首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of fluid inclusion evidence, pervasive influx of deep-seated CO2-rich fluids has been invoked to account for mid- to upper amphibolite facies (M2B) metamorphism on the island of Naxos (Cyclades, Greece). In this paper, mineral devolatilization and melt equilibria are used to constrain the composition of both syn- and post-peak-M2B fluids in the deepest exposed levels of the metamorphic complex. The results indicate that peak-M2B fluids were spatially and compositionally heterogeneous throughout the high-grade core of the complex, whereas post-peak-M2B fluids were generally water-rich. The observed heterogeneities in syn-M2B fluid composition are inconsistent with pervasive CO2-flushing models invoked by previous workers on the basis of fluid inclusion evidence. It is likely that few CO2-rich fluid inclusions on Naxos preserve fluids trapped under peak metamorphic conditions. It is suggested that many of these inclusions have behaved as chemically open systems during the intense deformation that accompanied the uplift of the metamorphic complex. A similar process may explain the occurrence of some CO2-rich fluid inclusions in granulite facies rocks.  相似文献   

2.
High-density CO2-rich fluid inclusions from a sapphirine-bearing granulite (Hakurutale, Sri Lanka) have been studied by microthermometry, Raman spectrometry and SEM analysis. Based on textural evidence, two groups of inclusions can be identified: primary, negative crystal shaped inclusions (group I) and pseudo-secondary inclusions, which experienced a local, limited post-trapping modification (group II). Both groups contain magnesite as a daughter mineral, occurring in a relatively constant fluid/solid inclusion volume ratio (volsolid =0.15 total volume). CO2 densities for group I and II differ only slightly. Both groups contain a fluid, which was initially trapped at peak metamorphic conditions as a homogeneous (CO2+MgCO3) mixture. Thermodynamic calculations suggest that such a fluid (CO2+15 vol% MgCO3) is stable under granulite facies conditions. After trapping, magnesite separated upon cooling, while the remaining CO2 density suffered minor re-adjustments. A model isochore based on the integration of the magnesite molar volume in the CO2 fluid passes about 1.5–2 kbar below peak metamorphic conditions. This remaining discrepancy can be explained by the possible role of a small quantity of additional water.  相似文献   

3.
Abstract The orthopyroxene-clinopyroxene, garnet-orthopyroxene and garnet-clinopyroxene geothermometers, and the garnet-orthopyroxene-plagioclase, garnet-clinopyroxene-plagioclase and anorthite-ferrosilite-grossular-almandine-quartz geobarometers are applied to metabasites and the garnetplagioclase-sillimanite-quartz geobarometer is applied to a metapelite from the Proterozoic Arendal granulite terrain, Bamble sector, Norway. P–T conditions of metamorphism were 7.3 ± 0.5 kbar and 800 ± 60°C.
This terrain shows a regional gradation from the amphibolite facies, into normal LILE content granulite facies rocks and finally strongly LILE deficient granulite facies gneisses. Neither P nor T vary significantly across the entire transition zone. The change in 'grade'parallels the increasing dominance of CO2 over H2O in the fluid phase.
LILE-depletion is not a pre-condition of granulite facies metamorphism: granulites may have either 'depleted'or 'normal'chemistries. The results presented herein show that LILE-deficiency in granulite facies orthogneisses is not necessarily related to variations in either P or T . The important mechanisms in the Arendal terrain were (a) direct synmetamorphic crystallization from magma, with primary LILE-poor mineralogies imposed by the prevailing fluid regime, and (b) metamorphic depletion, involving scavenging of LILEs during flushing by mantle-derived CO2-rich fluids. The latter process is constrained by U–Pb and Rb–Sr isotopic work to have occurred no later than 50 Ma after intrusion of the acid-intermediate gneisses, and was probably associated with contemporary basic magmatism in a tectonic environment similar to a present day cordilleran continental margin.  相似文献   

4.
Jacques Touret 《Lithos》1971,4(4):423-436
Liquid inclusions in quartz found in rocks of amphibolite and of granulite facies were studied. In the former water is predominant, in the latter CO2 (probably juvenile). Estimates of PT conditions during metamorphism based on the study of inclusions gave values (800°C, 8 kb) comparable to those obtained by the petrological study (7–800 °C, 6–8 kb) presented in part I.  相似文献   

