首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

2.
Late- and postglacial history of the Great Belt, Denmark   总被引:3,自引:0,他引:3  
On the basis of shallow seismic records, vibrocoring, macrofossil analyses and AMS radiocarbon-dating, five stratigraphical units have been distinguished from the deepest parts of the central Great Belt (Storebælt) in southern Scandinavia. Widespread glacial deposits are followed by two lateglacial units confined to deeply incised channels and separated by an erosional boundary. Lateglacial Unit I dates from the time interval from the last deglaciation to the Allerød; lateglacial Unit II is of Younger Dryas age. Early Holocene deposits show a development from river deposits and lake-shore deposits to large lake deposits, corresponding to a rising shore level. Lake deposits are found up to 20 m below the sea floor, and the lake extended over some 200–300 km2. The early Holocene freshwater deposits are dated to the time interval c. 10900 to c. 8800 cal. yr BP and the oldest shells of marine molluscs from the Great Belt are dated to c. 8100 cal. yr BP.  相似文献   

3.
Geoarchaeological investigations at the Clovis type site, Blackwater Locality No. 1, in 1983 and 1984 included core drilling, archaeological test excavations, stratigraphic profiling, sedimentary analyses, and radiocarbon dating. Six lines of core holes transverse to the outlet channel clearly defined the subsurface configuration and stratigraphy of the prehistoric spring run. Pieces of large animal bone from units B, C, D, and E that elsewhere in the site contain Paleoindian artifacts suggest occurrences of additional buried sites along the ancient spring run. Four Paleoindian projectile points recovered during archaeological testing confirm these prospects. The Clovis type site, located in an abandoned gravel pit, is in a natural depression initially occupied by a late Pleistocene lake. After breaching of the depression by overflow or sapping, it became a springhead and was enlarged by slumping and slopewash. Detailed stratigraphic profiling of the south wall of the abandoned gravel pit provided precise stratigraphic control for sediment sampling and radiocarbon dating, and revealed more complex microstratigraphy and facies relationships than heretofore known for the site. The interfingering of dune facies around the depression with lacustrine and spring-laid facies within it aid paleoclimatic interpretation. Deflational contacts within the depression appear to correlate with adjacent wedges of dune sand reflecting relatively arid intervals. Between these arid episodes occur intervals of increased ground water level attended initially by deposition of spring-laid sands of unit B during the late Pleistocene (13,000–11,500 yr B.P.). As the water table rose following a period of severe deflation, slumping and gravity flow deposited clayey sand, Unit C, on the floor of the blowout between 11,500 and 11,000 yr B.P. During this time Clovis people first appeared at the site. After another brief period of deflation, a lake rose causing sand of Unit D0 to be washed in from shore followed by deposition of diatomities, units D1 and D2. These were separated by a brief influx of eolian sand, unit D2z. Between 10,800 and 10,000 yr B.P. outflow from the lake was reduced by accumulation of eolian sand in the outlet while Folsom people and later Agate Basin people arrived to hunt bison during this time. Cody complex people appeared during and after a brief erosional episode that preceded deposition of eolian silt and sand of units E and F from 10,000 to 8000 yr B.P. Eolian deposition during post-Folsom time converted the pond to a wet meadow and eventually, during Cody time, to a grassy swale. Some of these deposits were blown out during the Altithermal arid period (ca. 8000-5000 yr B.P.), a time when prehistoric Archaic peoples excavated wells in the floor of the depression. Subsequent eolian activity has resulted in deflation and dune migration during the late Holocene. The best prospects for Paleoindian finds are along the buried outlet south of the south wall and in early Holocene dune sands on the uplands around the depression. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Near Summer Lake in southern Oregon, 54 tephra beds of late Quaternary age are exposed in pluvial lake sediments of Lake Chewaucan. Seven of the tephra beds near the top can be correlated with tephra deposits younger than 117,000 yr at Mount St. Helens, Washington, at Crater Lake, Oregon, and in northwestern Nevada in the deposits of pluvial Lake Lahontan. However, most of the section at Summer Lake lies below the correlated units, and contains 39 tephra beds older than 117,000 yr.Major-element chemistry of tephra glasses was determined by electron microprobe analysis; petrography supports the correlations made from chemical evidence. Compositions correlated range from 70 to 76% SiO2; the least silicic Summer Lake glass contained 57%.Extrapolation of depositional rate suggests that most of the sediments at Summer Lake are younger than about 335,000 yr, but older lake beds containing tephra layers occur at one place. The long lacustrine record suggests that Lake Chewaucan persisted through the last interpluvial stage, and that the lake may have dried up at the end of the Pleistocene due to diversion of the Chewaucan River by relict shore features.  相似文献   

