstructured knowledge and unstandardized terminology. Therefore, it is very difficult for beginners or non-geology scholars who lack a systematic knowledge and experience in sedimentary facies analysis. These hurdles could be partly alleviated by having a standardized, structured, and systematic knowledge base coupled with an efficient automatic machine-assisted sedimentary facies identification system. To this end, this study constructed a knowledge system for fluvial facies and carried out knowledge representation. Components include a domain knowledge graph for types of fluvial facies (meandering, braided and other fluvial depositional environments) and their characteristic features (bedforms, grain size distribution, etc.) with visualization, a method for query and retrieval on a graph database platform, a hierarchical knowledge tree-structure, a data-mining clustering algorithm for machine-analysis of publication texts, and an algorithm model for this area of sedimentary facies reasoning. The underlying sedimentary facies identification and knowledge reasoning system is based on expert experience and synthesis of publications. For testing, 17 sets literature publications data that included details of sedimentary facies data (bedforms, grain sizes, etc.) were submitted to the artificial intelligence model, then compared and validated. This testing set of automated reasoning results yielded an interpretation accuracy of about 90% relative to the published interpretations in those papers. Therefore, the model and algorithm provide an efficient and automated reasoning technology, which provides a new approach and route for the rapid and intelligent identification of other types of sedimentary facies from literature data or direct use in the field.  相似文献   

6.
Tectonics and climate are the major extrinsic upstream controls on both the external and internal architectures of fluvial channels. While the role of tectonics has been well‐documented, the role of climate has received less attention. Because both tectonics and climate can produce similar stratigraphic architectures, the ability to recognize and differentiate these has major ramifications for the interpretation of fluvial stratigraphy. The Pennsylvanian to Permian succession of the Maritimes Basin complex on Cape Breton Island is ca 5 km thick, and is composed of predominantly non‐marine strata deposited within a series of depocentres characterized by different subsidence regimes. Basins in the west are transtensional depocentres characterized by episodic fault movement. In contrast, basins in the east were formed during prolonged periods of passive thermal subsidence. The stratigraphy is composed of four second‐order sequences (A to D), each 5 to 10 Myr in duration. These sequences are composed of amalgamated fluvial channel deposits that fine upwards into extensive mud‐dominated floodplain deposits with isolated fluvial channel bodies. A spectrum of fluvial styles is recorded within the study area including perennial, perennial/intermittent and ephemeral. Four stratigraphic intervals (E1 to E4) are recognized in which the deposits of strongly seasonal perennial/intermittent fluvial deposits are predominant. These intervals, 2 to 6 Myr in duration, are correlated across the study area between basins with differing tectonic regimes and do not correlate with a particular position in second‐order sequences. This suggests that climate exerted the dominant influence on the formation of these intervals and can be differentiated from tectonic imprints. While the tectonic regime of a particular basin exerted a fundamental control on the external architecture, a coherent record of climate change is recognized in the internal architecture of fluvial units. This study demonstrates that tectonic and climatic controls can be recognized and differentiated in vertical successions by evaluating the changes in fluvial architecture.  相似文献   

7.
Large-scale ignimbrite eruptions from rhyolitic caldera volcanoes can trigger geologically instantaneous changes in sedimentary systems over huge areas by either burying existing environments or overloading them with vast quantities of unconsolidated particulate material. The post-eruption readjustment of the landscape to such perturbations is one of the most dramatic processes in physical sedimentology, exemplified here by the 1.8 ka Taupo eruption in the central North Island of New Zealand. This eruption generated voluminous fall deposits, then climaxed with emplacement of a c. 30 km3 non-welded ignimbrite over a near-circular area of c. 20 000 km2. Approximately 90% of the area, but < 50% of the ignimbrite volume, is represented by a landscape-mantling unit that covered the pre-eruption topography to a depth varying from c. 10 m in proximal areas to less than 15–30 cm distally. The remainder of the ignimbrite deposit is represented by landscape-modifying material that ponded in valley bottoms and depressions to thicknesses of up to 70 m, with no systematic variation in thickness with distance from source.The headwaters of many of the North Island's largest rivers were impacted by both the primary pyroclastic fall and flow material. Large-scale post-eruption remobilisation of this material, coupled with the re-establishment of fluvial systems, occurred in a distinct sequence as recorded by the evolution of sedimentary facies in different sub-environments. Following an initial period dominated by mass flows, re-establishment of fluvial systems began with the headward erosion of box canyons through the ponded ignimbrite deposits, a process often associated with the break-out of temporary lakes. Aggradational streams developed in these channels rapidly evolved from shallow, ephemeral, sediment-laden outbursts associated with flash flood events to deeper, permanent braided rivers, before declining sediment yields led to retrenchment of single thread rivers and a return to pre-eruption gradients and bedloads years to decades later. Typically the modern profile of many streams and rivers follow closely their pre-eruption profiles, and incision and erosion is overwhelmingly confined to the deposits of the eruption itself.Although the general remobilisation pattern is similar for all impacted river systems, detailed studies of the Waikato, Rangitaiki, Mohaka, Ngaruroro and Whanganui catchments show that the relative timing and scale of each eruption response phase differs between each catchment. These reflect differences in catchment physiography and hydrology, and the volume and type of pyroclastic material deposited in each. Ultimately, the landscape response reflects the relative spatial distributions of, and the volumetric ratios between, the volumes of pyroclastic debris, water, and accommodation space in the basin (cf. Kataoka and Manville, this volume).  相似文献   

