首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The size-frequency distributions of chondrules in 11 CO3 chondrites were determined by petrographic analysis of thin sections. CO chondrites have the smallest chondrules of any major chondrite group. In order of decreasing chondrule size, chondrite groups can be arranged as CV ≥ LL > L > H ≥ CM ≥ EH > CO. Chondrule size varies significantly among different CO chondrites; there is a tendency for chondrules to increase in average size with increasing metamorphic grade of the whole-rock. Different chondrule types in CO chondrites have distinct size-frequency distributions: in order of decreasing chondrule size, BO > PO > PP > POP > RP = C. The large size of BO chondrules is problematic; however, PO chondrules are among the largest because ~20% of them contain very coarse relict olivine grains that constitute 40–90 vol.% of the individual chondrules. PP chondrules may be larger than POP chondrules because some of them contain coarse relict pyroxene grains; a compound object consisting of a POP chondrule attached to a large relict pyroxene grain occurs in Lancé. The mean proportions of chondrule types in CO chondrites are estimated to be 69% POP, 18% PP, 8% PO, 2% BO, 2% RP, 1% C and <0.1% GOP. CO chondrites thus contain a smaller proportion of nonporphyritic chondrules than ordinary or EH chondrites, but a larger proportion than CV chondrites. Relative proportions of chondrule types vary with size interval: PO chondrules decrease fairly regularly in abundance with decreasing chondrule size, and RP chondrules appear to be most abundant in the smallest size intervals.  相似文献   

2.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

3.
Transmission electron microscope examination of more than 250 fragments, >1 μm from comet Wild 2 and a giant cluster interplanetary dust particle (GCP) of probable cometary origin has revealed four new calcium‐aluminum‐rich inclusions (CAIs), an amoeboid olivine aggregate (AOA), and an additional AOA or Al‐rich chondrule (ARC) object. All of the CAIs have concentric mineral structures and are composed of spinel + anorthite cores surrounded by Al,Ti clinopyroxenes and are similar to two previous CAIs discovered in Wild 2. All of the cometary refractory objects are of moderate refractory character. The mineral assemblages, textures, and bulk compositions of the comet CAIs are similar to nodules in fine‐grained, spinel‐rich inclusions (FGIs) found in primitive chondrites and like the nodules may be nebular condensates that were altered via solid–gas reactions in the solar nebula. Oxygen isotopes collected on one Wild 2 CAI also match FGIs. The lack of the most refractory inclusions in the comet samples may reflect the higher abundances of small moderately refractory CAI nodules that were produced in the nebula and the small sample sizes collected. In the comet samples, approximately 2–3% of all fragments larger than 1 μm, by number, are CAIs and nearly 50% of all bulbous Stardust tracks contain at least one CAI. We estimate that ~0.5 volume % of Wild 2 material and ~1 volume % of GCP is in the form of CAIs. ARCs and AOAs account for <1% of the Wild 2 and GCP grains by number.  相似文献   

4.
Abstract— We measured the sizes and textural types of 719 intact chondrules and 1322 chondrule fragments in thin sections of Semarkona (LL3.0), Bishunpur (LL3.1), Krymka (LL3.1), Piancaldoli (LL3.4) and Lewis Cliff 88175 (LL3.8). The mean apparent diameter of chondrules in these LL3 chondrites is 0.80 φ units or 570 μm, much smaller than the previous rough estimate of ~900 μm. Chondrule fragments in the five LL3 chondrites have a mean apparent cross‐section of 1.60 φ units or 330 μm. The smallest fragments are isolated olivine and pyroxene grains; these are probably phenocrysts liberated from disrupted porphyritic chondrules. All five LL3 chondrites have fragment/ chondrule number ratios exceeding unity, suggesting that substantial numbers of the chondrules in these rocks were shattered. Most fragmentation probably occurred on the parent asteroid. Porphyritic chondrules (porphyritic olivine + porphyritic pyroxene + porphyritic olivine‐pyroxene) are more readily broken than droplet chondrules (barred olivine + radial pyroxene + cryptocrystalline). The porphyritic fragment/chondrule number ratio (2.0) appreciably exceeds that of droplet‐textured objects (0.9). Intact droplet chondrules have a larger mean size than intact porphyritic chondrules, implying that large porphyritic chondrules are fragmented preferentially. This is consistent with the relatively low percentage of porphyritic chondrules within the set of the largest chondrules (57%) compared to that within the set of the smallest chondrules (81%). Differences in mean size among chondrule textural types may be due mainly to parent‐body chondrule‐fragmentation events and not to chondrule‐formation processes in the solar nebula.  相似文献   

