首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He+ ions and the major atmospheric constituents N2, O2, and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He+ ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.  相似文献   

2.
A general analysis of ionospheric conditions has been made in the light of possible ionic reactions occurring in the upper atmosphere. Data obtained on various parameters, such as ionic production and recombination, show that precise knowledge of the spectral distribution of solar radiation is needed and that other experimental determinations on dissociative recombinations are required.

The ionic complexity of the ionosphere is underlined by describing how the atomic ions O+ and N+ react with N2, O2 and NO molecules. The behavior of the molecular ions N+2, O+2and NO+depends on a group of simultaneous processes involving charge transfers and ionatom interchanges which are more important than dissociative recombinations. The altitude distribution of ions is exemplified by discussing the relative importance of various loss coefficients in the D-, E- and F-regions. It is seen that molecular nitrogen ions are subject to important charge transfer processes, that nitric oxide ions are always final products destroyed only by dissociative recombination. Additionally, the entire production of atomic oxygen ions is related to the photoionization of molecular nitrogen. Some information is also given on possible anomalies in the ratio of O+2 and NO+ densities in the lower ionosphere. From the lack of sufficient experimental information on ionic processes it is shown that a precise analysis of ionospheric behavior remains highly speculative.  相似文献   


3.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   

4.
The similarity of atomic parameters for the CO2 atmosphere of Venus and that of the Earth is used to calculate the ionization and optical emission rate in the upper atmosphere of Venus resulting from a major solar cosmic ray event. The possibility of as much as 10 per cent of N2 in the atmospheric composition of Venus does not change these effects appreciably.  相似文献   

5.
The results of recent quantum mechanical calculations of cross-sections for rotational transitions within the vibrational ground state of HD are used to evaluate the rate of radiative energy loss from gas containing HD, in addition to H, He and H2. The cooling function for HD (i.e. the rate of cooling per HD molecule) is evaluated in steady state on a grid of values of the relevant parameters of the gas, namely the gas density and temperature, the atomic to molecular hydrogen abundance ratio and the ortho:para-H2 density ratio. The corresponding cooling function for H2, previously computed by Le Bourlot et al., is slightly revised to take account of transitions induced by collisions with ground-state ortho-H2 ( J =1). The cooling functions and the data required for their calculation are available from http://ccp7.dur.ac.uk/. We then make a study of the rate of cooling of the primordial gas through collisions with H2 and HD molecules. In this case, radiative transitions induced by the cosmic background radiation field and, in the case of H2, collisional transitions induced by H+ ions should additionally be included.  相似文献   

6.
Current knowledge of the chemistry of the stratosphere is reviewed using measurements from the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment to test the accuracy of our treatment of processes at mid-latitudes, and results from the Airborne Antarctic Ozone Experiment (AAOE) to examine our understanding of processes for the polar environment. It is shown that, except for some difficulties with N2O5 and possibly ClNO3, gas phase models for nitrogen and chlorine species at 30°N in spring are in excellent agreement with the data from ATMOS. Heterogeneous processes may have an influence on the concentrations of NO2, N2O5, HNO3, and ClNO3 for the lower stratosphere at 48°S in fall. Comparison of model and observed concentrations of O3 indicate good agreement at 30°N, with less satisfactory results at 48°S. The discrepancy between the loss rate of O3 observed over the course of the AAOE mission in 1987 and loss rates calculated using measured concentrations of ClO and BrO is found to be even larger than that reported by Anderson et al. (1989, J. geophys. Res. 94, 11480). There appear to be loss processes for removal of O3 additional to the HOC1 mechanism proposed by Solomon et al. (1986, Nature 321, 755), the ClO-BrO scheme favored by McElroy et al. (1986, Nature 321, 759), and the ClO dimer mechanism introduced by Molina and Molina (1987, J. phys. Chem. 91, 433). There is little doubt that industrial halocarbons have a significant impact on stratospheric O3. Controls on emissions more stringent than those defined by the Montreal Protocol will be required if the Antarctic Ozone Hole is not to persist as a permanent feature of the stratosphere.  相似文献   

7.
The absorption of solar ionizing radiation during twilight is investigated. Ion production rates are obtained as a function of altitude and twilight intensities and altitude profiles of emissions arising from the fluorescence of solar ionizing radiation are calculated for various solar depression angles. For an atmosphere with an exospheric temperature of 750°K, the predicted overhead intensity from fluorescence of the O+(2P2D) lines at 7319–7330 diminishes from 175 R at dusk to 10 R at a solar depression angle of 10°. The predicted overhead intensities from fluorescence of the N2+ Meinel and first negative systems are respectively about 175 R and 20 R at dusk diminishing to respectively 1.5 R and 0.1 R at a solar depression angle of 10°.