8.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

9.
Understanding how mud moves and deposits is essential for conceptualizing the dynamic nature of surface environments and their ancient counterparts. Experimental study has largely been pursued by civil engineers, using kaolinite as an active ingredient. Yet, applying their data to the physical comprehension of mudstone sedimentology is hampered by multiple flume configurations between labs, and data sets tailored to specific engineering needs. The need for a better grasp of underlying processes is acute, given recent flume studies that show that moving suspensions form large bedload floccules, migrating floccule ripples and bed accretion under currents capable of moving sand grains. To advance mudstone sedimentology, integrated study of suspended sediment concentration, salinity and bed shear stress on the deposition of floccules is crucial. Described here is a set of tightly controlled experiments that explored suspended sediment concentrations from 70 to 900 mg/l, freshwater, brackish and marine salinities, flow velocities in the 5 to 50 cm/s range (equivalent to 0.01 to 0.58 Pa bed shear), measured the size of in-flow and bedload floccules, and the critical velocity of sedimentation that marks the onset of sustained bedload accumulation. The critical velocity of sedimentation of kaolinite clays is in the 26 to 28 cm/s flow velocity range (0.22 to 0.25 Pa), appears insensitive to a wide range of suspended sediment concentrations and salinities, and coincides with the formation of sand-size bedload floccules. Further decrease of flow velocity/bed shear stress is accompanied by a steady increase in the size of bedload floccules. Large bedload floccules appear to form in the high-shear basal part of the flow, a phenomenon requiring further investigation. Better understanding of the mechanisms that facilitate mud deposition from moving suspensions is critical for more realistic assessments of the depositional conditions of mud and mudstones, as well as for refining predictive models for the flux of fine-grained sediments across the Earth's surface.  相似文献   

10.
11.
The 30 to 155 m thick Early Permian (Artinskian) Warchha Sandstone of the Salt Range, Pakistan is a conglomerate, sandstone and claystone succession within which seven lithofacies types (Gt, St, Sp, Sr, Sh, Fl and Fm) occur in a predictable order as repeated fining-upward cycles. Common sedimentary structures in the conglomerates and sandstones include planar and trough cross-bedding, planar lamination, soft sediment-deformed bedding, compound cosets of strata with low-angle inclined bounding surfaces and lags of imbricated pebbles. Structures in the finer-grained facies include desiccation cracks, raindrop imprints, caliche nodules and bioturbation. Groups of associated facies are arranged into nine distinct architectural elements (channels, gravel bars, sandy bedforms, downstream and laterally accreting barforms, sand sheets, crevasse splays, levees, floodplain units and shallow lakes), which is consistent with a fluvial origin for the succession. The types of architectural elements present and their relationship to each other demonstrate that the Warchha Sandstone preserves a record of a meandering river system that drained the northern margin of Gondwanaland. The dominance of fine-grained (floodplain) facies over gravel-grade (channel-base) facies and the widespread occurrence of large-scale lateral accretion elements supports the interpretation of a high-sinuosity, meandering fluvial system in which channel bodies accumulated via the lateral accretion of point bars but in which the active channels covered only a small part of a broad floodplain at any time instant. Although the regional and temporal distribution of these deposits is complex, in broad terms the lower part is dominated by stacked, multistorey channel bodies, whereas single-storey channel elements isolated in abundant fine-grained floodplain deposits dominate the middle and upper parts of the formation.  相似文献   

