首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain size analyses of three hilltop, primary eolian loess sequences in the Negev desert, southern Israel, show a bimodal grain-size distribution at 50-60 μm and 3-8 μm. Using analyses of mineralogy and OSL ages we demonstrate that the coarse mode is composed mostly of quartz grains and its relative magnitude increases regionally with time, suggesting an enhancement of a time-transgressive proximal dust source compared to a distal, Saharan fine-grain dust. The only proximal dust source for large amount of coarse silt quartz grains is the sands that advanced into Sinai and the Negev concurrently with the loess accretion during the late Pleistocene as a result of the exposure of the Mediterranean shelf. We therefore propose that the coarse silt quartz grains were formed through eolian abrasion within the margins of an advancing sand sea. This relationship between desert sand seas as a source for proximal coarse dust and desert margin loess deposits can be applicable to other worldwide deserts such as Northern Africa, China and Australia.  相似文献   

2.
A series of experiments to determine the direct emission of dust-sized particles from Gobi surfaces by clean wind (wind without sand), and the potential for aeolian abrasion of Gobi surfaces and beds of gravel and mobile sand to produce fine (<100 μm) and dust-sized (<10 μm, PM10) particles under sand-laden winds were conducted. Parent material was obtained from Gobi areas of the Ala Shan Plateau, the region with high dust emissions in arid China. The fine particles produced by aeolian processes were collected using sand traps and sieved the captured materials to exclude particles >100 μm in diameter and then PM10 by sedimentation was acquired. The Gobi surface provided most of the emitted fine particles during the initial dust emission processes, but subsequently, release of the clay coatings of particles by abrasion becomes the dominant source of fine materials. Under sand-laden winds, PM10 production rates produced by aeolian abrasion of Gobi surfaces ranged between 0.002 and 0.244% of blown materials. After removal of sand, silt, or clay with low resistance to erosion from the Gobi surfaces by the wind, the PM10 production rates caused by aeolian abrasion were similar to those from gravel and sand beds. The results also indicated that after the dust-sized particles with low resistance to erosion were removed, the production of dust-sized particles was unrelated to wind velocity. Under aeolian processes, Gobi deserts in this region therefore play a major role in dust emissions from arid and semiarid China.  相似文献   

3.
This paper evaluates the influence of natural sand particle characteristics on the amount and particle-size distributions of dust produced by aeolian abrasion. It contrasts with previous studies of aeolian abrasion by conducting experiments using: (i) whole sand samples, as opposed to selected size fractions; (ii) natural, mature dune sands, rather than artificial or freshly crushed material; and (iii) weathered sands that have acquired a superficial clay coating, instead of grains with clean surfaces. Whilst previous research has found clear, positive relationships between particle size, sorting, roundness and the amount of dust produced by aeolian abrasion, the relationships determined in this study show some variation according to the geomorphological context from which the original samples were obtained. The most important factor affecting the amount and particle-size characteristics of the dust produced was the presence of a clay coating on the grain surface that is removed by the abrasion process. The dust produced by this mechanism had a modal size of 2–5  μ m and material <10  μ m comprised up to 90% of the particles produced.  相似文献   

4.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

5.
This study examined grain‐size distributions to address questions regarding geological and oceanographic controls on island morphodynamics along one of the longest undeveloped, mixed‐energy barrier island systems in the world. In particular, statistical analyses (i.e. analysis of variance, Tukey honest significant difference multiple comparison tests, nonparametric statistics and linear regression analysis) of 230 barrier island samples from Ocean City Inlet, Maryland, to the mouth of the Chesapeake Bay and 134 nearshore samples (d ≤ 10 m) identified grain‐size trends related to the morphodynamic characteristics of these systems. In general, the Virginia barrier islands north of Wachapreague Inlet and Assateague Island form a statistically different subset of grain sizes (medium‐grained to coarse‐grained sand) from the islands south of Wachapreague Inlet (fine‐grained sand). These textural trends corroborate the Pleistocene headlands of the Delmarva coastal compartment as the sediment source and indicate that some of the coarse‐grained to medium‐grained sediment bypasses the large sinks in the net southward longshore sediment transport system (i.e. Fishing Point and Chincoteague Inlet). This research also demonstrates that the preferential accumulation of coarse‐grained to medium‐grained sand on the ebb‐tidal delta at Wachapreague Inlet probably controls the erosional morphodynamics of the islands located downdrift (south) of the inlet. These results suggest that an increase in tidal prism, set up by sea‐level rise and/or a shift in wave climate/refraction patterns, may lead to barrier island fragmentation and a runaway transgression of this predominantly natural barrier island system. Consequently, a grain analysis of major coastal compartments, across multiple driving forces, can be used to assess coastal morphodynamics and the potential impact of climate change on coastal systems.  相似文献   