5.
The post-Hypsithermal history of Waldsea Lake, a saline meromictic lake located in south-central Saskatchewan, has been deduced from a study of the changes in physical, mineralogical, and paleobiological parameters in sediment cores from the basin. Six lithostratigraphic units and three palynological zones are identified in the most recent sediment. These units and zones indicate that a shallow hypersaline lake with extensive mudflats existed about 4000 yr B.P. In response to the subsequent trend toward a cooler and wetter climate, deeper water conditions ensued, and by about 3000 yr ago a relatively deep stratified lake occupied the Waldsea Basin. A short climatic reversal about 2500 yr B.P. again caused low-water and mudflat conditions, but by 2000 yr ago the lake had regained its higher levels. The past 2000 yr of Waldsea's history have been relatively uneventful, except for a minor lowering of the lake about 700 yr B.P.  相似文献   

6.
The postglacial history of Lake Manitoba has been deduced from a study of the changes in physical, mineralogical, and chemical variables in sediment cores collected from the lake. Six lithostratigraphic units are recognized in the South Basin of the lake. Weakly developed pedogenic zones, reflecting dry or extremely low water conditions in the basin, separate five of these six units. The initial phase of lacustrine sedimentation in the Lake Manitoba basin began shortly after 12,000 yr B.P. as water was impounded in front of the receding glacier to form Lake Agassiz. By 11,000 yr ago, continued retreat of the ice sheet opened lower outlets to the east and much of Lake Agassiz drained, including the Lake Manitoba basin. Water levels again rose at 9900 yr B.P., but by about 9200 yr B.P. the South Basin was again dry. For the next 4700 yr there was an alternation of wet and dry conditions in the basin in response to the interaction of a warmer and drier climate and differential crustal rebound of the basin. About 4500 yr ago a new phase of Lake Manitoba sedimentation was initiated when the Assiniboine River began to discharge into the South Basin. The Assiniboine River was diverted out of the Lake Manitoba watershed about 2200 yr ago. Erosion and redistribution of the sandy deltaic sediments deposited by the Assiniboine River has created the barrier beach that now separates the extensive marsh to the south of the lake from the main lake.  相似文献   

7.
8.
A substantially modified history of the last two cycles of Lake Bonneville is proposed. The Bonneville lake cycle began prior to 26,000 yr B.P.; the lake reached the Bonneville shoreline about 16,000 yr B.P. Poor dating control limits our knowledge of the timing of subsequent events. Lake level was maintained at the Bonneville shoreline until about 15,000 yr B.P., or somewhat later, when catastrophic downcutting of the outlet caused a rapid drop of 100 m. The Provo shoreline was formed as rates of isostatic uplift due to this unloading slowed. By 13,000 yr B.P., the lake had fallen below the Provo level and reached one close to that of Great Salt Lake by 11,000 yr B.P. Deposits of the Little Valley lake cycle are identified by their position below a marked unconformity and by amino acid ratios of their fossil gastropods. The maximum level of the Little Valley lake was well below the Bonneville shoreline. Based on degree of soil development and other evidence, the Little Valley lake cycle may be equivalent in age to marine oxygenisotope stage 6. The proposed lake history has climatic implications for the region. First, because the fluctuations of Lake Bonneville and Lake Lahontan during the last cycle of each were apparently out of phase, there may have been significant local differences in the timing and character of late Pleistocene climate changes in the Great Basin. Second, although the Bonneville and Little Valley lake cycles were broadly synchronous with maximum episodes of glaciation, environmental conditions necessary to generate large lakes did not exist during early Wisconsin time.  相似文献   