12.
第11届国际河流沉积学大会于2017年7月17日-21日在加拿大卡尔加里大学举行,每四年举行一次的国际河流沉积学学术会议,吸引了当今北美、欧洲、澳洲及亚洲从事河流沉积学及相关学科研究的众多知名学者参会,研究成果充分体现了当前国际河流沉积学研究取得的重要进展和发展方向。重要进展有:1)河流动力学及其变化过程研究。其中包括将今论古法论现代河流沉积过程与古老地层对比,河道-洪泛平原体系的越岸复合沉积动力学,河流动力学与变化过程研究展望,恢复河道迁移过程:新一代平面图演化模式的讨论,冲积河流和基岩河流的湍流、颗粒间作用和沉积作用;2)陆缘河流。包括河流入海处的地貌动力学与沉积学,河流补给边缘的沉积物搬运、地貌和地层特征,干旱地区河流、冲积扇体系与风的相互作用,植被生长前、无植物生长、或是植被发育区河流的沉积过程研究;3)河流沉积地层及其地下资源。包括源-汇系统,"河流相模式"是否有用的讨论,辫状河、网状河、曲流河概念的厘定等;4)河流地貌变化。包括气候改变、泥泞植被洪泛平原等对河流沉积物通量、河流模式等产生影响,河道中冲积岛屿的演化和稳定河流的蛇曲化,河流环境中沉积物生物作用等。基于上述资料分析,认为河流演化过程从定性向定量化研究,物理模拟与数值模拟技术是河流沉积学研究不可或缺的手段,应用定量建模、数学计算等方法进行精准研究,碎屑锆石U-Pb定年技术是新一代从源到汇研究的重要工具等诸多方面,是我国学者应该重视并开展研究的方向。  相似文献   

13.
Experiments have been carried out in a model basin 16 × 1·2 × 0·9 m to address the effect of base‐level and discharge changes on actively growing alluvial‐shoreline wedges. Two distinct types of erosive surfaces were investigated: one produced by base‐level fluctuations in the coastal zone and the other by discharge and supply fluctuations in the upstream alluvial basin. In the first experiment, three similar base‐level cycles were simulated keeping sediment supply and basin tilting constant within each cycle, and changing discharge from one cycle to the next. In the second experiment, rises and falls of base level were instantaneous and discharge changes were in phase (high discharge linked to high water levels in the basin). In the third experiment, base level and discharge changed gradually, at different rates and they were out of phase, resembling a typical glacio‐eustatic cycle in which sea‐level rises and falls are linked to increased and decreased discharge, respectively. The resulting stratigraphy of the alluvial to deltaic sedimentary wedge was analysed in terms of the development of unconformities and the evolving depositional geometry. An intervening decoupled zone between parts of the model basin dominated by alluvial processes and that at the coastal zone is identified. Within this decoupled zone, unconformities in the alluvial succession tend to vanish basinward, and base‐level generated coastal unconformities disappear landward. The two types of unconformity can be generated at different times during a glacio‐eustatic cycle, and it is thus erroneous to correlate them, even though they may appear to form a continuous surface. Unconformities within the modelled stratigraphy do not constitute time lines nor do they consistently separate younger from older beds, as they require a significant time to form and they have thick sedimentary packages as depositional correlatives. The experiments also support a fourfold division of sequences, showing the development of a significant sedimentary package during base‐level falls.  相似文献   

14.
The knowledge of Martian salts has gone through substantial changes during the past decades. In the 70th of last century, Viking landers have noticed the existence of salts on Mars. Several salt species have been suggested from then on, such as sulfates and chlorides. However, their origin was a mystery due to the lack of observations. The recent explorations and related studies at the beginning of this century revealed that the crustal composition of Mars is similar to that of Earth, and it was hypothesized that almost one third of Martian surface was covered by oceans and lakes in the early stage of Mars. The huge water bodies may have dissolved a large quantity of ions from Martian primary rocks during the whole Noachian and Hesperian epoch. After the enormous drought event happened during the late Hesperian and the early Amazonian, these dissolved ions have formed huge salts deposits and most of them were preserved on Mars until today. To date, carbonates, sulfates, chlorides have all been detected by orbital remote sensing and by landers and rovers. However, the salt mineral assemblages on Mars seems to have some differences from those on Earth, e.g., rich in sulfates and lack of massive carbonates. To explain this difference, we propose that most of the surface carbonates precipitated from the ancient oceans may have been dissolved by the later ubiquitous acidic fluids originated from the global volcanism in the Hesperian era, and formed the enormous sulfate deposits as detected, and this hypothesis seems to be supported by the evidence that most of the sulfate deposits distribute around the Tharsis volcanic province while the survived carbonates located far from it. This process can release most of the carbon on Mars to the atmosphere in the form of CO2 and then be erased by the late heavy bombardments, which might have profound influence on the climate change happened in the Hesperian age. The positive correlation between the GRS results of the potassium distributions and the distribution of chlorides on Mars, together with the high Br concentration measured from the evaporate sediments at two Mars exploration rover landing sites, indicate that the brines in the regions where the chlorides deposited may have reached the stage for potassium salts deposition, thus we propose for the first time that potassium salts deposits might be prevalent in these regions.  相似文献   