6.
Seafloor images of coarse‐grained submarine channel–levée systems commonly reveal complex braid‐plain patterns of low‐amplitude bedforms and zones of apparent bypass; however, mechanisms of channel evolution and the resultant channel‐fill architecture are poorly understood. At Playa Esqueleto the lateral relationships between various elements of a deep‐marine slope channel system are well‐exposed. Specifically, the transition from gravel‐dominated axial thalwegs to laterally persistent marginal sandstones and isolated gravel‐filled scours is revealed. Marginal sandstones pass into a monotonous thin‐bedded succession which built to form relatively low‐relief levées bounding the channel belt; in turn, the levées onlap the canyon walls. Three orders of confinement were important during the evolution of the channel system: (i) first‐order confinement was provided by the erosional canyon which confined the entire system; (ii) confined levées built of turbidite sandstones and mudstones formed the second‐order confinement, and it is demonstrated that these built from overspill at thalweg margins; and (iii) third‐order confinement describes the erosional confinement of coarse‐grained thalwegs and scours. Finer‐grained sediment was transported in suspension and largely was unaffected by topography at the scale of individual thalwegs. Facies and clast analyses of conglomerate overlying channel‐marginal scours reveal that they were deposited by composite gravity flows, which were non‐cohesive, grain‐dominant debris flows with more fluidal cores. These flows were capable of basal erosion but were strongly depositional; frictional freezing at flow margins built gravel levées, while the core maintained a more fluidal transport regime. The resultant architecture consists of matrix‐rich, poorly sorted levées bounding better‐sorted, traction‐dominated cores. The planform geometry is interpreted to have consisted of a low‐sinuosity gravel braid‐plain built by accretion around mid‐channel and bank‐attached bars. This part of the system may be analogous to fluvial systems; however, the finer‐grained sediment load formed thick suspension clouds, probably several orders of magnitude thicker than the relief of braid‐plain topography and therefore controlled by the levées and canyon wall confinement.  相似文献   

7.
《Sedimentology》2018,65(2):335-359
Predominantly fine‐grained strata were deposited in the Smith Bank Formation (Early Triassic) in the Central North Sea area of the Northern Permian Basin. Previously regarded as monotonous red claystone, examination of continuous core reveals abundant stratification, significant variation in colour, siltstone as the prevalent average grain size, and claystone is rare. Loessite occurs beyond the north‐western lacustrine margin, and aerosol dust has inundated clay pellets derived from aeolian reworking of the desiccated lake floor. The loessite has limited evidence of pluvial reworking but rare fossil roots testify to sufficient moisture to sustain plants. Loessite has not previously been differentiated successfully from other fine‐grained strata in the subsurface, but this study defines the presence of random grain‐fabric orientation as an intrinsic unequivocal characteristic of loessite that formed during air‐fall deposition of aerosol dust. Comparison with outcrop data verifies the utility of grain fabric to differentiate loessite. Tosudite, an aluminous di‐octahedral regularly ordered mixed‐layer chlorite/smectite, which is rare in sedimentary rock, forms a significant proportion (10 to 21%) of the clay mineral fraction of loessite along with a similar quantity of kaolinite. In all other samples, only illite and chlorite are identified, which is typical of fine‐grained Triassic strata. In a location, close to the southern lake margin, lacustrine strata are characterized by fining‐upward couplets of very fine‐grained sandstone into siltstone and mudstone, with occasional desiccated surfaces. Small sand injections and associated sand extrusions are common and indicate periodic fluidization of sand. Precise stratigraphic location of the Smith Bank Formation is problematic because of extremely sparse fossil preservation; however, there is no sedimentological evidence for a period of hyperaridity known from the early Olenekian in continental Europe, which may mean that the North Permian Basin was never hyperarid or that the Smith Bank Formation is restricted to the Induan.  相似文献   

