首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Glaciers are the most important fresh-water resources in arid and semi-arid regions of western China. According to the Second Chinese Glacier Inventory (SCGI), primarily compiled from Landsat TM/ETM+ images, the Qilian Mountains had 2684 glaciers covering an area of 1597.81±70.30 km2 and an ice volume of ~84.48 km3 from 2005 to 2010. While most glaciers are small (85.66% are <1.0 km2), some larger ones (12.74% in the range 1.0–5.0 km2) cover 42.44% of the total glacier area. The Laohugou Glacier No.12 (20.42 km2) located on the north slope of the Daxue Range is the only glacier >20 km2 in the Qilian Mountains. Median glacier elevation was 4972.7 m and gradually increased from east to west. Glaciers in the Qilian Mountains are distributed in Gansu and Qinghai provinces, which have 1492 glaciers (760.96 km2) and 1192 glaciers (836.85 km2), respectively. The Shule River basin contains the most glaciers in both area and volume. However, the Heihe River, the second largest inland river in China, has the minimum average glacier area. A comparison of glaciers from the SCGI and revised glacier inventory based on topographic maps and aerial photos taken from 1956 to 1983 indicate that all glaciers have receded, which is consistent with other mountain and plateau areas in western China. In the past half-century, the area and volume of glaciers decreased by 420.81 km2 (–20.88%) and 21.63 km3 (–20.26%), respectively. Glaciers with areas <1.0 km2 decreased the most in number and area recession. Due to glacier shrinkage, glaciers below 4000 m completely disappeared. Glacier changes in the Qilian Mountains presented a clear longitudinal zonality, i.e., the glaciers rapidly shrank in the east but slowly in the central-west. The primary cause of glacier recession was warming temperatures, which was slightly mitigated with increased precipitation.  相似文献   

2.
Glacier mass balance and mass balance gradient are fundamentally affected by changes in glacier 3D geometry. Few studies have quantified changing mountain glacier 3D geometry, not least because of a dearth of suitable spatiotemporally distributed topographical information. Additionally, there can be significant uncertainty in georeferencing of historical data and subsequent calculations of the difference between successive surveys. This study presents multiple 3D glacier reconstructions and the associated mass balance response of Kårsaglaciären, which is a 0.89 ± 0.01 km2 mountain glacier in sub‐arctic Sweden. Reconstructions spanning 101 years were enabled by historical map digitisation and contemporary elevation and thickness surveys. By considering displacements between digitised maps via the identification of common tie‐points, uncertainty in both vertical and horizontal planes were estimated. Results demonstrate a long‐term trend of negative mass balance with an increase in mean elevation, total glacier retreat (1909–2008) of 1311 ± 12 m, and for the period 1926–2010 a volume decrease of 1.0 ± 0.3 × 10–3 km3 yr–1. Synthesising measurements of the glaciers’ past 3D geometry and ice thickness with theoretically calculated basal stress profiles explains the present thermal regime. The glacier is identified as being disproportionately fast in its rate of mass loss and relative to area, is the fastest retreating glacier in Sweden. Our long‐term dataset of glacier 3D geometry changes will be useful for testing models of the evolution of glacier characteristics and behaviour, and ultimately for improving predictions of meltwater production with climate change.  相似文献   

3.
Glaciers are one of the most important land covers in alpine regions and especially sensitive to global climate change. Remote sensing has proved to be the best method of investigating the extent of glacial variations in remote mountainous areas. Using Landsat thematic mapping (TM) and multi-spectral-scanner (MSS) images from Mt. Qomolangma (Everest) National Nature Preserve (QNNP), central high Himalayas for 1976, 1988 and 2006, we derived glacial extent for these three periods. A combination of object-oriented image interpretation methods, expert knowledge rules and field surveys were employed. Results showed that (1) the glacial area in 2006 was 2710.17 ± 0.011 km2 (about 7.41% of the whole study area), and located mainly to the south and between 4700 m to 6800 m above sea level; (2) from 1976 to 2006, glaciers reduced by 501.91 ± 0.035 km2 and glacial lakes expanded by 36.88 ± 0.035 km2; the rate of glacier retreat was higher in sub-basins on the southern slopes (16.79%) of the Himalayas than on the northern slopes (14.40%); most glaciers retreated, and mainly occurred at an elevation of 4700–6400 m, and the estimated upper limit of the retreat zone is between 6600 m and 6700 m; (3) increase in temperature and decrease in precipitation over the study period are the key factors driving retreat.  相似文献   