15.
Better methods for interpreting grain‐size spectra will enhance current understanding of past transport–depositional processes. A high‐resolution inorganic grain‐size dataset has been measured from a freeze core extracted from ‘Alberta Lake E’ a boreal fresh water lake 40 km east of the Athabasca Oil Sands in north‐eastern Alberta, Canada. The grain‐size spectra are remarkably consistent throughout the core, exhibiting a structure comprising six persistent grain‐size distributions below ca 250 μm, plus a rare medium‐sand distribution. Automated deconvolution of the grain‐size spectra produced poor results. Constraining the modes of two of the distributions produced deconvolution solutions that were statistically excellent and consistent with the structure of each spectrum. Statistical analysis of the ‘constrained’ solutions indicates that deconvolution successfully extracted independent grain‐size populations. Conversely, the multimodal spectra generate traditional measures (for example, mean grain size) that are inconsistent combinations of different individual populations and thus are poor proxies of transport–depositional processes. Alberta Lake E is situated in a boreal wetland landscape where sediment delivery is dominated by overland flow transport during spring melt. This context means that the Alberta Lake E grain‐size spectra can be interpreted to reflect: (i) a bedload component transported during short‐duration high discharge events that reflect the intensity of the melt; and (ii) a finer suspended load component representing material whose magnitude is controlled by the volume of the spring melt. Stratigraphically, bedload and suspended load populations demonstrate different short‐wavelength and long‐wavelength cyclicity, suggesting that spring melt is likely to be driven by cyclic external forcing factors. The links between the grain‐size spectra and spring melt have potential for generating proxy records that better capture the external controls over spring melt in boreal systems and the risks associated with these energetic hydrodynamics. This is exemplified by the coarsest Alberta Lake E distributions, which indicate that more intense spring‐melt dynamics occurred in pre‐historical times.  相似文献   

16.
Sediments have been used to detect sources of contamination in a catchment of the Port Jackson (Sydney Harbour) estuary and to evaluate the effects of different land-use practices on the fluvial environment. Mean enrichment (mean concentrations over pre-anthropogenic background) of size-normalized (<62.5 μm) aquatic sediment is 10 × for Cu, 20× for Pb and 90× for Zn adjacent to industrialized areas and 2×, 7× and 7×, respectively for these metals in highly urbanized subcatchments. Diffuse sources contribute minor metals to fluvial sediment even in the most underdeveloped subcatchment (2×, 3× and 3× for Cu, Pb and Zn respectively). Organochlorine pesticide residue concentrations parallel heavy-metal trends due to a common mixed industrial base. Effects-based sediment criteria suggest that some adverse biological impacts are probably occurring in streams flowing through the industrial areas. This interpretation is supported by sequential extraction data which show that a moderate proportion of total heavy metals, especially Zn, is associated with the more bioavailable exchangeable/adsorbed phases in these aquatic sediments. High total suspended solid loads in water downstream of one of the industrial centers, and high particle-bound Cu and Pb concentrations, suggest that most contaminants exiting the catchment do so in association with the solid phase. Received: 29 March 1999 · Accepted: 30 August 1999  相似文献   