8.
Deserts are one of the most important dust sources in the world. Because dust content changes as a function of height at low levels in the atmosphere, this affects long‐term dust transport. In this paper, field data measured above shifting sands in the south‐eastern Tengger Desert were used to analyse the vertical distribution of sediment fluxes in the near‐surface layer (0 to 48 m). It was possible to express horizontal sediment flux as a power function, but aeolian deposition as a function of height could be expressed as an exponential function. There are two curve types for the particle size distributions in the horizontal sediment flux and aeolian deposition: bimodal and unimodal curves. For the horizontal sediment flux and aeolian deposition, heights of 24 m and 32 m, respectively, were the key heights in the size distribution curve; below these heights, the curve was bimodal, whereas above these heights, it was unimodal. At heights of 4 to 16 m, and especially between 8 m and 12 m, the data were particularly interesting because the sediment size, transport mode, degree of sorting, and the skewness and kurtosis change. For the horizontal sediment flux, wind turbulence moved saltating particles higher than expected.  相似文献   

9.
The Cambro‐Ordovician rhyodacitic to dacitic volcanics from the Central Iberian basement, currently known as Ollo de Sapo (toads eye), have been reported as a specific group of felsic porphyritic rocks with blue quartz and large phenocrysts of K‐feldspar, in a partly vitreous or fine‐grained matrix. Interpreted to form Cambro‐Ordovician volcanic domes, they are accompanied by tuffs, ignimbrites and products of reworking in a near‐surface environment. The coarse‐ to fine‐grained rocks exhibit rather large K‐feldspar phenocrysts, plagioclase and rounded blue quartz, representing former corroded phenocrysts. Their colouration indicates unmixing of TiO2 at around 900°C during cooling from relatively high crystallisation temperatures, indicating their origin at hot lower crustal conditions. We propose at least a two‐step evolution (1) starting around 495 Ma in the lower crust of a collapsing cordillera, generating a phenocryst‐rich mush and adiabatic melting of the lower crustal protolith to produce the spectacular Ollo de Sapo porphyrites, before (2) magma ascent and crustal extension leading to a different thermal regime around 483 Ma.  相似文献   

10.
Pleistocene aeolian sands and alluvial deposits can frequently be traced along the Mediterranean coast. Such deposits also exist along the eastern Adriatic coast and the nearby islands. Four stratigraphical sections of these deposits were studied on the Island of Hvar with the purpose of establishing a chronological framework of the aeolian–alluvial depositional system, using luminescence dating and magnetic susceptibility stratigraphy. Luminescence dating was applied on coarse‐grained feldspar and quartz grains separated from the sands. Both quartz optically stimulated luminescence (OSL) and feldspar post‐IR infrared stimulated luminescence (pIRIR) age estimates are in good agreement, with values ranging between 167±24 to 120±12 ka (OSL) and 179±18 to 131±18 ka (pIRIR measured at 290 °C) after a fading correction for the pIRIR signal. The results can be clearly correlated to around the end of oxygen isotope stage (OIS) 6 and the beginning of OSI 5, indicating that the aeolian accumulation of sands was a result of the Penultimate Glacial and climate fluctuations at the beginning of the Last Interglacial. Variations in magnetic susceptibility (MS) data can be interpreted alongside these dating results; several stronger peaks detected at the very end of the Penultimate Glacial and the initial stage of the Last Interglacial cycle most probably indicates more intensive pedogenesis resulting from a more favourable climate, probably because of climate changes. Breccias related to major bounding surfaces in association with evidence of soil formation and bioturbation could be the result of more favourable climate conditions and changes during the transition from OIS 6 to OIS 5 (Penultimate Glacial–Last Interglacial). These results are in agreement with similar data from the wider Mediterranean area.  相似文献   