4.
1973-2010年阿尔金山冰川变化   总被引:3,自引:0,他引:3  
祝合勇  杨太保  田洪阵 《地理研究》2013,32(8):1430-1438
利用1973 年MSS、1999 年ETM+和2010 年TM遥感影像资料,通过遥感图像处理和GIS技术,提取了阿尔金山地区三个时期的冰川信息,同时结合周边气象资料进行分析。结果表明:① 1973-2010 年,研究区冰川面积从347.99 km2 减少到293.77 km2,退缩了54.22km2,占1973 年冰川总面积的15.58%,年均退缩速率为0.42%·a-1。近10 年来冰川退缩尤为剧烈,年均退缩速率达到0.58%·a-1;② 研究区东段冰川退缩速率快于中段和西段;③ 冰川规模越小,退缩越明显;④ 研究区东坡冰川的面积退缩率最大,北坡次之,东南坡最小;⑤ 气温升高和降水在波动中变化不大是造成研究区冰川退缩的主要原因;⑥ 通过分形理论对研究区冰川空间结构特征进行分析,预计研究区冰川今后的消融速率仍将处于较高状态。  相似文献   

5.
新疆阿勒泰地区2002-2011年地表水资源变化趋势   总被引:1,自引:0,他引:1  
在RS技术支持下,应用气象数据(主要为气温、降水)、基础地理数据及2002-2011年时间序列的Landsat TM、ETM+、MODIS/Terra+Aqua MCD43A4遥感影像产品,对阿勒泰地区地表水资源时空变化特征进行了分析,探索气象因素影响下阿尔泰山冰川积雪和地表水资源之间的相互作用。结果表明:在研究时段内,阿尔泰山6月2日的冰川积雪面积呈波动增加趋势,8月21日的冰川积雪面积则呈波动减少趋势。从景观格局的特征来看,随着夏季冰雪融水量增加,水资源量总体呈上升趋势,在研究时段内水域总面积增加了57.91 km2,增加面积主要来源于湖泊和水库,2011年的湖泊和水库面积分别为1 044.33 km2和196.27 km2,比2002年分别增加了16.67 km2和101.79 km2;沼泽湿地和坑塘湿地的面积变化呈一定的起伏,2002-2011年间面积分别减少了35.91 km2和24.27 km2,湖泊和水库的破碎度较低,沼泽湿地、河流和坑塘湿地的破碎度高,表明沼泽湿地、河流和坑塘湿地对气象因素变化较敏感。  相似文献   

6.
The Heihe River Basin is the second largest inland river basin in Northwest China and it is also a hotspot in arid hydrology, water resources and other aspects of researches in cold regions. In addition, the Heihe River Basin has complete landscape, moderate watershed size, and typical social ecological environmental problems. So far, there has been no detailed assessment of glaciers change information of the whole river basin. 1:50,000 topographic map data, Landsat TM/ETM+ remote sensing images and digital elevation model data were used in this research. Through integrated computer automatic interpretation and visual interpretation methods, the object-oriented image feature extraction method was applied to extract glacier outline information. Glaciers change data were derived from analysis, and the glacier variation and its response to climate change in the period 1956/1963–2007/ 2011 were also analyzed. The results show that:(1) In the period 1956/1963–2007/2011, the Heihe River Basin's glaciers had an evident retreat trend, the total area of glaciers decreased from 361.69 km2 to 231.17 km~2; shrinking at a rate of 36.08%, with average single glacier area decrease 0.14 km~2; the total number of the glaciers decreased from 967 to 800.(2) Glaciers in this basin are mainly distributed at elevations of 4300–4400 m, 4400–4500 m and 4500–4600 m; and there are significant regional differences in glaciers distribution and glaciers change.(3) Compared with other western mountain glaciers, glaciers retreat in the Heihe River Basin has a higher rate.(4) Analysis of the six meteorological stations' annual average temperature and precipitation data from 1960 to 2010 suggests that the mean annual temperature increased significantly and the annual precipitation also showed an increasing trend. It is concluded that glacier shrinkage is closely related with temperature rising, besides, glacier melting caused by rising temperatures greater than glacier mass supply by increased precipitation to  相似文献   

7.
Hooker Glacier in the central Southern Alps of New Zealand has undergone significant downwasting and recession (~2.14 km) during the last two centuries. High retreat rates (51 m a?1 1986–2001, 43 m a?1 2001–2011) have produced a large (1.22 km2) proglacial lake. We present a retreat scenario for Hooker Glacier. A retreat scenario predicts that the glacier terminus will stabilise >3 km up‐valley of the current lake outlet after 2028 when ice velocity equals calving rate.  相似文献   