It is suggested that a charge transfer reaction of O+2D in N2 is a significant source of N2+ ions. This reaction offers a possible explanation for the high apparent rotational temperatures in the first negative system observed by Broadfoot and Hunten. Other excitation and ionization mechanisms are briefly discussed.  相似文献   


8.
To study the climatological role of ozone in the Precambrian atmosphere and the consequences of its reduction for the ultraviolet environment of the early biosphere, a coupled one-dimensional radiative-convective and photochemical model has been developed. Oxygen levels between 10−5 and 1 time the present atmospheric level (PAL) are considered. It is shown that when the ice-albedo feedback is taken into account, relatively important temperature decreases are associated with the ozone changes linked to the progressive decrease of the oxygen level from 1 PAL to smaller values.

A similar study is performed for enhanced atmospheric CO2 pressures (Pco2). In these conditions, the ozone column is increased at low O2 concentrations with respect to the Pco2 = 1 PAL case. Consequently, the larger CO2 concentration in the ancient atmosphere could have contributed to strengthen the ultraviolet screening of ozone. The surface temperature response to the ozone decrease, as well as the thermal profiles are also analyzed in these CO2-rich models. A possible evolutionary scenario of atmospheric O2 and CO2 is discussed.

The consequences of these calculations for the ultraviolet environment of the primitive biosphere is discussed with a quantitative model calculating bacterial surviving rates. According to this model, the minimum ozone column being tolerable by unprotected bacteria would fall between 1 × 1018 and 4 × 1018 cm−2, depending on the bacterial species considered and corresponding to an O2 level somewhat lower than 10−2 PAL. For the coccoid blue-green alga Agmenellum quadruplicatum, this minimum ozone column would be of 4.5 × 1018, a value which is only slightly less than the presently observed column in the spring time ozone hole of Antarctica.  相似文献   


9.
Pectroscopic data on the shifts and widths of the energy levels of molecular oxygen have been used in the empirical construction of a diabatic potential matrix that characterizes the interactions of the B3u state with the 5Πu, 23+u, 3Πu and 1Πu states. The diabatic potential matrix is u theory formulation to calculate the cross-sections for the excitation of O(1D) atoms in collisions of two O(3P) atoms. Total cross-sections are obtained by adding the excitation from the 3Πg, channel. The rate coefficient for quenching of O(1D) by O(3P) is evaluated as a function of temperature. The values conflict with a recent analysis of the emission of the oxygen red line in the upper atmosphere.  相似文献   

10.
We investigate the evolution of cooling helium atmosphere white dwarfs using a full evolutionary code, specifically developed to follow the effects of element diffusion and gravitational settling on white dwarf cooling. The major difference between this work and previous work is that we use more recent opacity data from the OPAL project. Since, in general, these opacities are higher than those available 10 years ago, at a given effective temperature, convection zones go deeper than in models with older opacity data. Thus convective dredge-up of observationally detectable carbon in helium atmosphere white dwarfs can occur for thicker helium layers than found by Pelletier et al. We find that the range of observed C to He ratios in different DQ white dwarfs of similar effective temperature is well explained by a range of initial helium layer mass between 10−3 and 10−2 M⊙, in good agreement with stellar evolution theory, assuming a typical white dwarf mass of 0.6 M⊙. We also predict that oxygen will be present in DQ white dwarf atmospheres in detectable amounts if the helium layer mass is near the lower limit compatible with stellar evolution theory. Determination of the oxygen abundance has the potential of providing information on the profile of oxygen in the core and hence on the important 12C(α,γ)16O reaction rate.  相似文献   