11.
Sediment data from the Bahamian Santaren carbonate drift reveal the variability of trans‐Atlantic Saharan dust transport back to about 100 ka bp (Marine Isotope Stage 5·3) and demonstrate that carbonate drifts are a valuable pelagic archive of aeolian dust flux. Carbonate drift bodies are common around tropical carbonate platforms; they represent large‐scale accumulations of ocean‐current transported material, which originates from the adjacent shallow‐water carbonate factory as well as from pelagic production, i.e. periplatform ooze. Subordinately, there is a clay‐size to silt‐size non‐carbonate fraction, which typically amounts to less than 10% of the sediment volume and originates from aeolian and fluvial input. Sedimentation rates in the 5·42 m long core GeoHH‐M95‐524 recovered 25 km west of Great Bahama Bank in the Santaren Channel ranges from 1·5 to 24·5 cm ka?1 with lowest values during the last glacial lowstand and highest values following platform re‐flooding around 8 ka bp . These sedimentation rates imply that carbonate drifts have not only the potential to resolve long‐term environmental changes on orbital timescales, but also millennial to centennial fluctuations during interglacials. The sediment core has been investigated with the aim of characterizing the lithogenic dust fraction. Laboratory analyses included X‐ray fluorescence core scanning, determination of carbonate content and grain‐size analyses (of bulk and terrigenous fraction), as well as visual inspections of the lithogenic residue; the age model is based on oxygen isotopes and radiocarbon ages. Data show that the input of aeolian dust in the periplatform ooze as indicated by Ti/Al and Fe/Al element ratios abruptly increases at 57 ka bp , stays elevated during glacial times, and reaches a Holocene minimum around 6·5 ka bp , contemporary to the African Humid Period. Subsequently, there is a gradual increase in dust flux which almost reaches glacial levels during the last centuries. Grain‐size data show that the majority of dust particles fall into the fine silt range (below 10 μm); however, there is a pronounced coarse dust fraction in the size range up to 63 μm and individual ‘giant’ dust particles are up to 515 μm in size. Total dust flux and the relative amounts of fine and coarse dust are decoupled. The time‐variable composition of the grain‐size spectrum is interpreted to reflect different dust transport mechanisms: fine dust particles are delivered by the trade winds and the geostrophic winds of the Saharan Air Layer, whereas coarse dust particles travel with convective storm systems. This mode of transport ensures continuous re‐suspension of large particles and results in a prolonged transport. In this context, grain‐size data from the terrigenous fraction of carbonate drifts provide a measure for past coarse dust transport, and consequently for the frequency of convective storm systems over the dust source areas and the tropical Atlantic.  相似文献   

12.
Wind tunnel experiments were carried out with respect to the vertical distributions of wind-blown sand flux and the processes of aeolian erosion and deposition under different wind velocities and sand supplies above beds with different gravel coverage. Preliminary results revealed that the vertical distribution of wind-blown sand flux was a way to determine whether the gobi sand stream was the saturated one or not. It had different significances to indicate characteristics of transport and deposition above gobi beds. Whether bed processes are of aeolian erosion or deposition was determined by the sand stream near the surface, especially within 0–6 cm height, while the sand transport was mainly influenced by the sand stream in the saltating layer above the height of 6 cm. The degree of the abundance of sand supply was one of the important factors to determine the saturation level of sand stream, which influenced the characteristic of aeolian erosion and deposition on gravel beds. Given the similar wind condition, the sand transport rates controlled by the saturated flow were between 2 and 8 times of the unsaturated one. Those bed processes controlled by the saturated flow were mainly of deposition, and the amount of sand accumulation increased largely as the wind speed increased. In contrast, the bed processes controlled by the unsaturated flow were mainly of aeolian erosion. Meanwhile, there was an obvious blocking sand ability within the height of 0–2 cm, and the maximal value of sand transport occurred within the surface of 2–5 cm height.  相似文献   

13.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

14.
We tested the suitability of the fine‐grained quartz (4–11 μm) Optical Stimulated Luminescence (OSL) and thermally‐transferred OSL (TT‐OSL), and the fine‐grained polymineral (4–11 μm) post‐infrared IRSL (post‐IR IRSL or pIRIR) signals for dating samples from aeolian‐lacustrine deposits from the Xiaochangliang archaeological profile in the Nihewan Basin, China; these deposits include material from the Jaramillo subchron (c. 1.0 Ma). In the upper aeolian section, the OSL and pIRIR290 ages are consistent with each other, and show that the upper 8.8 m was deposited between c. 0.3 and c. 140 ka. The luminescence ages indicate a major discontinuity in deposition between the aeolian and the older lacustrine deposits. Below this hiatus at 9.4 m (i.e. in the lacustrine sediments) all three signals are found to be in field saturation (no further systematic increase in burial dose with depth) despite the TT‐OSL signal (apparent mean burial dose ~880 Gy) being well below saturation on the laboratory growth curve. This is in contrast to the pIRIR290 signal, which saturates in the field at a level consistent with laboratory saturation. This results in a practical upper limit to the measured burial dose of ~900 Gy (2D0). Thus for the TT‐OSL and pIRIR290 signals, the upper limits for dating lacustrine deposits are <260 ka and c. 240 ka, respectively. These results have major implications for the appropriate future application of these signals. The ages of our lacustrine samples cannot be regarded as necessarily accurate ones; nevertheless, these ages provide the first long series absolute chronology for study of local palaeolithic and geomorphic evolution history aside from the magnetostratigraphical results available before this research.  相似文献   