5.
Based on sediment‐dispersed extraterrestrial spinel grains in the Bottaccione limestone section in Italy, we reconstructed the micrometeorite flux to Earth during the early Paleocene. From a total of 843 kg of limestone, 86 extraterrestrial spinel grains (12 grains > 63 μm, and 74 in the 32–63 μm fraction) have been recovered. Our results indicate that the micrometeorite flux was not elevated during the early Paleocene. Ordinary chondrites dominated over achondritic meteorites similar to the recent flux, but H chondrites dominated over L and LL chondrites (69%, 22%, and 9%, respectively). This H‐chondrite dominance is similar to that recorded within an enigmatic 3He anomaly (70, 27, and 3%) in the Turonian, but different from just before this 3He anomaly and in the early Cretaceous, where ratios are similar to the recent flux (~45%, 45%, and 10%). The K‐Ar isotopic ages of recently fallen H chondrites indicate a small impact event on the H‐chondrite parent body ~50 to 100 Ma ago. We tentatively suggest that this event is recorded by the Turonian 3He anomaly, resulting in an H‐chondrite dominance up to the Paleocene. Our sample spanning the 20 cm above the Cretaceous–Paleogene (K–Pg) boundary did not yield any spinel grains related to the K–Pg boundary impactor.  相似文献   

6.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   

7.
Abstract— Chondrule D8n in LL3.0 Semarkona is a porphyritic olivine (PO) chondrule, 1300 times 1900 μm in size, with a complicated thermal history. The oldest recognizable portion of D8n is a moderately high‐FeO, PO chondrule that is modeled as having become enmeshed in a dust ball containing a small, intact, low‐FeO porphyritic chondrule and fine‐grained material consisting of forsterite, kamacite, troilite, and possibly reduced C. The final chondrule melting event may have been a heat pulse that preferentially melted the low‐FeO material and produced a low‐FeO, opaque‐rich, exterior region, 45–140 μm in thickness, around the original chondrule. At one end of the exterior region, a kamacite‐ and troilite‐rich lump 960 μm in length formed. During the final melting event, the coarse, moderately ferroan olivine phenocrysts within the original chondrule appear to have been partly resorbed (These relict phenocrysts have the highest concentrations of FeO, MnO, and Cr2O3—7.5, 0.20, and 0.61 wt%, respectively—in D8n.). Narrow olivine overgrowths crystallized around the phenocrysts following final chondrule melting; their compositions seem to reflect mixing between melt derived from the exterior region and the resorbed margins of the phenocrysts. During the melting event, FeO in the relict phenocrysts was reduced, producing numerous small blebs of Ni‐poor metallic Fe along preexisting curvilinear fractures. The reduced olivine flanking the trails of metal blebs has lower FeO than the phenocrysts but virtually identical MnO and Cr2O3 contents. Subsequent parent‐body aqueous alteration in the exterior region of the chondrule formed pentlandite and abundant magnetite.  相似文献   

8.
Cluster chondrites are characterized by close‐fit textures of deformed and indented chondrules, taken as evidence for hot chondrule accretion (Metzler 2012 ). We investigated seven cluster chondrite clasts from six brecciated LL3 chondrites and measured their bulk oxygen isotopic and chemical composition, including REE, Zr, and Hf. The same parameters were measured in situ on 93 chondrules and 4 interchondrule matrix areas. The CI‐normalized REE patterns of the clasts are flat, showing LL‐chondritic concentrations. The mean chemical compositions of chondrules in clasts and other LL chondrites are indistinguishable and we conclude that cluster chondrite chondrules are representative of the normal LL chondrule population. Type II chondrules are depleted in MgO, Al2O3 and refractory lithophiles (REE, Zr, Hf) by factors between 0.65 and 0.79 compared to type I chondrules. The chondrule REE patterns are basically flat with slight LREE < HREE fractionations. Many chondrules exhibit negative Eu anomalies while matrix shows a complementary pattern. Chondrules scatter along a correlation line with a slope of 0.63 in the oxygen 3‐isotope diagram, interpreted as the result of O‐isotope exchange between chondrule melts and 18O‐rich nebular components. In one clast, a distinct anticorrelation between chondrule size and δ18O is found, which may indicate a more intense oxygen isotope exchange by smaller chondrules. In some clasts the δ18O values of type I chondrules are correlated with concentrations of SiO2 and MnO and anticorrelated with MgO, possibly due to the admixture of a SiO2‐ and MnO‐rich component to chondrule melts during oxygen isotope exchange. Two chondrules with negative anomalies in Sm, Eu, and Yb were found and may relate their precursors to refractory material known from group III CAIs. Furthermore, three chondrules with strong LREE > HREE and Zr/Hf fractionations were detected, whose formation history remains to be explained.  相似文献   

