首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterogeneities in terrestrial samples for 182W/183W and 142Nd/144Nd are only preserved in Hadean and Archean rocks while heterogeneities in 129Xe/130Xe and 136Xe/130Xe persist to very young mantle‐derived rocks. In contrast, meteorites from Mars show that the Martian mantle preserves heterogeneities in 182W/183W and 142Nd/144Nd up to the present. As a consequence of the probable “deep magma ocean” core formation process, we assume that the Earth and Mars both had a very early two‐mantle‐reservoir structure with different initial extinct nuclide isotopic compositions (different 182W/183W, 142Nd/144Nd, 129Xe/130Xe, 136Xe/130Xe ratios). Based on this assumption, we developed a simple stochastic model to trace the evolution of a mantle with two initially distinct layers for the extinct isotopes and its development into a heterogeneous mantle by convective mixing and stretching of these two layers. Using the extinct isotope system 182Hf‐182W, we find that the mantles of Earth and Mars exhibit substantially different mixing or stirring rates. This is consistent with Mars having cooled faster than the Earth due to its smaller size, resulting in less efficient mantle mixing for Mars. Moreover, the mantle stirring rate obtained for Earth using 182Hf‐182W is consistent with the mantle stirring rate of ~500 Myr constrained by the long‐lived isotope system, 87Rb‐87Sr and 147Sm‐143Nd. The apparent absence of 182W/183W isotopic heterogeneity in modern terrestrial rocks is attributed to very active mantle stirring which reduced the 182W/183W isotopic heterogeneity to a relatively small scale (~83 m for a mantle stirring rate of 500 Myr) compared to the common sampling scale of terrestrial basalts (~30 or 100 km). Our results also support the “deep magma ocean” core formation model as being applicable to both Mars and Earth.  相似文献   

2.
Craters on the Earth, Mars, and the Moon show a spectrum of morphologies with diameter increasing from simple, bowl-shaped craters through craters with increasingly complex central peaks, to craters with “peak rings” and basins with multiple concentric scarps. In each category there is a range of diameters, centered around a characteristic diameter, Dc. It is found that Dc decreases as the size of the planet increases. Several possible explanations are considered. It is suggested that the effect results from a gravity scaling law derived here and having approximately from the Dc 1/g1.25, where g is the surface gravity. All geological structures in which gravity is the dominant parameter affecting the morphology should follow such a law.  相似文献   

3.
Abstract— Highly silicic glass inclusions are commonly present in mafic minerals of xenolithic terrestrial upper mantle rocks (Schiano and Clocchiatti, 1994). They are believed to be the products of volatile-rich silicic melts for which several sources have been proposed (Francis, 1976; Frey and Green, 1974; Schiano et al, 1995), but their origin(s) and, consequently, that of the glasses, remains unknown. However, in situ formation by very low-degree partial melting seems to be possible as has been shown by experiments (e.g., Baker et al, 1995; Draper and Green, 1997). Glass inclusions of silicic chemical composition are also present in some mafic minerals of achondritic meteorites (e.g., Fuchs, 1974; Okada et al, 1988; Johnson et al, 1991). The enstatite achondrites (aubrites) Aubres and Norton County, which record early planetesimal and planet formation in the solar nebula, and the olivine achondrite (chassignite) Chassigny, a rock believed to originate from Mars, contain abundant glass inclusions in their main minerals enstatite and olivine, respectively. Glasses of glass-bearing inclusions have a highly silicic and volatile-rich chemical composition similar, but not identical, to that of glass inclusions in terrestrial upper mantle peridotite minerals. Furthermore, glass inclusions in olivines from the Moon (e.g., Roedder and Weiblen, 1977) are also silica-rich. Because different physicochemical conditions prevail in the source regions of these rocks, the process of melting is, perhaps, not generally applicable for the generation of silica-rich glasses. Alternatively, the glasses could have been formed via precipitation from silicate-loaded fluids (Schneider and Eggler, 1986) or vapors. Another possible mechanism, not previously identified, could be dehydrogenation of nominally nonhydrous mafic minerals by heating or depressurization that should be accompanied by expulsion of excess silica and incompatible elements. This process will mimic low-temperature, very low-degree partial melting. It could account also for the highly variable glass/bubble ratios observed in glass inclusions in aubrite enstatites. We suggest that such a process could have been operating in the solar nebula, the Moon and Mars, and could be operating still on Earth.  相似文献   