8.
近50年气候变化背景下中国西部冰川面积状况分析(英文)   总被引:3,自引:1,他引:2  
Based on the glacier area variation records in the typical regions of China moni-tored by remote sensing, as well as the meteorological data of air temperature and precipitation from 139 stations and the 0℃ isotherm height from 28 stations, the glacier area shrinkage in China and its climatic background in the past half century was discussed. The initial glacier area calculated in this study was 23,982 km2 in the 1960s/1970s, but the present area was only 21,893 km2 in the 2000s. The area-weighted shrinking rate of glacier was 10.1%, and the interpolated annual percentage of area changes (APAC) of glacier was 0.3% a-1 since 1960. The high APAC was found at the Ili River Basin and the Junggar Interior Basin around the Tianshan Mountains, the Ob River Basin around the Altay Mountains, the Hexi Interior Basin around the Qilian Mountains, etc. The retreat of glacier was affected by the climatic background, and the influence on glacier of the slight-increased precipitation was counteracted by the significant warming in summer.  相似文献   

9.
Zhang  Zhengyong  Liu  Lin  He  Xinlin  Li  Zhongqin  Wang  Puyu 《地理学报(英文版)》2019,29(1):101-114

Mountain glaciers, which perform a unique and irreplaceable ecological service, provide the material basis and characteristic cultural foundation of the ecological environment and sustainable socio-economic development in arid areas. However, few studies have estimated the service value of glaciers in regulating ecological environment and providing human welfare. According to the statistics of the First and Second Chinese Glacier Inventory (FCGI/SCGI), this study analyzed the variations in glacier area and ice volume in the Tianshan Mountains in China and modeled the ecosystem service function of mountain glaciers. The service value per unit area and equivalent factor methods were combined to determine the annual value of the ecological service provided by glaciers in the study area. The results show that: (1) In the period 1970–2010, the glacier area decreased by 1274 km2 (the ratio of area shrinkage was 13.9%) and the annual average decrease in ice volume was 4.08×109 m3. The increase in glacier area at high altitudes (> 5200 m) may be due to the fact that glacier accumulation caused by increasing precipitation is greater than glacier melting caused by rising temperatures. (2) The annual value of the ecological service provided by glaciers in the study area is 60.2 billion yuan. The values of climate regulation, hydrological regulation, and freshwater resource supply account for 66.4%, 21.6%, and 9.3% of the total value respectively. The annual value of the ecological service provided by hydroelectric power is 350 million yuan. (3) From a comparative analysis of the glaciers, forest, grassland and wetland ecosystems, the supply of freshwater resources/physical production and ecological regulation represent the main contributions of the four types of system, and the ecosystem service value of glaciers per unit area is higher than that of other types of ecosystem. This research will improve the understanding of the impact of glaciers on human welfare and maintenance of the ecological environment and will promote the ecological security of the cryosphere, environmental protection, and the sustainable use of resources.

  相似文献   

10.
Glacier mass balance is a key component of glacier monitoring programs. Information on the mass balance of Sawir Mountains is poor due to a dearth of in-situ measurements. This paper introduces the applicability of an ultra-long-range terrestrial laser scanner(TLS) to monitor the mass balance of Muz Taw Glacier, Sawir Mountains, China. The Riegl VZ?-6000 TLS is exceptionally well-suited for measuring snowy and icy terrain. Here, we use TLS to create repeated high spatiotemporal resolution DEMs, focusing on the annual mass balance(June 2, 2015 to July 25, 2016). According to TLS-derived high spatial resolution point clouds, the front variation(glacier retreat) of Muz Taw Glacier was 9.3 m. The mean geodetic elevation change was 4.55 m at the ablation area. By comparing with glaciological measurements, the glaciological elevation change of individual stakes and the TLS-derived geodetic elevation change of corresponding points matched closely, and the calculated balance was-3.864±0.378 m w.e.. This data indicates that TLS provides accurate results and is therefore suitable to monitor mass balance evolution of Muz Taw Glacier.  相似文献   