17.
《Sedimentology》2018,65(2):492-516
Pre‐vegetation fluvial channels have long been considered predominantly sheet‐like in geometry, owing to hydraulic sections that rapidly widened rather than incise during floods. This motif has been paralleled to that of modern dryland rivers subject to sharp discharge fluctuations during ephemeral floods. However, a number of Precambrian fluvial successions have been recently appraised as the product of deep‐channelled systems characterized by relatively stable – probably perennial – discharge regimes. One such example is the ca 1·0 Ga Applecross Formation, part of the well‐studied Torridon Group of Scotland. To contribute to this debate and to provide refined morphodynamic models for the Applecross Formation, this article presents an integration of three‐dimensional photogrammetry and outcrop sedimentology applied to key exposures at Stoer Peninsula, north‐western Scottish Highlands. Analysis of selected sandbodies reveals that high‐relief fluvial sand bars, both mid‐channel and bank‐attached, evolved within deep, braided‐channel belts. These bars grew through complex mechanisms of accretion and reactivation related to different flood stages: upstream and downstream accretion probably occurred during waning‐flood stages characterized by high hydrograph levels and abundant sediment availability; lateral accretion took place during later waning‐flood stages, and it was associated in some cases with helical recirculation and increase in bend sinuosity. Overall, the depicted morphodynamics are consistent with prolonged flood events that cannot be reconciled with sharply fluctuating discharge regimes. Critical comparisons between the internal geometry of the studied bars and modern counterparts corroborate the findings herein. Thus, this study recommends stricter comparisons between the products of modern braided channels and Precambrian fluvial rock records featuring thick and well‐developed bar forms.  相似文献   

18.
The 1918 eruption of the glacially capped Katla volcano, southern Iceland, generated a violent jökulhlaup, or glacial outburst flood, inundating a large area of Mýrdalssandur, the proglacial outwash plain, where it deposited ca 1 km3 of volcaniclastic sediment. The character of the 1918 jökulhlaup is contentious, having been variously categorized as a turbulent water flow, a hyperconcentrated flow or as a debris flow, based on localized outcrop analysis. In this study, outcrop‐based architectural analyses of the 1918 deposits reveal the presence of lenticular and tabular bedsets associated with deposition from quasi‐stationary antidunes and down‐current migrating antidunes, and from regular based bedsets, associated with transient chute‐and‐pool bedforms, all of which are associated with turbulent, transcritical to supercritical water flow conditions. Antidune wavelengths range from 24 to 96 m, corresponding to flow velocities of 6 to 12 m sec?1 and average flow depths of 5 to 19 m. This range of calculated flow velocities is in good agreement with estimates made from eyewitness accounts. Architectural analysis of the 1918 jökulhlaup deposits has led to an improved estimation of flow parameters and flow hydraulics associated with the 1918 jökulhlaup that could not have been achieved through localized outcrop analysis. The observations presented here provide additional sedimentological and architectural criteria for the recognition of deposits associated with transcritical and supercritical water flow conditions. The physical scale of sedimentary architectures associated with the migration of bedforms is largely dependent on the magnitude of the formative flow events or processes; sedimentary analyses must therefore be undertaken at the appropriate physical scale if reliable interpretations, regarding modes of deposition and formative flow hydraulics, are to be made.  相似文献   

19.
McEachern's Deathtrap Cave (G—49/50) is located in the Lower Glenelg region of southeastern Australia and records a Late Pleistocene to Holocene sedimentary record that has been directly influenced by surface processes during its formation. The sedimentary sequence contained within the cave is divided into lower, middle and upper sequences consisting of eight facies. The lower sequence represents the earliest phase of sedimentation, and groundwater fluctuations during the Last Interglacial period resulted in its erosion and redistribution deeper into the cave system. A decrease in the magnitude and frequency of flood events in the cave during the formation of the middle sequence indicates increasingly drier surface conditions prior to the Last Glacial Maximum. The middle sequence has a minimum age of 9840 ± 290 a BP. Moving sand sheets during the Last Glacial blocked the entrance to the cave allowing flowstones to develop on the cave floor. The surface environment surrounding the cave was probably not as dry as contemporaneous inland sites because sedimentation continued to be dominated by flowing water during this period. Holocene sedimentation is represented by the upper sequence and reflects wetter cave conditions between 7680 ± 160 a BP and 5700 ± 110 a BP. A major phase of sediment accretion occurs after 5700 a BP and correlates to a phase of dune instability in the Lower Glenelg region. Flowing water remodelled the sediment cone sometime after 2240 ± 100 a BP, which represents a period of increased surface runoff, although it is not clear whether this is due to climatic or anthropogenic influences.  相似文献   

20.
火星是太阳系中早期演化历史与地球非常相似的一颗行星,为了解火星的古气候环境以及火星是否存在过生命,火星的水环境历史一直是人们研究的热点问题.本文从火星历史上水对火星表面的改造痕迹介绍了水在火星演化过程中扮演的重要角色.水流、冰川、古湖泊与古海洋等与火星表面地形地貌演化以及矿物岩石形成与迁移过程等密切相关,它们的发育与消...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号