5.
Abstract Scapolite, wollastonite, calcite, diopside, grossular-andradite garnet and sphene occur in calc-silicate rocks in the granulite terrain of the Arunta Block, central Australia. This assemblage buffers the CO2 activity at a low value, so that any coexisting fluid phase must be H2O rich and CO2 poor ( X co2 = 0.2-0.3). In contrast, the H2O activity in the surrounding felsic and mafic granulites was low. Thus fluid activities during granulite facies metamorphism were locally buffered in various rock units and fluid flow appears to have been restricted or fluid may have been absent. Late retrograde rims of garnet and garnet-quartz separate phases formed in the high-grade stage. Formation of these rims would have required either an influx of water-rich fluid or a decrease in pressure. Evidence from the surrounding granulites shows that in one locality, the calc-silicate rocks had undergone late isobaric hydration; in another locality, minor uplift had occurred soon after peak P-T conditions. In both, scapolite had partly broken down to plagioclase-calite. A calc silicate rock from the granulite terrain of Enderby Land, Antarctica, contains scapolite, wollastonite, calcite, diopside, quartz and sphene; this assemblage also indicates low CO2 activities. In this rock, wollastonite has broken down to calcite-quartz, to indicate isobaric cooling without influx of hydrous fluid.  相似文献   

6.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

7.
Calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica, exhibit a sequence of reaction textures that have been used to elucidate their retrograde P–T path. The highest temperature recorded in the calc-silicates is represented by the wollastonite- and scapolite-bearing assemblages which yield at least 760°C at 6 kbar based on experimental results. The calc-silicates have partially re-equilibrated at lower temperatures (down to 450°C) as evidenced by the successive reactions: (1) wollastonite + scapolite + calcite = garnet + CO2, (2) wollastonite + CO2= calcite + quartz, (3) wollastonite + plagioclase = garnet + quartz, (4) scapolite = plagioclase + calcite + quartz, (5) garnet + CO2+ H2O = epidote + calcite + quartz, and (6) clinopyroxene + CO2+ H2O = tremolite + calcite + quartz.
The reaction sequence observed indicates that a CO2 was relatively low in the wollastonite-bearing rocks during peak metamorphic conditions, and may have been further lowered by local infiltration of H2O from the surrounding migmatitic gneisses on cooling. Fluid activities in the Bolingen calc-silicates were probably locally variable during the granulite facies metamorphism, and large-scale CO2 advection did not occur.
A retrograde P–T path, from the sillimanite stability field ( c. 760°C at 6 kbar) into the andalusite stability field ( c. 450°C at <3 kbar), is suggested by the occurrence of secondary andalusite in an adjacent cordierite–sillimanite gneiss in which sillimanite occurs as inclusions in cordierite.  相似文献   

8.
A sequence of regional metamorphic isograds indicating a range from prehnite-pumpellyite to lower amphibolite facies was mapped in metabasites near Flin Flon, Manitoba. The lowest grade rocks contain prehnite + pumpellyite and are cut by younger brittle faults containing epidote + chlorite + calcite. Isobaric temperature- X CO2 and pressure-temperature (constant X CO2) diagrams were calculated to quantify the effects of CO2 in the metamorphic fluid on the stability of prehnite-pumpellyite facies minerals in metabasites containing excess quartz and chlorite. Prehnite and, to a lesser extent, pumpellyite are stable only in fluids with X co2 <0.002. For X co2>0.002, epidote + chlorite + calcite assemblages are stable. Our calculated phase relations are consistent with regional metamorphism in the Flin Flon area in the presence of an H2O-rich fluid and a more CO2-rich fluid in the later fault zones. We believe that the potential effects of small amounts of CO2 in the metamorphic fluid should be assessed when considering the pressure-temperature implications of mineral assemblages in low-grade metabasites.  相似文献   

9.
本文报道了冀西北地区麻粒岩相片麻岩中矿物内流体包裹体的特征并讨论了其地质意义。根据包裹体的形态、赋存状态并结合包裹体CO2密度的演化,在麻粒岩相花岗质片麻岩的矿物中可识别出四种类型的流体包裹体:1)一相富CO2包裹体、2)气液两相富CO2包裹体、3)三相含液态CO2包裹体,4)含石盐子晶的多相包裹体。不同类型包裹体的特征和密度等表明,该区花岗质片麻岩经历了三个阶段的变质过程。第一阶段,在麻粒岩相变质作用峰期之后捕获了高密度的富CO2包裹体。在第二阶段形成了两相富CO2包裹体。第三阶段捕获了低密度的三相含液态CO2包裹体。这种很低密度的流体包裹体反映了晚期变形和退变质期间的温压条件  相似文献   