9.
The highest shoreline features of paleo-Lake Malheur are undated gravelly barrier beaches south of Harney Lake that lie ca. 3.5 m higher than the hydrographic outlet of Harney Basin at Malheur Gap (1254 m). The earliest Quaternary record for Lake Malheur consists of occurrences of water-deposited tephra dated to ca. 70,000–80,000 yr ago. The next identified lake interval is dated by shells with ages of ca. 32,000 and 29,500 yr B.P. No dates are available for the terminal-Pleistocene Lake Malheur. Lake(s) were present between ca. 9600 and 7400 yr B.P., although periodic low levels or desiccation are suggested by a paleosol dated as ca. 8000 yr B.P. The lake system probably dried further after 7400 yr B.P., although dates are lacking for the period between ca. 7400 and 5000 yr B.P. Dune deposits on the lake floor are ca. 5000 yr old and indicate generally dry conditions. Fluctuating shallow lakes have probably characterized the last 2000 years. A date of 1000 yr B.P. gives a maximum age for beach deposits at 1254 m, near the basin threshold elevation. Thus, the Malheur Lake system may have drained to the Pacific Ocean by way of Malheur Gap during the latest Holocene.  相似文献   

10.
Models of factors controlling late Pleistocene pluvial lake-level fluctuations in the Great Basin are evaluated by dating lake levels in Jakes Valley. “Jakes Lake” rose to a highstand at 13,870 ± 50 14C Yr B.P., receded to a stillstand at 12,440 ± 50 14C yr B.P., and receded steadily to desiccation thereafter. The Jakes Lake highstand is roughly coincident with highstands of lakes Bonneville, Lahontan and Russell. The rise to highstand and recession of Jakes Lake were most likely controlled by a storm track steered by the polar jet stream. The final stillstand of Jakes Lake helps constrain timing of northward retreat of the polar jet stream during the Pleistocene-Holocene transition.  相似文献   

11.
Owing to the hypercontinental location of Western Nubia, secular fluctuations of climate have been filtered and wet phases can be considered as representative of conditions throughout the southeastern Sahara. The study area is crossed by the 20-mm isohyet; between 9300 and about 4000 yr B.P., however, there were widespread lake and swamp environments with freshwater molluscs, ostracods, and diatoms, and a species-rich savanna mammal fauna. The center of the West Nubian Basin (approx. 18°N), an area of about 20,000 km2, was occupied by a semiaquatic landscape which was situated at the same latitude as Paleolake Chad. From extensive lake carbonates up to about 4 m thick, a long-term rise of the groudwater table is inferred. Environments developed that now exist at about latitude 13°N. Radiocarbon dates from lake sediment sequences cluster between 30,000 and 21,000 yr B.P., indicating a Pleistocene wet phase. A gap in radiocarbon dates between 21,000 and 11,000 yr B.P. signals a phase of hyperaridity, similar to the present hyperarid phase, with eolian deflation and deposits of sand being the dominant forms of erosion and accumulation.  相似文献   

12.
Sedimentological and stratigraphical analysis of the Sokoto Basin has resulted in recognition of four lithostratigraphic units. They are Unit A—siltstone and fine-grained sandstone; Unit B—shale and marl; Unit C—limestone and calcareous shale; and Unit D—red sandstone. Unit A represents a wadi plain system composed of desert-alluvial beds; Unit B, a mud-rich sabkha system; and Unit C, an inner-shelf carbonate system. A marine transgression from the northwest began in the Maastrichtian and reached its peak in the Palaeocene. After regression in the late Palaeocene, the area was subjected to erosion, followed by fluvial sedimentation of Unit D. Wadi plain beds and mud-rich sabkha facies of Sokoto Basin are similar to alluvial and coastal mud-flat deposits in the northwestern Gulf of California and ephemeral stream and tidal-flat sediments in Gladstone Embayment, Australia.  相似文献   