15.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

16.
This study illustrates how decoupling of quartz and zircon can be used advantageously in provenance research. Thirty‐eight fine‐grained to coarse‐grained arkose samples of the Early Triassic intracontinental Buntsandstein Group from the Central European Basin in Germany were analysed for their petrography and 1200 grains in 23 of these for their detrital quartz cathodoluminescence characteristics. The samples represent the Hessian and Thuringian sub‐basins and the Eichsfeld–Altmark Swell separating them. The Hessian Sub‐basin includes more metamorphic lithoclasts with a larger content of plutonic grains than are found further east in the Thuringian Sub‐basin. More than 90% of the detrital quartz from the eastern Thuringian Sub‐basin produce medium to bright blue cathodoluminescence colours and corresponding spectra that are typical for igneous or high‐temperature metamorphic origin. Differently, the quartz from the Hessian Sub‐basin mostly luminesces brown and dark to medium blue, typical for a low‐temperature metamorphic origin. Quartz from the Eichsfeld–Altmark Swell and the western Thuringian Sub‐basin is a mixture between these origins. The quartz indicates different catchments for the sub‐basins, possibly the Bohemian Massif and the Massif Central, with converging transport routes on and close to the eastern fringe of the swell. Taking published zircon data from the same samples into account, light mineral‐zircon grain‐size shifts are up to 2 Φ units. That can be explained by mineral decoupling due to different transport modes for quartz and zircon and different zircon‐size availability in the source areas, exaggerated by combined aqueous–aeolian transport, as well as sample preparation‐induced sorting. This study concludes that submerged highs significantly can influence continental sediment transport. Hence, vast, flat continental areas with submerged morphological highs and a seemingly straightforward transportation pattern may be more complex than expected. The results also illustrate that analysis of detritus that has been affected by different dominating transport modes, and further sorting during sampling and preparation can reveal additional source information.  相似文献   

17.
《Sedimentology》2018,65(6):2149-2170
Hyperpycnal currents are river‐derived turbidity currents capable of transporting significant volumes of sediment from the shoreline onto the shelf and potentially further to deep ocean basins. However, their capacity to deposit sand bodies on the continental shelf is poorly understood. Shelf hyperpycnites remain an overlooked depositional element in source to sink systems, primarily due to their limited recognition in the rock record. Recent discoveries of modern shelf hyperpycnites, and previous work describing hyperpycnites deposited in slope or deep‐water settings, provide a valuable framework for understanding and recognizing shelf hyperpycnites in the rock record. This article describes well‐sorted lobate sand bodies on the continental shelf of the Neuquén Basin, Argentina, interpreted to have been deposited by hyperpycnal currents. These hyperpycnites of the Jurassic Lajas Formation are characterized by well‐sorted, medium‐grained, parallel‐laminated sandstones with hundreds of metre extensive, decimetre thick beds encased by organic‐rich, thinly laminated sandstone and siltstone. These deposits represent slightly obliquely‐migrating sand lobes fed by small rivers and deposited on the continental shelf. Hyperpycnites of the Lajas Formation highlight several unique characteristics of hyperpycnal deposits, including their distinctively thick horizontal laminae attributed to pulsing of the hyperpycnal currents, the extraction of coarse gravel due to low flow competence, and the extraction of mud due to lofting of light interstitial fluid. Recognition of shelf hyperpycnites in the Lajas Formation of the Neuquén Basin allows for a broader understanding of shelf processes and adds to the developing facies models of hyperpycnites. Recognizing and understanding the geometry and internal architecture of shelf hyperpycnites will improve current understanding of sediment transfer from rivers to deeper water, will improve palaeoenvironmental interpretations of sediment gravity‐flow deposits, and has implications for modelling potentially high‐quality hydrocarbon reservoirs.  相似文献   