10.
K. A. Blom 《Lithos》1988,21(4):263-278
The phenomenon of migmatization was studied in Precambrian metavolcanic gneisses of calc-alkaline chemistry, outcropping along a prograde amphibolite/granulite facies transition in the West Uusimaa Complex of SW Finland. This paper discusses one of the studied gneiss levels (a garnet-bearing Qtz/Plag/Ksp/Bio-gneiss) which was observed to transsect the metamorphic isograd pattern at almost right angle. The gneiss was studied for structures, whole-rock chemistry (major, trace and REE), mineral content, microtextures, plagioclase anorthite content and fluid inclusions. Data concerning the latter four subjects are presented.

Migmatization proved to: (1) have occurred parallel to compositional banding of the rocks; (2) have produced identical leucosome/melanosome/mesosome mineral parageneses; (3) have initiated feldspar/garnet-poikiloblasthesis (and occasionally biotite porphyroblasthesis) in leucosome, and biotite-/garnet-poikiloblasthesis in melanosome; (4) have caused entrapment of unstrained quartz blebs carrying isolated (primary) two-phase pure H2O fluid inclusions of unique filling degree range in the above-mentioned feldspar- and garnet-poikiloblasts; (5) have occurred post-D1/pre-D2, synchronous to amphibolitefacies metamorphism, in the subsolidus regime; (6) have been affected by D2 in the way of localized mylonitization of the melanosome, and quartz migration (exudation) from adjacent mesosome into leucosome; and (7) have had some control by the biotite content of the original compositionally banded rock.

Initial leucosome formation appears to have been controlled by the pre-leucosome biotite content: the recalculated modal biotite content of the leucosome/melanosome combination conspicuously is in the range of 5–20 vol.% of biotite. Final extent of the leucosome shows on its turn a marked correlation with mesosome modal biotite content.

Because leucosomes occur carrying a recalculated modal biotite content equalling adjacent mesosome biotite content, a second factor is held responsible for the onset of migmatization in the buried and sheared rock: deficient water balance. Migmatization, initiated at P/T conditions fit for feldspar recrystallization and almandine formation, was induced during prograde metamorphism to cancel an established zonation in water pressure or water content parallel to compositional banding. Zones of low PH2O or wt.% H2O thereby were converted into leucosomes, while zones of higher PH2O or wt.% H2O remained unaffected (and became mesosome). That XH2O did not vary at the onset of migmatization is recorded in the isolated pure H2O fluid inclusions contained in the quartz blebs enclosed in the studied leucosome- and melanosome-poikiloblasts. Restore of water balance (either by internally controlled factors or externally introduced ones) halted migmatization and its obliteration of compositional banding.  相似文献   


11.
Abstract Andalusite-bearing veins formed during contact metamorphism in the aureole of the Vedrette di Ries tonalite. In the veins, quartz crystals that are completely armoured by andalusite or that occur in strain shadow areas contain three generations of fluid inclusions: low-salinity H2O-CO2-CH4 mixtures with CH4/(CO2+ CH4) ± 0.35 (type A); low-salinity aqueous fluids (type B); H2O-free, CO2-CH4 fluids with the same carbonic speciation as A (type C). Carbonic types A and C typically have a dark appearance, which is attributed to graphite coatings on inclusion walls. Microstructural analysis of the host quartz and calculated densities indicate that type A inclusions were likely trapped during vein formation. These inclusions underwent strain-assisted re-equilibration during cooling that resulted in density increases without change of composition. After the rocks had cooled below about 350 ° C, type C inclusions appear to have formed from one of the immiscible fractions after unmixing of the H2O-CO2-CH4 fluid mixtures. Aqueous type B inclusions, apparently trapped between 225 and 350 ° C, could represent an independent fluid, or could be the H2O-rich fraction of unmixed type A fluids. Taking account of the uncertainties, the composition and density of the complex type A inclusion fluids are in good agreement with the properties of primary fluids calculated from the petrological data. The fluid inclusion data support the model of vein formation by hydrofracturing as a result of dehydration of graphitic metapelites. These new results also demonstrate the importance of considering strain in the interpretation of metamorphic fluid inclusions.  相似文献   