9.
A meteorite fall was heard and collected on July 13, 2010 at about 18:00 (local time) in the Shibanjing village of the Huaxi district of Guiyang, Guizhou province, China. The total mass of the fall is estimated to be at least 1.6 kg; some fragments are missing. The meteorite consists mainly of olivine, low‐Ca pyroxene, high‐Ca pyroxene, plagioclase, kamacite, taenite, and troilite. Minor phases include chromite and apatite. Various textural types of chondrules exist in this meteorite: most chondrule textures can be easily defined. The grain sizes of secondary plagioclase in this meteorite range from 2 to 50 μm. The chemical composition of olivine and low‐Ca pyroxene are uniform; Fa in olivine and Fs in low‐Ca pyroxene are, respectively, 19.6 ± 0.2 and 17.0 ± 0.3 (mole%). Huaxi has been classified as an H5 ordinary chondrite, with a shock grade S2, and weathering W0. The weak shock features, rare fractures, and the high porosity (17.6%) indicates that Huaxi is a less compacted meteorite. The preatmospheric radius of Huaxi is ~11 cm, corresponding to ~21 kg. The meteorite experienced a relatively short cosmic‐ray exposure of about 1.6 ± 0.1 Ma. The 4He and 40Ar retention ages are older than 4.6 Ga implying that Huaxi did not degas after thermal metamorphism on its parent body.  相似文献   

10.
Abstract— Methods of synchrotron X‐ray computed microtomography (XRCMT) are described, which allow nondestructive, high spatial and contrast resolution imaging of the density structures of meteorites and their components in three dimensions. Images of bulk chondrites (to one cubic centimeter in size) reveal compound chondrules, chondrule/matrix volumetric ratios, metal and sulfide distribution, petrofabrics, and 3‐D chondrule and calcium‐aluminum inclusion (CAI) sizes and shapes. Images of separated chondrules and CAIs reveal void spaces, mineral intergrowth textures, and the true locations of crystal rims and cores, at resolutions to <8 cubic micron/volume element. Images of achondrites reveal mineral fabrics and crystal zoning. Lunar glass spherules can be searched for phenocrysts bearing deeply sourced melt inclusions. A companion DVD and URL contain images for classroom and research use. Numerical techniques for quantification of X‐ray computed microtomography (XRCMT) data and its potential applications are discussed. Three‐dimensional X‐ray images of meteorites provide a way to discover components of interest and to precisely slice samples to expose these components with minimal damage and loss of material. Three‐dimensional studies of petrographic features (size, shape, texture, and modal abundance) of chondrites and their components, as well as other meteorites, have definite advantages over standard 2‐D studies using randomly sliced thin sections.  相似文献   

11.
Abstract— Iodine concentrations in small domains (~10 μm) of silicates and troilite (FeS) phases in three chondrules from the Semarkona (LL3) meteorite were determined by an ion microprobe. Independent determination of I content in some of these phases was accomplished by in situ laser probe mass spectrometric analysis of I-derived 128Xe in one of these neutron-irradiated chondrules. The ion microprobe data suggest low I content for olivines (20–45 ppb) and relatively higher values for pyroxene and glass (mesostasis) (40–160 ppb). The broad similarity in the measured I contents in pyroxenes in a porphyritic pyroxene chondrule by ion microprobe (42–138 ppb) and by laser probe (37–76 ppb) demonstrate the feasibility of in situ determination of I content in silicate phases via ion microprobe. The I contents in troilite measured by ion microprobe, however, are prone to uncertainty because of the lack of a sulfide standard. The ion microprobe data suggest I content of > 1 ppm in troilite, if the calibration from our silicate standard is used. However, the noble gas data suggest that the I content in troilite is comparable to that in silicates. We attribute this apparent discrepancy to an enhanced sputter ion yield of I from sulfides. Iodine-derived 129Xe excesses were observed in both pyroxene and troilite within this chondrule. The I-Xe model ages of these selected phases are consistent with the I-Xe studies of the bulk chondrule. The individual data points fall on or near the isochron obtained from the bulk chondrule, although all except the most radiogenic data point contain evidence of low-temperature uncorrelated iodine.  相似文献   