13.
We present a new U-series dated speleothem record (PC-1) from the Great Basin that documents deglacial climate variability between ca 20.1 and 15.6 ka. Our data show an abrupt 18.6 ka cold event preceding Heinrich event 1 that is consistent with expansion of the Laurentide Ice sheet during the ‘binge’ phase of ice growth. This event coincided with dessication of pluvial Lake Mojave suggesting cold and dry conditions in the southern Great Basin at this time. PC-1 δ18O values before and during Heinrich event 1 are similar, but an increase in stalagmite growth rates suggests wetter conditions that coincided with deposition of spring deposits in southern Nevada. The time interval of our record is consistent with the timing of pluvial conditions in the Great Basin as evident from a comparison to regional wetness proxies. Our new speleothem record, recovered from the recharge area for Devils Hole, does not show a δ18O increase coincident with the abrupt increase in Devils Hole δ18O at c. 18 ka, challenging the view that the Great Basin experienced an early Termination I. This hypothesis is supported by two other southwest speleothem records that demonstrate deglaciation was synchronous with forcing from the North Atlantic Ocean. We suggest that Devils Hole speleothem δ18O values may partly reflect source water changes in the regional aquifer. Further, Devils Hole δ13C minima coincide with peak global glacial conditions and weak Asian monsoon periods, suggesting that they constrain better the timing of pluvial conditions in the Great Basin.  相似文献   

14.
Eolian and subaqueous landforms composed of gypsum sand provide geomorphic evidence for a wet episode at the termination of glacial climate in southwestern North America. Drying of pluvial Lake Estancia, central New Mexico, occurred after ca. 12,000 14C yr B.P. Thereafter, eolian landforms on the old lake floor, constructed of gypsum sand, were overridden by rising lake water, modified by subaqueous processes, and organized into beach ridges along the lake's eastern shore. Preservation of preexisting eolian landforms in the shallow lake suggests abupt changes in lake level and climate. Available radiocarbon ages suggest that the final highstand recorded by beach ridges may have developed during the Younger Dryas (YD) stade. The beach ridges provide information about lake surface area, which was 45% of the lake area reached during the maximum highstands of the late Pleistocene. A similar proportional response has been reported for YD climate changes outside the North Atlantic region.  相似文献   

15.
The benches and risers at Mormon Point, Death Valley, USA, have long been interpreted as strandlines cut by still-stands of pluvial lakes correlative with oxygen isotope stage (OIS) 5e/6 (120,000–186,000 yr B.P.) and OIS-2 (10,000–35,000 yr B.P.). This study presents geologic mapping and geomorphic analyses (Gilbert's criteria, longitudinal profiles), which indicate that only the highest bench at Mormon Point (90 m above mean sea level (msl)) is a lake strandline. The other prominent benches on the north-descending slope immediately below this strandline are interpreted as fault scarps offsetting a lacustrine abrasion platform. The faults offsetting the abrasion platform most likely join downward into and slip sympathetically with the Mormon Point turtleback fault, implying late Quaternary slip on this low-angle normal fault. Our geomorphic reinterpretation implies that the OIS-5e/6 lake receded rapidly enough not to cut strandlines and was 90 m deep. Consistent with independent core studies of the salt pan, no evidence of OIS-2 lake strandlines was found at Mormon Point, which indicates that the maximum elevation of the OIS-2 lake surface was −30 m msl. Thus, as measured by pluvial lake depth, the OIS-2 effective precipitation was significantly less than during OIS-5e/6, a finding that is more consistent with other studies in the region. The changed geomorphic context indicates that previous surface exposure dates on fault scarps and benches at Mormon Point are uninterpretable with respect to lake history.  相似文献   