12.
The field relations from a quarry at Nuliyam, South India, illustrate dehydration of an amphibolite facies gneiss to granulite facies charnockite by CO2 influx, over a scale of 30 m. Both the calc-silicate source of the fluids and the full extent of their penetration into the gneiss are preserved in a continuous section. Fluid flow is by a hydraulic fracture mechanism, but is thought to be pervasive. The sharp reaction front predicted by the continuum mechanical theory for advective fluid transport is not observed. The front spreading is on too large a scale for either diffusive or dispersive control and is due to local kinetic disequilibrium between the fluid and rock, although the divariant nature of the reaction may also have a limited effect. The time-integrated fluid flux varies from the instantaneous porosity at the fluid front to 20 vol. % adjacent to the calc-silicate. Carbon isotope budgets suggest that decarbonation of the calc-silicate by a Rayleigh fractionation process provides a sufficient source for the CO2 influxing into the gneiss. Graphite abundances vary from 0.01 to 0.1% (by weight), it is principally derived by precipitation from the fluid and may be modelled from phase equilibria. Carbon isotope fronts coincide with the reaction front on the scale of sampling, although isotopic disequilibrium between graphite and inclusion-CO2 also implies local fluid-rock disequilibrium.  相似文献   

13.
Abstract Nearly pure CO2 fluid inclusions are abundant in migmatites although H2O-rich fluids are predicted from the phase equilibria. Processes which may play a role in this observation include (1) the effects of decompression on melt, (2) generation of a CO2-bearing volatile phase by the reaction graphite + quartz + biotite + plagioclase = melt + orthopyroxene + CO2-rich vapour, (3) selective leakage of H2O from CO2+ H2O inclusions when the pressure in the inclusion exceeds the confining pressure during decompression, and (4) enrichment of grain-boundary vapour in CO2 by subsolidus retrograde hydration reactions.  相似文献   

14.
Abstract. Laser Raman microprobe analysis was performed on the fluid inclusions from the Honko-Sanjin zone in the Hishikari epithermal gold deposit, southern Kyushu, Japan. Gas concentrations of fluid inclusions through the zone were below detection limits (e.g., 5 mmole/kg H2O for CO2), with an exception at shallow portion in which the CO2/N2 mole ratio was determined to be 5.3. Boiling of hydrothermal solutions probably separated gases from ore fluids at the deep portion of the deposit, and migration of gases to shallow portion resulted in CO2-rich steam-heated water and related acid alteration.  相似文献   

15.
Petrogenesis of Eclogites in the Light of PunctuatedMetamorphic Evolution in Dabie Terrane,China¥YouZhendong;HanYujing;ZhongZ...  相似文献   

16.
本区经历四期变质作用,太古宙上壳岩系麻粒岩相变质、晚太古宙英云闪长岩高角闪岩相变质、早元古宙紫苏花岗岩类低角闪岩相变质和元古宙绿片岩相变质。麻粒岩相变质期可分三个阶段,早期角闪岩相、峰期麻粒岩相和晚期角闪岩相,其P-T-t轨迹为逆时针,与IBC型轨迹相似。导致麻粒岩相变质作用的热源为英云闪长质岩浆的垫托作用,形成于岛弧或活动大陆边缘。区内广泛发育的钾长花岗岩与晚太古宙高角闪岩相变质作用晚期的深熔作用有关。  相似文献   

17.
Kyanite eclogites occur as part of the Münchberger nappe pile in NE-Bavaria, West Germany. Eclogites are overprinted by subsequent amphibolite facies metamorphism. The preservation of primary eclogitic textures as well as symplectitic textures are indicative of rapid decompression. Eclogite formation is estimated to have occurred under conditions of high H2O-activities at pressures between 20 and 26 kbar and temperatures ranging between 590 and 660° C, as is shown by the coexistence of omphacite (Jd 50), kyanite, zoisite and quartz. Minimum pressure estimates, independent of the water activity, range between 9 and 16 kbar at the relevant temperatures. Detailed studies of fluid inclusion reveal two predominant groups of aqueous-brine inclusions: high salinity (14–17 wt% NaCl equiv.) and low salinity (0–8 wt% NaCl equiv.) inclusions. Fluid compositions of both groups of inclusions yield isochores passing close to the estimated amphibolite facies PT-field. The compositions of these fluids are in good agreement with fluid compositions considered from mineral equilibria. None of the fluid inclusions has densities appropriate for eclogite facies metamorphism, but probably reflect later amphibolite facies metamorphism.  相似文献   