12.
We observed metamorphosed clasts in the CV3 chondrite breccias Graves Nunataks 06101, Vigarano, Roberts Massif 04143, and Yamato‐86009. These clasts are coarse‐grained polymineralic rocks composed of Ca‐bearing ferroan olivine (Fa24–40, up to 0.6 wt% CaO), diopside (Fs7–12Wo44–50), plagioclase (An52–75), Cr‐spinel (Cr/[Cr + Al] = 0.4, Fe/[Fe + Mg] = 0.7), sulfide and rare grains of Fe‐Ni metal, phosphate, and Ca‐poor pyroxene (Fs24Wo4). Most clasts have triple junctions between silicate grains. The rare earth element (REE) abundances are high in diopside (REE ~3.80–13.83 × CI) and plagioclase (Eu ~12.31–14.67 × CI) but are low in olivine (REE ~0.01–1.44 × CI) and spinel (REE ~0.25–0.49 × CI). These REE abundances are different from those of metamorphosed chondrites, primitive achondrites, and achondrites, suggesting that the clasts are not fragments of these meteorites. Similar mineralogical characteristics of the clasts with those in the Mokoia and Yamato‐86009 breccias (Jogo et al. 2012 ) suggest that the clasts observed in this study would also form inside the CV3 chondrite parent body. Thermal modeling suggests that in order to reach the metamorphosed temperatures of the clasts of >800 °C, the clast parent body should have accreted by ~2.5–2.6 Ma after CAIs formation. The consistency of the accretion age of the clast parent body and the CV3 chondrule formation age suggests that the clasts and CV3 chondrites could be originated from the same parent body with a peak temperature of 800–1100 °C. If the body has a peak temperature of >1100 °C, the accretion age of the body becomes older than the CV3 chondrule formation age and multiple CV3 parent bodies are likely.  相似文献   

13.
Abstract— A method is described for correcting thin-section-derived chondrule sizes for three common sources of bias: (1) the non-equatorial sectioning of chondrules, (2) the non-zero thickness of thin sections, and (3) the unequal probability of sectioning different size chondrules. Application of the correction procedure to chondrule data from CO chondrites results in a reduction of mean and median chondrule diameters, an increase in minimum diameters, and transforms nearly log-normal distributions to distributions that conform to a Weibull probability function. The Weibull-function form of CO chondrule size distributions is similar to the form of chondrule distributions in ordinary chondrites obtained by disaggregation analyses.  相似文献   

14.
CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. It is commonly reported than ~15 vol% of CK4–6 samples are composed of chondrules. The modal abundance of chondrules estimated here for 18 CK3–6 (including five CK3s) ranges from zero (totally recrystallized) to 50.5%. Although almost all chemically re‐equilibrated with the host matrix, we recognized in CK3s and Tanezrouft (Tnz) 057 (CK4) up to 85% of chondrules as former type I chondrules. Mean diameters of chondrules range from 0.22 to 1.05 mm for Karoonda (CK4) and Tnz 057 (CK4), respectively. Up to ~60% of chondrules in CK3–4 are surrounded by igneous rims (from ~20 μm to 2 mm width). Zoned olivines were found in unequilibrated chondrules from DaG 431 (CK3‐an), NWA 4724 (CK3.8), NWA 4423 (CK3.9), and Tnz 057 (CK4). We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed a two‐stage diffusion process in order to account for the position of inflection points situated within chondrules. Time scales inferred from Fe/Mg interdiffusion in olivine from unequilibrated chondrules are on the order of tens to a hundred thousand years (from 50 to 70,000 years for peak metamorphic temperatures of 1140 and 920 K, respectively). These durations are longer than what is commonly accepted for shock metamorphism and shorter than what is required for nuclide decay. Using the concept of a continuous CV–CK metamorphic series, which is reinforced by this study, we estimated peak metamorphic temperatures <850 K for CV, 850–920 K for CK3, and 920–1140 K for CK4–6 chondrites considering a duration of 70,000 years.  相似文献   