11.
Presented are the results obtained from radar profiling of the Peretolchin glacier in the Munku-Sardyk mountain range in the south of Siberia (June 2014 and May 2016) using georadar OKO-2 with the ABDL Triton antenna unit operating at the radiation frequency of 50 and 100 MHz. The ice thickness was determined from the profiles and the ice volumes from the cross-sectional areas and distances between profiles. The ice volume was calculated for the body of the Peretolchin glacier to be 0.007 ± 0.0019 km3. An analytical method was also used to determine the ice volume according to the type and area of glacier. It is established that the correlation between the glacier volume and area is expressed by a power function V = kS p . The mean ice volume, calculated with due regard for different coefficients, was 0.0061 km3. The GlabTop model that assumes the cross-sectional form of the glacier was used to infer the ice volume: the mean volume for two cross-sections (parabolic and elliptic) was 0.0073 km3. It is found that over 110 years since the start of the investigation into the morphology of the Peretolchin glacier, it has increased twice in its length and in area, its volume has decreased by a factor of 3.7, and the lower boundary of the open part of the glacier has risen 184 meters during that period.  相似文献   

12.
Glaciers in the Altai Mountains of Mongolia provide an estimated 11% of the total water resources within the country. Yet, their number and area in inconsistent. Using satellite imagery acquired from Landsat 4, 5, and 7, and SRTM digital elevation model (DEM) data, we present here an intuitive, robust, and inexpensive methodology to map the exposed ice of glaciers in the Altai Mountains for the period 1989 to 2011. The total glacierized area was 515 km2 in 1989/1991, 428 km2 in 1998/2001, and 372 km2 in 2010/2011; it decreased by 17% from 1989/1991 to 1998/2001, 13% from 1998/2001 to 2010/2011, and 28% for the entire period 1989/1991 to 2010/2011. In analyzing a sub‐sample of 260 glaciers, 6% advanced, 11% were stable, and 83% receded from 1989 to 2011. The glacier dataset is available to the public free of charge at the Global Land Ice Measurements from Space (GLIMS) website.  相似文献   

13.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

14.
Although Himalayan glaciers are of particular interest in terms of future water supplies, regional climate changes, and sea-level rises, little is known about them due to lack of reliable and consistent data. There is a need for monitoring these glaciers to bridge this knowledge gap and to provide field measurements necessary to calibrate and validate the results from different remote sensing operations. Therefore, glaciological observations have been carried out by the Cryosphere Monitoring Project(CMP) since September 2011 on Rikha Samba Glacier in Hidden valley, Mustang district in western Nepal in order to study its annual mass balance. This paper presents the first results of that study. There are 10 glaciers in Hidden Valley, named G1, G2, G3, up to G10. Of these, G5 is the Rikha Samba Glacier, which has the largest area(5.37 km2) in this valley and the highest and lowest altitudes(6,476 and 5,392 m a.s.l., respectively). The glacier mass balance discussed in this paper was calculated using the glaciological method and the equilibrium line altitude(ELA). The glacier showed a negative annual point mass balance along the longitudinal profile of its lower part from September 10, 2011 to October 3, 2012. Stake measurements from October 4, 2012 to September 30, 2013 indicated a negative areal average of annual mass balance-0.088±0.019 m w.e. for the whole glacier. Based on these observations, the ELA of the Rikha Samba Glacier is estimated at 5,800 m a.s.l. in 2013. This negative balance may be due to rising air temperatures in the region, which have been incrementally rising since 1980 accompanied by little or no significant increase in precipitation in that period. The negative mass balance confirms the general shrinking trend of the glacier.  相似文献   

15.
In July, 2009, we investigated the Ningchan River Glacier No. 3. A control network was established around the glacier and the expedition used a GPS-RTK to measure glacial area, terminal and surface altitude, and used an EKKO GPR to measure glacier thickness. We used a topographic map based on 1972 aerial photo, two TM images in 1995, 2009, and GPS-RTK data in 2009, to analyze the change of the Ningchan River Glacier No. 3 since 1972. Through analysis we found this glacier has been seriously shrinking over the past 37 years. The glacier terminal retreated about 6%, the area was reduced about 13.1%, the volume was reduced about 35.3%, and glacier shrinkage is mainly in the form of thinning. Glacier average thickness reduced from 36.8 m in 1972, to 27.4 m in 2009. Meteorological data around the study area shows that this region in recent decades has undergone differential warming which is the main reason for rapid glacier shrinkage.  相似文献   

16.
The shortage of fresh water in Turkmenistan may be partially alleviated by runoff water from takyrs. However, anthropogenic degradation of takyrs over the past few decades has reduced their efficacy as catchment areas. The main goal of this study was to map the spatial extent of takyrs and their change over time. Digital image processing of Landsat MSS and Landsat 7 ETM+ images were used to identify, map and classify the takyrs and estimate their overall area and degradation rates. Thereafter, a change detection procedure was applied. Results retrieved from Landsat MSS images of southern Turkmenistan (1972-1975) showed a total area of non-degraded takyr surfaces of ∼20,000 km2, whereas those from Landsat 7 ETM+ images (2002-2003) showed a total non-degraded takyr area of ∼16,000 km2. These include ∼8000 km2 which were degraded and ∼4000 km2 that were only detected by the ETM+ due to its improved spectral resolution. Accuracy was assessed by comparing the Landsat results with higher spatial resolution images of QuickBird. Additional ground points located with GPS measurements validated the classification results. We were thus able to assess the takyr areas degraded over the past decades, and find ∼16,000 km2 of non-degraded takyrs suitable for water harvesting.  相似文献   