11.
Recent rocket observations of the N2 V-K (Vegard-Kaplan) system in the aurora have been reinterpreted using an atmospheric model based on mass spectrometer measurements in an aurora of similar intensity at the same time of year. In contrast to the original interpretation, we find that population by cascade from the C3Πu and B3Πg states in the A3Σu+v=0,1 levels, as calculated using recently measured electron excitation cross sections, accurately accounts for the observed relative emission rates (IV-K/12PG0.0). In addition there is no need to change the production rate of A 3 Σ u+ molecules relative to that of C3Πuv=0 as a function of altitude in order to fit the profile of the deactivation probability to the atmospheric model. Quenching of A 3 Σ u+ molecules at high altitudes is dominated by atomic oxygen. The rate constants for the v=0 and v=1 levels are 8 × 10−11 cm3 sec−1 and 1.7 × 10−10 cm3 sec−1 respectively, as determined using the model atmosphere mentioned above. Recent observations with a helium cooled mass spectrometer suggest that conventional mass spectrometer measurements tend to underestimate the atomic oxygen relative concentration. The rate coefficients may therefore be too large by as much as a factor of 3. Below 130 Km we find that it is possible to account for the deactivation in bright auroras by invoking large nitric oxide concentrations, similar to those recently observed mass spectrometrically and using a rate constant of 8 × 10−11 cm3 sec−1 for both the v=1 levels. This rate constant is very nearly the same as that measured in the laboratory (7 × 10−11 cm3 sec−1). Molecular oxygen appears not to play a significant role in deactivating the lower A 3 Σ u+ levels.  相似文献   

12.
A numerical analysis of cyclotron instabilities is carried out by computing the dispersion relation for a three component cold plasma-beam system. Rates of growth and damping for various values of the stream density are calculated from the dispersion relation. The rates of growth and damping increase monotonically as the number density of the proton stream increases. It is found that the frequencies at the rates of maximum growth and the damping decrease slightly to lower frequencies and a sharp peak at these frequencies becomes blunt. The minimum e-folding times of an ion cyclotron wave for (a) σs = 10−4, σi = 10−2 and (b) σs = 10−1, σi = 10−2 are about 3·84 and 0·16 sec respectively in the vicinity of the equatorial plane at 6 Re, where σs and σi are the ratios of the beam density Ns and the helium ion (H6+) density Ni to the total positive ions in the plasma-beam system.  相似文献   

13.
The orbit of Intercosmos 13 rocket (1975-22B) has been determined at 103 epochs between 30 April 1975 and 10 April 1980 from almost 7000 observations. One hundred and three values of inclination have been determined and corrections incoporated for the effects due to zonal harmonic, lunisolar and tesseral harmonic perturbations, precession, and solid Earth tides. The modified data have been analysed to yield values of the atmospheric rotation rate, Λ rev day−1, viz. Λ = 0.94 ± 0.10 at an average height of 322 ± 6 km and Λ = 1.27 ± 0.02 at 288 km. Analysis of the inclination near 14th-order resonance has indicated lumped harmonic values 109 1.01.4 = − 76.13 ± 12.47, 109 1,014 = − 29.89 ± 32.64, 109 −1.214 = − 63.11 ± 15.44 109 −1.214 = − 32.52 ± 26.96, for inclination 82.952°.  相似文献   

14.
The deposition of energy, escape of atomic and molecular nitrogen and heating of the upper atmosphere of Titan are studied using a Direct Simulation Monte Carlo method. It is found that the globally averaged flux of deflected magnetospheric atomic nitrogen ions and molecular pickup ions deposit more energy in Titan's upper atmosphere than solar radiation. The energy deposition in this region determines the atmospheric loss and the production of the nitrogen neutral torus. The temperature structure near the exobase is also calculated. It is found that, due to the inclusion of the molecular pickup ions more energy is deposited closer to the exobase than assumed in earlier plasma ion heating calculations. Although the temperature at the exobase is only a few degrees larger than it is at depth, the density above the exobase is enhanced by the incident plasma.  相似文献   