4.
A planet the size of the Earth or the Moon is much like a blast furnace; it produces slag-like rock floating on a mass of liquid metal. In the Earth, the mantle and crust are the slag, and the core is the liquid iron.In the Moon, there is clear chemical evidence that liquid iron was separated from the mass, but the Moon has no detectable iron core. This points to some kind of joint origin, which put the metallic iron in the Earth's core. For instance, the Moon might have been a detached part of the rocky matter of the Earth, as suggested by G. H. Darwin in the 1880's. But is is also clear, as Ringwood has pointed out, the there has been an enormous loss of volatiles from both Earth and Moon, but especially from the Moon. It may be that the Moon formed from a sediment-ring of small bodies detached somehow from the outer parts of the Earth, as Öpik has suggested.If tektites come from the Moon, then Darwin's suggestion is probably right; if they come from the Earth, then the Öpik-Ringwood sediment ring may be the origin.Paper presented at the AAAS Symposium on the Early History of the Earth and Moon in Philadelphia on 28 December 1971.  相似文献   

5.
The depletion of volatile siderophile elements (VSE) Sn, Ag, Bi, Cd, and P in mantles of differentiated planetary bodies can be attributed to volatile‐depleted precursor materials (building blocks), fractionation during core formation, fractionation into and retention in sulfide minerals, and/or volatile loss associated with magmatism. Quantitative models to constrain the fractionation due to core formation have not been possible due to the lack of activity and partitioning data. Interaction parameters in Fe‐Si liquids have been measured at 1 GPa, 1600 °C and increase in the order Cd (~6), Ag (~10), Sn (~28), Bi (~46), and P (~58). These large and positive values contrast with smaller and negative values in Fe‐S liquids indicating that any chalcophile behavior exhibited by these elements will be erased by dissolution of a small amount of Si in the metallic liquid. A newly updated activity model is applied to Earth, Mars, and Vesta. Five elements (P, Zn, Sn, Cd, and In) in Earth's primitive upper mantle can largely be explained by metal‐silicate equilibrium at high PT conditions where the core‐forming metal is a Fe‐Ni‐S‐Si‐C metallic liquid, but two other—Ag and Bi—become overabundant during core formation and require a removal mechanism such as late sulfide segregation. All of the VSE in the mantle of Mars are consistent with core formation in a volatile element depleted body, and do not require any additional processes. Only P and Ag in Vesta's mantle are consistent with combined core formation and volatile‐depleted precursors, whereas the rest require accretion of chondritic or volatile‐bearing material after core formation. The concentrations of Zn, Ag, and Cd modeled for Vesta's core are similar to the concentration range measured in magmatic iron meteorites indicating that these volatile elements were already depleted in Vesta's precursor materials.  相似文献   

6.
Eugene I. Smith 《Icarus》1976,28(4):543-550
New central peak-crater size data for Mars shows that a higher percentage of relatively unmodified Martian craters have central peaks than do fresh lunar craters below a diameter of 30 km. For example, in the diameter range 10 to 20 km, 60% of studied Martian craters have central peaks compared to 26% for the Moon. Gault et al. (1975, J. Geophys. Res.80, 2444–2460) have demonstrated that central peaks occur in smaller craters on Mercury than on the Moon, and that this effect is due to the different gravity fields in which the craters formed. Similar differences when comparing Mars and the Moon show that gravity has affected the diameter at which central peaks form on Mars. Erosion on Mars, therefore, does not completely mask differences in crater interior structure that are caused by differences in gravity. Effects of Mars' higher surface gravity when compared to the Moon are not detected when comparing terrace and crater shape data. The morphology-crater size statistics also show that a full range of crater shapes occur on Mars, and craters tend to become more morphologically complex with increasing diameter. Comparisons of Martian and Mercurian crater data show differences which may be related to the greater efficacy of erosion on Mars.  相似文献   