18.
Three fold generations have been recognized in Svecofennian rocks (±1,800 Ma) from West Uusimaa, SW Finland. The first one (F1) might be related to thrusting and imbrication tectonics at plate collision contacts. The main generation (F2) is due to a N-S horizontal crustal shortening, which created at first E-W trending upright folds in the whole region and later tightened these F2 folds in the western part of the belt, whereas conjugate shear zones and tectonic lenses of competent rock bodies developed in the eastern part. Simultaneously the metamorphic conditions rose from amphibolite- to granulite-facies in this eastern part, which is known as the West Uusimaa Complex. The amphibolite- to granulite-facies transition zone along the western boundary of the granulite-facies complex is studied in detail. A number of prograde mineral reactions are telescoped in this transition zone: the breakdown of biotite and amphibole to ortho- ±clino-pyroxene in metaigneous rocks, the appearance of garnet in cordierite-bearing metapelites and the appearance of scapolite in calcareous rocks. Distinct mineralogical changes also occur in this zone which cross cuts all major structures and rock units and are only affected by late-F3 folding (open, disharmonic folds with approximately N-S trending axial planes) and young shear zones, associated with pseudotachylite generation. The absence of any evidence of block faulting and tilting of the crust that could be associated with the granulite complex suggests that the whole region represents one crustal level. A fluid-inclusion study indicates similar pressures for the amphibolite facies and the granulite facies domains. Application of various independent geothermobarometric methods suggest a low pressure (3–5 K bar) and a temperature increase from 550–650° C to 700–825° C, associated with a decreasing water activity (0.12O<0.4) and a general increasing CO2 activity. Fluid inclusions strongly suggest an isobaric amphibolite/granulite transition. There-fore the granulite-facies complex is designated a thermal dome. Whole rock chemical data show that granulite-facies metamorphism is isochemical. Constraints for the Svecokarelian crustal evolution are discussed.  相似文献   

19.
Abstract CO2-bearing fluid inclusions in strongly lineated but weakly foliated late Precambrian gneisses within the Hope Valley Shear zone of Connecticut and Rhode Island are of mixed composition ( X co2± 0.1; 7 wt% NaCl equivalent) and variable density (0.59–0.86 g/ml) and occur mainly as isolated inclusions. Also present are dilute (3 wt% NaCl equivalent) aqueous inclusions which occur on healed fractures related to greenschist facies retrograde metamorphism. Isochores for dense isolated CO2-bearing inclusions indicate pressures of 7.5–9 kbar at 500–600° C, the estimated temperature conditions of peak metamorphism. Published 40Ar/39Ar hornblende plateau age spectra indicate cooling through about 500° C at 265 ± 5 Ma. Isochores for low-density CO2-bearing inclusions and aqueous inclusions intersect at the conditions of retrograde metamorphism (325–400° C) and indicate pressures of 3–4 kbar. Published 40Ar/39Ar biotite plateau ages indicate cooling through about 300° C at 250 ± 5 Ma. These data define a P–T uplift curve for the region which is convex towards the temperature axis and indicate uplift rates between 0.4 and 3.3 mm/year in Permian time. Exhumation of basement gneisses was coeval with normal (west-down) motion along the regional basement–cover contact (Honey Hill–Lake Char–Willimantic fault system), and is interpreted as due to post-orogenic extensional collapse of the Alleghanian orogeny.  相似文献   

20.
Metamorphic conditions within arenaceous, calcareous and argillaceous supracrustal rocks of the Magondi Mobile Belt (Zimbabwe) range from greenschist to granulite facies. Within the high-grade segment, basement gneisses of early Proterozoic age and argillaceous rocks of the Mid-Proterozoic Piriwiri Group are intruded by charnockites and enderbites. Metamorphic mineral assemblages and thermobarometric data for enderbitic granulites of Nyaodza show temperatures of 700–800°C and pressures of 5–7 kbar for the peak of granulite-facies metamorphism. Microthermometry and Raman microspectroscopy reveal that CO2, associated with minor N2, has been the dominant fluid phase during granulite-facies metamorphism. The chronology of the CO2 inclusions and the development of microtextures and mineral assemblages in the enderbites indicates that isolated negative crystal shaped CO2 inclusions in quartz and plagioclase porphyroclasts entrap syn-metamorphic fluids of medium-high densities (0.88–0.90 g/cm3). Lower density (0.71–0.77 g/cm3) CO2 inclusions in trails and clusters within the same minerals were formed from local re-equilibration and re-entrapment of the former (near-) peak granulitic CO2 inclusions. As in many other granulites, syn-metamorphic CO2 is associated with intrusives emplaced near the peak of metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号