15.
We present an updated model for the photochemistry of Io's atmosphere and ionosphere and use this model to investigate the sensitivity of the chemical structure to vertical transport rates. SO2is assumed to be the dominant atmospheric gas, with minor molecular sodium species such as Na2S or Na2O released by sputtering or venting from the surface. Photochemical products include SO, O2, S, O, Na, NaO, NaS, and Na2. We consider both “thick” and “thin” SO2atmospheres that encompass the range allowed by recent HST and millimeter-wave observations, and evaluate the possibility that O2and/or SO may be significant minor dayside constituents and therefore likely dominant nightside gases. The fast reaction between S and O2limits the column abundance of O2to ∼104less than that calculated by Kumar (J. Geophys. Res.87, 1677–1684, 1982; 89(A9), 7399–7406, 1984) for a pure sulfur/oxygen atmosphere. If a significant source of NaO2or Na2O were supplied by the surface and mixed rapidly upward, then oxygen liberated in the chemical reactions which also liberate free Na would provide an additional source of O2. Fast eddy mixing will enhance the transport of molecular sodium species to the exobase, in addition to increasing the vertical transport rate of ions. Ions produced in the atmosphere will be accelerated by the reduced corotation electric field penetrating the atmosphere. These ions experience collisions with the neutral gas, leading to enhanced vertical ion diffusion. The dominant ion, Na+, is lost primarily by charge exchange with Na2O and/or Na2S in the lower atmosphere and by diffusion through the ionopause in the upper atmosphere. The atmospheric column abundance of SO, O2, and the upper atmosphere escape rates of Na, S, O, and molecular sodium species are all strong functions of the eddy mixing rate. Most atmospheric escape, including that of molecular sodium species, probably occurs from the low density “background” SO2atmosphere, while a localized high density “volcanic” SO2atmosphere can yield an ionosphere consistent with that detected by the Pioneer 10 spacecraft.  相似文献   

16.
Recently published laboratory measurements of the isotopic exchange rate constant k(T) between CD4 and H2 are used to calculate f(z)—the isotopic enrichment factor between CH4 and H2—at every level in the outer atmosphere of the giant planets. The variation of f(z) with local vertical velocity, temperature and pressure has been calculated under the assumption that atmospheres are convective and uncertainties have been calculated by error propagation. Considering only the random errors—mainly the uncertainty on k(T)—the f values in the observable upper atmospheres of giant planets (i.e. at z = 0, P = 1 bar) are: f(0) = 1.25 ± 0.05, 1.38 ± 0.06, 1.68 ± 0.09, and 1.61 ± 0.08 for Jupiter, Saturn, Uranus, and Neptune, respectively. Additional systematic errors due to the uncertainty in calculating the vertical velocity in the framework of the mixing length Prandtl theory lead to an overall uncertainty on f(0) of ±0.12, ±0.15, ±0.23, and ±0.21 for each planet, respectively. The D/H ratios in H2 derived from the measured CH3D/CH4 ratios in the upper atmosphere of the four giant planets are then recalculated. Uranus and Neptune seem to be enriched in deuterium with respect to the protosolar nebula but depleted relative to the Standard Mean Oceanic Water on the Earth (SMOW). However calculations based on current interior models of Neptune suggest that ices which formed the core of the planet had a D/H ratio of the order of the SMOW. The deuterium abundance in proto-Uranian ices remains uncertain. The case where water is a major constituent of the fluid envelope of Neptune is discussed. It is shown that the D/H ratio of the planet would then be higher than the value measured in hydrogen. Even in this case, the D/H ratio in proto-Neptunian ices is less than the recently revised value in P/Halley and less than the value measured in water of the Semarkona meteorite. These results suggest that the ices which formed the core of Neptune did not have an interstellar origin. Similarly, the comparison of the most recent determination of the D/H ratio in the atmosphere of Titan with the value of D/H in P/Halley suggests that this atmosphere was not formed by infalling comets but more likely from grains embedded in the sub-nebula of Saturn.  相似文献   

17.
A set of unit clouds of 104 M randomly distributed between 3 and 7 kpc radii, move under the general gravitation of the galactic disk and their mutual gravitation. When the clouds collide they form loose aggregates or giant molecular clouds (GMC). Star formation rate is assumed to be proportional to the mass of the GMC. The more massive stars formed soon turn into supernovae, which in turn break up the GMC back into the unit clouds. After some 350 Myr a steady state is reached, in which the GMCs have a mass spectrum of gradient −1.6, and has the mass-radius relation MR2, both in agreement with the observations. From our simulation we find there should be 775 ± 12 supernova remnants in our galaxy. The existence of spiral arms does not increase the production rate of supernova remnants, but it does make the GMCs to concentrate around them.  相似文献   