7.
8.
Laboratory and theoretical studies have been made of the effects of ultraviolet photolysis of interstellar grain mantles which consist of combinations of hydrogen, oxygen, carbon and nitrogen — dirty ice. It is shown that processes involving photolysis (photoprocessing) of interstellar grains are important during most of their lifetime even including the time they spend in dense clouds. A laboratory designed to simulate the interstellar conditions is described. This is the first time such a laboratory has been able to provide results which may be directly scaled to the astrophysical situations involving interstellar grains and their environment. The evolution of grain analogs is followed by observing the infrared absorption spectra of photolyzed samples of ices deposited at 10 K. The creation and storage of radicals and the production of molecules occur as a result of reactions within the solid. A large number of molecules and radicals observed in the interstellar gas appear in the irradiated ices. Energy released during warm-up is seen from visible luminescence and inferred from vapor pressure enhancement which occurs during warming of photolyzed samples relative to unphotolyzed samples. The evolution of a grain and its role as a source as well as a sink of molecules is pictured as a statistical process within dense clouds. The gradual accretion on and photolysis of an individual grain provides the stored chemical energy the release of which is sporadically triggered by relatively mild events (such as low velocity grain-grain collisions) to produce the impulsive heating needed to eject or evaporate a portion of the grain mantle. An extremely complex and rather refractory substance possessing the infrared signatures of amino groups and carboxylic acid groups and having a maximum mass of 514 amu has been produced at a rate corresponding to a mass conversion rate of interstellar grains of between 2% and 20% in 107 yr. The shape and position of the astronomically observed 3.1 m band is duplicated in the laboratory and is shown to be a natural consequence of the processing of grain mantles.Invited contribution to the Proceedings of a Workshop onThermodynamics and Kinetics of Dust Formation in the Space Medium held at the Lunar and Planetary Institute, Houston, 6–8 September, 1978.  相似文献   

9.
The interpretation of planetary anomalies in the gravity fields of Mars and the Moon in relationship to their inhomogeneous internal structure is considered. The Martian and lunar gravity field models up to order and degree 20, three-layer (crust, mantle, core) model parameters, and planetary parameters have been used as input data. Models of the three-dimensional density distribution have been constructed for Mars and the Moon. The maps of horizontal density inhomogeneities at depths of 50, 100, and 1700 km for Mars and 60, 100, and 1400 km for the Moon are interpreted.  相似文献   

10.
11.
We calculate the amount of methane that may form via reactions catalyzed by metal-rich dust that condenses in the wake of large cometary impacts. Previous models of the gas-phase chemistry of impacts predicted that the terrestrial planets' atmospheres should be initially dominated by CO/CO2, N2, and H2O. CH4 was not predicted to form in impacts because gas-phase reactions in the explosion quench at temperatures ∼2000 K, at which point all of the carbon is locked in CO. We argue that the dust that condenses out in the wake of a large comet impact is likely to have very effective catalytic properties, opening up reaction pathways to convert CO and H2 to CH4 and CO2, at temperatures of a few hundred K. Together with CO2, CH4 is an important greenhouse gas that has been invoked to compensate for the lower luminosity of the Sun ∼4 Gyr ago. Here, we show that heterogeneous (gas-solid) reactions on freshly-recondensed dust in the impact cloud may provide a plausible nonbiological mechanism for reducing CO to CH4 before and during the emergence of life on Earth, and perhaps Mars as well. These encouraging results emphasize the importance of future research into the kinetics and catalytic properties of astrophysical condensates or “smokes” and also more detailed models to determine the conditions in impact-generated dust clouds.  相似文献   