16.
Paleomagnetic secular variation in a portion of the Bonneville Alloformation is compared with secular variation in lacustrine sediments in the Mono Basin, California, and with secular variation in Lake Lahontan sediments in the northwestern Great Basin. The comparison places an age of about 18,000 yr B.P., and a span of 1000 to 3000 yr, on part of a transgressive stage of Lake Bonneville near Delta, Utah, that is coeval with a wet period in the Lahontan Basin.  相似文献   

17.
A 33,000-yr pollen record from Carp Lake provides information on the vegetation history of the forest/steppe border in the southwestern Columbia Basin. The site is located in the Pinus ponderosa Zone but through much of late Quaternary time the area was probably treeless. Pollen assemblages in sediments dating from 33,000 to 23,500 yr B.P. suggest a period of temperate climate and steppe coinciding with the end of the Olympia Interglaciation. The Fraser Glaciation (ca. 25,000–10,000 yr B.P.) was a period of periglacial steppe or tundra vegetation and conditions too dry and cold to support forests at low altitudes. Aridity is also inferred from the low level of the lake between 21,000 and 8500 yr B.P., and especially after about 13,500 yr B.P. About 10,000 yr B.P. Chenopodiineae and other temperate taxa spread locally, providing palynological evidence for a shift from cold, dry to warm, dry conditions. Pine woodland developed at the site with the onset of humid conditions at 8500 yr B.P.; further cooling is suggested at 4000 yr B.P., when Pseudotsuga and Abies were established locally.  相似文献   

18.
New accelerator mass spectrometer radiocarbon ages from gastropods in shore deposits within the pluvial Lake Chewaucan basin, combined with stratigraphical and geomorphological evidence, identify an abrupt rise and fall of lake level at ca. 12 14C ka. The lake‐level high is coeval with lake‐level lows in the well‐dated records of palaeolakes Bonneville and Lahontan, and with a period of relatively wet conditions in the more southerly Owens Lake basin. This spatial pattern of pluvial lake levels in the western USA at 12 14C ka indicates a variable synoptic response to climate forcing at this time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A newly identified tephra in stratified deposits in southwestern Utah, dated 14,000 14C yr B.P., may aid in correlating late Pleistocene deposits across parts of the southern Great Basin and west-central Colorado Plateau. Geochemical analyses of the ash suggest the tephra originated from Mono Craters, California, and most probably correlates with Wilson Creek ash #3. Because the ash is 2 mm thick 550 km from its source, the event may have been larger than others correlated to Mono Craters eruptions.  相似文献   

20.
New stratigraphic and geochronologic data from the Killpecker Dunes in southwestern Wyoming facilitate a more precise understanding of the dune field’s history. Prior investigations suggested that evidence for late Pleistocene eolian activity in the dune field was lacking. However, luminescence ages from eolian sand of ∼15,000 yr, as well as Folsom (12,950-11,950 cal yr B.P.) and Agate Basin (12,600-10,700 cal yr) artifacts overlying eolian sand, indicate the dune field existed at least during the latest Pleistocene, with initial eolian sedimentation probably occurring under a dry periglacial climate. The period between ∼13,000 and 8900 cal yr B.P. was characterized by relatively slow eolian sedimentation concomitant with soil formation. Erosion occurred between ∼8182 and 6600 cal yr B.P. on the upwind region of the dune field, followed by relative stability and soil formation between ∼5900 and 2700 cal yr B.P. The first of at least two latest Holocene episodes of eolian sedimentation occurred between ∼2000 and 1500 yr, followed by a brief (∼500 yr) episode of soil formation; a second episode of sedimentation, occurring by at least ∼700 yr, may coincide with a hypothesized Medieval warm period. Recent stabilization of the western Killpecker Dunes likely occurred during the Little Ice Age (∼350-100 yr B.P.). The eolian chronology of the western Killpecker Dunes correlates reasonably well with those of other major dune fields in the Wyoming Basin, suggesting that dune field reactivation resulted primarily due to departures toward aridity during the late Quaternary. Similar to dune fields on the central Great Plains, dune fields in the Wyoming Basin have been active under a periglacial climate during the late Pleistocene, as well as under near-modern conditions during the latest Holocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号