17.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

18.
Geografisk Tidsskrift, Danish Journal of Geography 108(1):121–136, 2008

SnowModel, a physically-based snow evolution modeling system that includes four submodels—MicroMet, EnBal, SnowPack, and SnowTran-3D—was used to simulate eight full-year (1998/99 through 2005/06) evolutions of snow accumulation, blowing snow sublimation, evaporation, snow and ice surface melt, runoff, and mass changes on the entire Mittivakkat Glacier (31 km2) in southeast Greenland. Meteorological observations from two meteorological stations inside the glacier catchment were used as model input, and glaciological mass balance observations were used for model calibration (1998/99 through 2001/02) and validation (2002/03 through 2005/06) of winter snow simulations. As confirmed by observations, the spatially modeled end-of-winter snow water equivalent (SWE) accumulation increased with elevation up to 700–800 m a.s.l. in response to elevation, topography, and dominating wind direction, and maximum snow deposition occurred on the lee side of the ridge east and south of the glacier. Simulated end-of-summer cumulative runoff decreased with elevation and minimum runoff occurred on the shadowed side of the ridge east and south of the glacier. The modeled test period averaged annual mass balance was 65 mm w. eq. y?1 or ~8% more than the observed. For the simulation period, the glacier net mass balance varies from -199 to -1,834 mm w.eq. y?1, averaging -900 (±470) mm w.eq.y?1. The glacier averaged annual modeled precipitation ranged from 1,299 to 1,613 mm w.eq. y?1, evaporation and sublimation from 206 to 289 mm w.eq., and runoff from 1,531 to 2,869 mm w.eq. y?1. The model simulated Mittivakkat Glacier net loss of900 mm w.eq. y?1 contributes approximately 42% to the average simulated runoff of 2,140 mm w.eq. y?1, indicating a mean specific runoff of 67.8 l s?1 km?2.  相似文献   

19.
Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990–1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. The difference between radio-echo sounding depth and measured drilling depth was about 4 m. Annual ablation (including snow, firn, and ice) measured for the 1990–1991 period averaged about 0.93 m/a. Densification proceeds rapidly on Upper Fremont Glacier. Measured densities in the near-surface parts of the glacier ranged from 4.4 x 105 g/m3 at the surface to larger than 8.5 x 105 g/m3 at depths exceeding 14 m. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. The yearly mean air temperature of the study site during the period from July 11, 1990 to July 10, 1991 was -6.9°. Borehole temperatures from 10-m depths are 0 ± 0.4°. The warmer borehole temperatures relative to the yearly mean air temperature may be caused by the latent heat of freezing, as meltwater from the surface percolates into the glacier and refreezes. [Key words: glaciers, Wyoming, Wind River Range, ice thickness, ablation rates.]  相似文献   

20.
We initially estimated the cropland area at county level using local historical documents for the Songnen Plain (SNP) in the 1910s and 1930s. We then allocated this cropland area to grid cells with a size of 1 km × 1 km, using a range of cultivation possibilities from high to low; this was based on topography and minimum distances to rivers, settlements, and traffic lines. Cropland areas for the 1950s were obtained from the Land Use Map of Northeast China, and map vectorization was performed with ArcGIS technology. Cropland areas for the 1970s, 1980s, 1990s, 2000s, and 2010s were retrieved from Landsat images. We found that the cropland areas were 4.92 × 104 km2 and 7.60 × 104 km2, accounting for 22.8% and 35.2% of the total area of the SNP in the 1910s and 1930s, respectively, which increased to 13.14 × 104 km2, accounting for 60.9% in the 2010s. The cropland increased at a rate of 1.18 × 104 km2 per decade from the 1910s to 1970s while it was merely 0.285 × 104 km2 per decade from the 1970s to 2010s. From the 1910s to 1930s, new cultivation mainly occurred in the central SNP while, from the 1930s to 1970s, it was mainly over the western and northern parts. This spatially explicit reconstruction could be offered as primary data for studying the effects of changes in human-induced land cover based on climate change over the last century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号