18.
This paper analyzes the formation, kinetics, and transport of hot oxygen atoms in the atmosphere of the Jovian satellite Europa. Atmospheric sources of suprathermal oxygen atoms are assumed to be represented by the processes of dissociation of molecular oxygen, which is the main component of the atmosphere, by solar UV radiation and electron fluxes from the inner magnetosphere of Jupiter, as well as by the reaction of dissociative recombination of the main ionospheric ion O 2 + which thermal electrons. It is shown that dissociation in Europa’s near-surface atmosphere is balanced by the processes of the loss of atomic oxygen due to the effective escape of suprathermal oxygen atoms into the inner magnetosphere of Jupiter along the orbit of Europa and due to ionization by magnetospheric electrons and catalytic recombination of oxygen atoms on the icy surface of the satellite. It thus follows that atomic oxygen is only a small admixture to the main atmospheric component—molecular oxygen—in the near-surface part of the atmosphere. However, the outer exospheric layers of Europa’s atmosphere are populated mostly by suprathermal oxygen atoms. The near-surface molecular envelope of Europa is therefore surrounded by a tenuous extended corona of hot atomic oxygen.  相似文献   

19.
《Astroparticle Physics》1995,3(4):311-320
We report data taken by the LVD Experiment during a live-time period of 11 556 h. We have measured the muon intensity at slant depths of standard rock from about 3000 hg/cm2 to about 20 000 hg/cm2. This is an exclusive study, namely our data include only events containing single muons. This interval of slant depth extends into the region where the dominant source of underground muons seen by LVD is the interaction of atmospheric neutrinos with the rock surrounding LVD. The interesting result is that this flux is independent of slant depth beyond a slant depth of about 14 000 hg/cm2 of standard rock. Due to the unique topology of the Gran Sasso Laboratory the muons beyond about 14 000 hg/cm2 of standard rock are at a zenithal angle near 90°. Hence we have, for this fixed angle, a muon flux which is independent of slant depth. This is direct evidence that this flux is due to atmospheric neutrinos interacting in the rock surrounding LVD. The value of this flux near 90° is (8.3 ± 2.6) × 10−13 cm−2 s−1 sr−1, which is the first reported measurement at a zenithal angle near 90° and for slant depths between 14 000 and 20 000 hg/cm2. Our data cover over five decades of vertical intensity, and can be fit with just three parameters over the full range of our experiment. This is the first time a single experiment reports the parameters of a fit made to the vertical intensity over such a large range of standard rock slant depth. The results are compared with a Monte Carlo simulation which has as one of the two free parameters γπκ, the power index of the differential energy spectrum of the pions and kaons in the atmosphere. This comparison yields a value of 2.75 ± 0.03 for γπκ, where the error includes the systematic uncertainties. Our data are compared to other measurements made in our slant depth interval. We also report the value of the muon flux in Gran Sasso at θ = 90° as a function of the azimuthal angle.  相似文献   

20.
When the local solar zenith angle, χL, is < 105° the 6300 A line is much stronger than expected on the basis of F region ionic recombination alone. Between 95 and 105° the additional intensity is quantitatively explained by production of O(1D) from photolysis of O2 in the Schumann-Runge continuum, (λλ 1300–1750 A) using current values for solar flux, atmospheric composition and quenching of O(1D) by N2. The Schumann-Runge (SR) component exhibits a large seasonal variation with a maximum in summer. We interpret this variation as implying a seasonal change in thermospheric O2 abundance; the change seems largely to reflect a variation in O2 density at the base of the diffusive regime although some contribution may come from changes in thermospheric temperature structure. Large changes in the SR component exist from day to day and with a 27 day period following a major magnetic storm. The photodissociation source becomes inadequate when xl < 95°; at 90° more than half of the intensity comes from still another source which we identify as local photoelectron excitation of O atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号