12.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

13.
Since the continuation of an external gravity field inside topographic masses by a harmonic function results in topographic bias, geoid computation by means of global gravity models (GGMs) in terms of external-type series of spherical harmonics, at locations where the GGMs are evaluated inside the topographic masses, will be biased. Consequently, if the reference ellipsoid is defined based on the geoid, it will also be biased. In this paper, the effects of topographic bias on the geoid and reference ellipsoid of Venus, Mars, and the Moon are studied. Moreover, a thorough error analysis in the geoid and reference ellipsoid computation is presented, and it is shown that the estimated standard deviation (STD) of the geoid potential value, the geoidal heights, and the semimajor and semiminor axes of the reference ellipsoid are independent of the topographic bias. According to the results, the effects of topographic bias on the geoid potential value and the semimajor and semiminor axes of the reference ellipsoid in comparison with their estimated STDs are insignificant for Venus, Mars, and the Moon. Moreover, the effect of topographic bias on the geoidal heights of Venus as compared with the estimated STD of its geoidal heights is insignificant. However, the effects of topographic bias on the geoidal heights of Mars and the Moon can be significant, especially in high mountains such as the Tharsis volcanic region on Mars.  相似文献   

14.
The notion of a dry Moon has recently been challenged by the discovery of high water contents in lunar apatites and in melt inclusions within olivine crystals from two pyroclastic glasses. The highest and most compelling water contents were found in pyroclastic glasses that are not very common on the lunar surface. To obtain more representative constraints on the volatile content of the lunar interior, we measured the Zn content, a moderately volatile element, of mineral and rock fragments in lunar soils collected during Apollo missions. We here confirm that the Moon is significantly more depleted in Zn than the Earth. Combining Zn with existing K and Rb data on similar rocks allows us to anchor a new volatility scale based on the bond energy of nonsiderophile elements in their condensed phases. Extrapolating the volatility curve to H shows that the bulk of the lunar interior must be dry (≤1 ppm). This contrasts with the water content of the mantle sources of pyroclastic glasses, inferred to contain up to approximately 40 ppm water based on H2O/Ce ratios. These observations are best reconciled if the pyroclastic glasses derive from localized water‐rich heterogeneities in a dominantly dry lunar interior. We argue that, although late addition of 0.015% of a chondritic veneer to the Moon seems required to explain the abundance of platinum group elements (Day et al. 2007), the volatile content of the added material was clearly heterogeneous.  相似文献   

15.
The chemical compositions of the primordial atmospheres of Venus, Earth and Mars have long been a topic of debate between the experts. Some believe that the original atmospheres were a product of outgassed volatiles from the newly accreted terrestrial planets and that these atmospheres consisted primarily of carbon dioxide, nitrogen, water vapor and residual hydrogen and helium (e.g., Lewis and Prinn, <it>Planets and their Atmospheres,</it> Academic Press, Orlando, FL, 1984, pp. 62–63, 81–84, 228–231, 383). Still others think the earliest atmospheres were composed of the gas components of the solar nebula from which the solar system formed (i.e., hydrogen, helium, methane, ammonia and water). I consider the latter to be the correct scenario. Presented herein is a proposed mechanism by which the original atmospheres of Venus, Earth and Mars were transformed to atmospheres rich in carbon dioxide and nitrogen. An explanation is proposed for why water is so common on the surface of Earth and so scarce on the surfaces of Venus and Mars. Also presented are the effects the “great impact” (single cataclysmic event that was responsible for producing the Earth–Moon system) had upon the early atmosphere of Earth. The origin, structure and composition of the impacting object are determined through deductive analyses.  相似文献   

16.
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.  相似文献   

17.
Galaxias Chaos deviates significantly from other chaotic regions due to the lack of associated outflow channels, lack of big elevation differences between the chaos and the surrounding terrain and due to gradual trough formation.A sequence of troughs in different stages is observed, and examples of closed troughs within blocks suggest that the trough formation is governed by a local stress field rather than a regional stress field. Moreover, geomorphic evidence suggests that Galaxias Chaos is capped by Elysium lavas, which superpose an unstable subsurface layer that causes chaotic tilting of blocks and trough formation.Based on regional mapping we suggest a formation model, where Vastitas Borealis Formation embedded between Elysium lavas is the unstable subsurface material, because gradual volatile loss causes shrinkage and differential substrate movement. This process undermines the lava cap, depressions form and gradually troughs develop producing a jigsaw puzzle of blocks due to trough coalescence.Observations of chaos west of Elysium Rise indicate that this process might have been widespread along the contact between Vastitas Borealis Formation and Elysium lavas. However, the chaotic regions have probably been superposed by Elysium/Utopia flows to the NW of Elysium Rise, and partly submerged with younger lavas to the west.  相似文献   