18.
《Sedimentology》2018,65(3):721-744
Storm surges generated by tropical cyclones have been considered a primary process for building coarse‐sand beach ridges along the north‐eastern Queensland coast, Australia. This interpretation has led to the development of palaeotempestology based on the beach ridges. To better identify the sedimentary processes responsible for these ridges, a high‐resolution chronostratigraphic analysis of a series of ridges was carried out at Cowley Beach, Queensland, a meso‐tidal beach system with a >3 m tide range. Optically stimulated luminescence ages indicate that 10 ridges accreted seaward over the last 2500 to 2700 years. The ridge crests sit +3·5 to 5·1 m above Australian Height Datum (ca mean sea‐level). A ground‐penetrating radar profile shows two distinct radar facies, both of which are dissected by truncation surfaces. Hummocky structures in the upper facies indicate that the nucleus of the beach ridge forms as a berm at +2·5 m Australian Height Datum, equivalent to the fair‐weather swash limit during high tide. The lower facies comprises a sequence of seaward‐dipping reflections. Beach progradation thus occurs via fair‐weather‐wave accretion of sand, with erosion by storm waves resulting in a sporadic sedimentary record. The ridge deposits above the fair‐weather swash limit are primarily composed of coarse and medium sands with pumice gravels and are largely emplaced during surge events. Inundation of the ridges is more likely to occur in relation to a cyclone passing during high tide. The ridges may also include an aeolian component as cyclonic winds can transport beach sand inland, especially during low tide, and some layers above +2·5 m Australian Height Datum are finer than aeolian ripples found on the backshore. Coarse‐sand ridges at Cowley Beach are thus products of fair‐weather swash and cyclone inundation modulated by tides. Knowledge of this composite depositional process can better inform the development of robust palaeoenvironmental reconstructions from the ridges.  相似文献   

19.
The extensive aeolian deposits of the Tibetan Plateau (TP) represent important environmental archives, recording information about the past interplay between the Asian monsoon and Westerlies and the link between dust accumulation and Quaternary glaciations. In the northeast TP, mantles of sandy loess form a distinct belt lying between 3500 and 4500 m a.s.l. on the east‐facing slopes of the Anyemaqen Mountains. However, there is little chronological information about the loess deposits in this region. This study provides a detailed chronology for loess formation in the region using luminescence dating. A total of 29 samples were collected from an 8‐m‐thick homogeneous loess section at Hebei (HB) in order to date sand‐sized (63–90 μm) quartz and K‐feldspar fractions using optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL and pIRIR) signals, respectively. The resulting quartz and feldspar ages are in good agreement over the last 40 ka; beyond this (i.e. De >120 Gy), the quartz age is underestimated, and the pIRIR170 feldspar ages are considered more reliable. The HB loess section records continuous environmental information from c. 50 to c. 30 ka, i.e. throughout Marine Isotope Stage (MIS) 3. Mass accumulation rates (MARs) varied considerably over this period with increased dust accumulation around c. 38 ka and after c. 32 ka; in between, and at the beginning of MIS 3 (50–40 ka), the dust accumulation rate was ~50% lower. Finally, the HB section also records a MIS 2 hiatus of c. 17 ka duration, probably resulting from deflation. This study implies that loess deposition on the TP is predominantly an interglacial/interstadial phenomenon and the TP may be deflating at the same time as the Chinese Loess Plateau is accumulating, at least during MIS 2.  相似文献   

20.
The relation between the crystallography of artificially abraded quartz sand grains and aeolian surface textures has been studied using an X-ray precession camera and the scanning electron microscope (SEM). Crushed Brazilian quartz was sieved to between 250 and 350 μm, eroded in a paddle wheel device which simulated aeolian action at 8 m s?1 for 3 h, and photographed with the SEM. A typical grain was selected and over 1100 photographs were combined to create a 3 × 3 m photomosaic; because of the large size, it was possible to observe and measure the angular and linear relations between the various features. After the c axis direction in the grain was determined by precession X-ray analysis, the most important aeolian features were related to the crystallography of quartz. The upturned plates or cleavage plates probably represent traces parallel to r(10ī1) and z(01ī1) cleavages in quartz. Blocky areas appear to be an expression of a cleavage parallel to m(10ī0). In addition, plate spacing on thirty-five experimental, modern, and ancient quartz sand grains is fairly constant. Assuming that abrasion in most sedimentary environments acts in the same manner with respect to quartz crystallography, much of the fine silt and clay in sediments and sedimentary rocks may be the result of cleavage following abrasion parallel to the r and z cleavage planes, while the less common blocky particles are probably the result of cleavage parallel to the m planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号