首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodic Orbits of a Collinear Restricted Three-Body Problem   总被引:6,自引:0,他引:6  
In this paper we study symmetric periodic orbits of a collinear restricted three-body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two-body problems.  相似文献   

2.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

3.
Asymptotic motion to collinear equilibrium points of the restricted three-body problem with oblateness is considered. In particular, homoclinic and heteroclinic solutions to these points are computed. These solutions depart asymptotically from an equilibrium point and arrive asymptotically at the same or another equilibrium point and are important reference solutions. To compute an asymptotic orbit, we use a fourth order local analysis, numerical integration and standard differential corrections.  相似文献   

4.
We describe and comment the results of a numerical exploration on the evolution of the families of periodic orbits associated with homoclinic orbits emanating from the equilateral equilibria of the restricted three body problem for values of the mass ratio larger than μ 1. This exploration is, in some sense, a continuation of the work reported in Henrard [Celes. Mech. Dyn. Astr. 2002, 83, 291]. Indeed it shows how, for values of μ. larger than μ 1, the Trojan web described there is transformed into families of periodic orbits associated with homoclinic orbits. Also we describe how families of periodic orbits associated with homoclinic orbits can attach (or detach) themselves to (or from) the best known families of symmetric periodic orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Starting from the identification and classification of a family of fast periodic transfer orbits in the Earth–Moon planar circular Restricted Three Body Problem (RTBP), and using analytic continuation techniques, we find two unstable periodic orbits in the Sun–Earth–Moon Quasi-Bicircular Problem (QBCP). The orbits found perform periodic Earth–Moon transfers with a period of approximately 29.5 days.  相似文献   

6.
We investigate symmetric periodic orbits in the framework of the planar, circular, restricted, three-body problem. Having fixed the mass of the primary equal to that of Jupiter, we determine the linear stability of a number of periodic orbits for different values of the eccentricity. A systematic study of internal resonances, with frequency p/q with 2p 9, 1 q 5 and 4/3 p/q 5, offers an overall picture of the stability character of inner orbits. For each resonance we compute the stability of the two possible periodic orbits. A similar analysis is performed for some external periodic orbits.Furthermore, we let the mass of the primary vary and we study the linear stability of the main resonances as a function of the eccentricity and of the mass of the primary. These results lead to interesting conclusions about the stability of exosolar planetary systems. In particular, we study the stability of Earth-like planets in the planetary systems HD168746, GI86, 47UMa,b and HD10697.  相似文献   

7.
The existence and stability of triangular libration points in the relativistic restricted three-body problem has been studied. It is found that L4,5 are unstable in the whole range 0 ≤ μ ≤ 1/2 in contrast to the classical restricted three-body problem where they are stable for 0 < μ < μ0, where μ is the mass parameter and μ0 = 0.03852.... This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The global regularizing transformations of the planar, circular restricted problem of three bodies are studied. It is shown that all these transformations can be written in the same general form which is the solution of a first order ordinary differential equation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
给出了受摄限制性三体问题平动点线性稳定性的一个判断条件.条件只与平动点切映像的特征方程系数有关,使用方便.用判断条件,讨论了Robe问题平动点在阻力摄动下的线性稳定性,得到了Hallan等给出的Robe问题平动点在阻力摄动下的线性稳定范围.并改进了Giordanoc等的结果.  相似文献   

10.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

11.
This paper deals with the stationary solutions of the planar restricted three-body problem when the primaries are triaxial rigid bodies with one of the axes as the axis of symmetry and its equatorial plane coinciding with the plane of motion. It is seen that there are five libration points, two triangular and three collinear. It is further observed that the collinear points are unstable, while the triangular points are stable for the mass parameter 0 < crit(the critical mass parameter). It is further seen that the triangular points have long or short periodic elliptical orbits in the same range of .This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

12.
In this paper the authors provide a study of the phenomenon of the gravitational capture by using the models of the circular and elliptic restricted three-body problem. In the first part the inadequacy of the circular restricted three-body problem in the study of the phenomenon of the capture in the case of NEAs is shown. In the model of the spatial elliptic restricted three-body problem criteria of the capture are deduced by using the pulsating Hill-regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
摘要给出了一个判断有摄圆型限制性三体问题平动点稳定性的充要条件.该条件只依赖于平动点变分方程的特征方程系数的一个简单关系,使用很方便.用所得到的条件,讨论了任意外力摄动对经典圆型限制性三体问题三角平动点稳定性的影响和惯性阻力摄动对Robe圆型限制性三体问题主要平动点的稳定性的影响.  相似文献   

14.
This paper deals with the Restricted Three Body Problem (RTBP) in which we assume that the primaries are radiation sources and the influence of the radiation pressure on the gravitational forces is considered; in particular, we are interested in finding families of periodic orbits under theses forces. By means of some modifications to the method of numerical continuation of natural families of periodic orbits, we find several families of periodic orbits, both in two and three dimensions. As starters for our method we use some known periodic orbits in the classical RTBP. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We found another critical mass ratio value μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the re-stricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.  相似文献   

16.
We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.  相似文献   

17.
The purpose of this paper is to extend the study of the so called p-q resonant orbits of the planar restricted three-body problem to the spatial case. The p-q resonant orbits are solutions of the restricted three-body problem which have consecutive close encounters with the smaller primary. If E, M and P denote the larger primary, the smaller one and the infinitesimal body, respectively, then p and q are the number of revolutions that P gives around M and M around E, respectively, between two consecutive close approaches. For fixed values of p and q and suitable initial conditions on a sphere of radius around the smaller primary, we will derive expressions for the final position and velocity on this sphere for the orbits under consideration.  相似文献   

18.
One- and two-dimensional sections of the region of initial conditions in the vicinity of a periodic Ducati orbit have been studied in detail in the plane equal-mass three-body problem. A continuous stability region generated by the periodic Ducati orbit has been revealed. In addition, a number of other stability regions that are probably related to stable hierarchical triple systems have been found. Several specific trajectories from the stability regions and in the boundary zones are analyzed.  相似文献   

19.
The distinctive feature of the relativistic restricted three-body problem within the c –5 order of accuracy (2 post-Newtonian approximation) is the presence of the gravitational radiation. To simplify the problem the motion of the massive binary components is assumed to be quasi-circular. In terms of time these orbits have linearly changing radii and quadratically changing phase angles. By substituting this motion into the Newtonian-like equations of motion one gets the quasi-Newtonian restricted quasi-circular three-body problem sufficient to take into account the main indirect perturbations caused by the binary radiation terms. Such problem admits the Lagrange-like quasi-libration solutions and rather simple quasi-circular orbits lying at large distance from the binary.  相似文献   

20.
The velocity scaling factor method based on the least squares principle is regarded as the most efficient, stable, and widely-used method among all the manifold correction methods. The stability of the restricted three-body problem where the primary body is a source of radiation and the secondary body is an oblate spheroid is discussed by using the velocity scaling factor method. The numerical simulations suggest that (1) the number of the chaotic orbits will increase if only the oblate spheroid perturbation is considered; (2) the number of the regular orbits will increase if only considering the radiation pressure; (3) when both the radiation and oblateness perturbation exist, the radiation plays a dominant role, and the probability of regular motion of the system will increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号