18.
Calculations have been made to determine the effects of atmospheric drag and gravity on impact ejecta trajectories on Venus, Mars, and the Earth. The equations of motion were numerically integrated for a broad range of body sizes, initial velocities, and initial elevation angles. A dimensionless parameter was found from approximate analytic solutions which correlated the ejecta range, final impact angle, and final impact velocity for all three planets.  相似文献   

19.
Abstract— Many coarse-grained calcium- aluminum-rich inclusions (CAIs) contain features that are inconsistent with equilibrium liquid crystallization models of origin. Spinel-free islands (SFIs) in spinel-rich cores of Type B CAIs are examples of such features. One model previously proposed for the origin of Allende 5241, a Type B1 CAI containing SFIs, involves the capture and assimilation of xenoliths by a liquid droplet in the solar nebula (El Goresy et al., 1985; MacPherson et al., 1989). This study reports new textural and chemical zoning data from 5241 and identifies previously unrecognized chemical zoning patterns in the melilite mantle and in a SFI. These zoning patterns are identified by large-scale elemental mapping techniques. The compositional zoning is completely independent of, and cross-cuts individual melilite crystals in the mantle, a relation that suggests the mantle was deposited or accreted onto a preexisting core of the inclusion. Lack of correlation with individual mantle crystals also suggests that the mantle totally recrystallized at subsolidus temperatures. Sodium distribution maps demonstrate that most of the Na in 5241 was introduced during the secondary alteration process. Major- and trace-element data from the SFI boundary in a second type B1 CAI, Allende 3529Z, were obtained. The boundary bisects a large fassaite crystal. If the SFI is a relict xenolith, then chemical differences are likely to be present across the boundary. Electron microprobe analysis of the fassaite crystal reveals concentric zoning of Ti, which is unrelated to the SFI boundary, as well as distinct zones enriched in Al and depleted in Ti+3. Ion microprobe analyses at the SFI boundary show no significant variation in Ba, Sc, V, Cr, Sr, Zr, Nb and REE in fassaite. There is no evidence that requires the capture of a xenolith in 3529Z. Based on chemical zoning and textural arguments, it is suggested that both of these CAIs formed by a process of partial melting of precursors, which contained either vesicles or spinel-free grains. Allende 5241 shows evidence for vapor condensation and accretion and/or introduction of a second liquid to form the melilite mantle. Chemical zoning patterns in the mantles of the inclusions indicate that 3529Z experienced a higher degree of partial melting than 5241, but it was not high enough to melt spinel or completely melt and homogenize relict fassaite components.  相似文献   

20.
In this paper we discuss the influence of the triaxiality of a celestialbody on its free rotation, i.e. in absence of any external gravitationalperturbation. We compare the results obtained through two different analytical formalisms, one established from Andoyer variables by usingHamiltonian theory, the other one from Euler's variables by usingLagrangian equations. We also give a very accurate formulation of thepolar motion (polhody) in the case of a small amplitude of this motion.Then, we carry out a numerical integration of the problem, with aRunge–Kutta–Felberg algorithm, and for the two kinds of methods above, that we apply to three different celestial bodies considered as rigid : the Earth, Mars, and Eros. The reason of this choice is that each of this body corresponds to a more or less triaxial shape.In the case of the Earth and Mars we show the good agreement betweenanalytical and numerical determinations of the polar motion, and theamplitude of the effect related to the triaxial shape of the body, whichis far from being negligible, with some influence on the polhody of theorder of 10 cm for the Earth, and 1 m for Mars. In the case of Eros, weuse recent output data given by the NEAR probe, to determine in detailthe nature of its free rotational motion, characterized by the presence ofimportant oscillations for the Euler angles due to the particularly largetriaxial shape of the asteroid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号