15.
Precise triple oxygen isotope compositions of 32 Allende bulk chondrules (ABCs) are determined using laser‐assisted fluorination mass spectrometry. Various chemically characterized chondrule types show ranges in δ18O that vary from ?4.80‰ to +1.10‰ (porphyritic olivine; PO, N = 15), ?3.10‰ to +1.50‰ (porphyritic olivine pyroxene; POP, N = 9), ?3.40‰ to +2.60‰ (barred olivine; BO, N = 4), and ?3.60‰ to +1.30‰ (porphyritic pyroxene; PP, N = 3). Oxygen isotope data of these chondrules yield a regression line referred to as the Allende bulk chondrule line (ABC line, slope = 0.86 ± 0.02). Most of our data fall closer to the primitive chondrule minerals line (PCM line, slope = 0.987 ± 0.013) and the carbonaceous chondrite anhydrous mineral line (CCAM line, slope = 0.94 ± 0.02) than the Allende anhydrous mineral line (AAML, slope = 1.00 ± 0.01) with a maximum δ18O value (+2.60‰) observed in a BO chondrule and a minimum δ18O value (?4.80‰) shown by a PO chondrule. Similarly, these chondrules depict variable ?17O values that range from ?5.65‰ to ?3.25‰ (PO), ?4.60‰ to ?2.80‰ (POP), ?4.95‰ to ?3.00‰ (BO), ?5.30‰ to ?3.20‰ (PP), and ?4.90‰ (CC). A simple model is proposed for the Allende CV3 chondrite with reference to the AAML and PCM line to illustrate the isotopic variations occurred due to the aqueous alteration processes. The estimated temperature ranging from 10 to 130 °C (mean ~60 °C) implies that the secondary mineralization in Allende happened in a warmer and relatively dry environment compared to Murchison. We further propose that thermal metamorphism could have dehydrated the Allende matrix at temperatures between >150 °C and <600 °C.  相似文献   

16.
Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of ~30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast–matrix or shock vein margin–matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault (~1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid–liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure–temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz–coesite–stishovite–kyanite–biotite–alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change–initiated volume reduction, and melt cavitation.  相似文献   

17.
Unlocking the 3‐D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3‐D detail down to ~10 nm by exploiting phase contrast X‐ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10‐μm‐long porous IDP, consisting of two types of voids that are interconnected in 3‐D space. One is morphologically primitive and mostly submicron‐sized intergranular voids that are ubiquitous; the other is morphologically advanced and well‐defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3‐D morphologies but in 2‐D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron‐ and nanoporous aggregate of the sub‐μm grains or grain clumps that are delicately bound together frequently with little grain‐to‐grain contact in 3‐D space.  相似文献   

18.
We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D‐3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100–300 individual measurements of apparent particle diameter.  相似文献   

19.
Oxygen isotope exchange experiments between tens of nanometer‐sized amorphous enstatite grains and water vapor were carried out under a condition of protoplanetary disk‐like low water vapor pressure in order to investigate the survivability of distinct oxygen isotope signatures of presolar silicate grains in the protosolar disk. Oxygen isotope exchange between amorphous enstatite and water vapor proceeded at 923–1003 K and 0.3 Pa of water vapor through diffusive isotope exchange in the amorphous structure. The rate of diffusive isotope exchange is given by D (m2 s–1) = (5.0 ± 0.2) × 10–21 exp[–161.3 ± 1.7 (kJ mol–1) R–1 (1/T–1/1200)]. The activation energy for the diffusive isotope exchange for amorphous enstatite is the same as that for amorphous forsterite within the analytical uncertainties, but the isotope exchange rate is ~30 times slower in amorphous enstatite because of the difference in frequency factor of the reaction. The reaction kinetics indicates that 0.1–1 μm‐sized presolar amorphous silicate dust with enstatite and forsterite compositions would avoid oxygen isotope exchange with protosolar disk water vapor only if they were kept at temperatures below ~500–650 K within the lifetime of the disk gas.  相似文献   

20.
Abstract– Unequilibrated ordinary chondrites (UOCs) of all groups (H, L, LL) contain unique chondrite clasts, which are characterized by a close‐fit texture of deformed and indented chondrules. These clasts, termed “cluster chondrites,” occur in 41% of the investigated samples with modal abundances between 5 and 90 vol% and size variations between <1 mm and 10 cm. They show the highest chondrule abundances compared with all chondrite classes (82–92 vol%) and only low amounts of fine‐grained interchondrule matrix and rims (3–9 vol%). The mean degree of chondrule deformation varies between 11% and 17%, compared to 5% in the clastic portions of their host breccias and to values of 3–5% found in UOC literature, respectively. The maximum deformation of individual chondrules is about 50%, a value which seemingly cannot be exceeded due to geometric limitations. Both viscous and brittle chondrule deformation is observed. A model for cluster chondrite formation is proposed where hot and deformable chondrules together with only small amounts of co‐accreting matrix formed a planetesimal or reached the surface of an already existing body within hours to a few days after chondrule formation. They deformed in a hot stage, possibly due to collisional compression by accreting material. Later, the resulting rocks were brecciated by impact processes. Thus, cluster chondrite clasts are interpreted as relicts of primary accretionary rocks of unknown original dimensions. If correct, this places a severe constraint on chondrule‐forming conditions. Cluster chondrites would document local chondrule formation, where chondrule‐forming heating events and the accretion of chondritic bodies were closely linked in time and space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号