首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Visual interpretation of LANDSAT imagery of 1∶250,000 scale (band 5 and 7) and 1∶1 M (FCC) covering 1611 km2 in Mewat area, Haryana was carried out for delineating the physiographic units. The physiographic units viz. hills, piedmont plain, intermontane basin and Yamuna alluvial plain were identified and delineated using interpretation elements. Soils and land use in relation to the physiographic units were studied during the field visit and are described in the paper.  相似文献   

2.
This study examined changes in urban expansion and land surface temperature in Beijing between 1990 and 2014 using multitemporal TM, ETM+, and OLI images, and evaluated the relationship between percent impervious surface area (%ISA) and relative mean annual surface temperature (RMAST). From 1990 to 2001, both internal land transformation and outward expansion were observed. In the central urban area, the high-density urban areas decreased by almost 7 km2, while the moderate- and high-density urban land areas increased by 250 and 90 km2, respectively, outside of the third ring road. From 2001 to 2014, high-density urban areas between the fifth and sixth ring roads experienced the greatest increase by more than 210 km2, and RMAST generally increased with %ISA. During 1990–2001 and 2001–2014, RMAST increased by more than 1.5 K between the south third and fifth ring roads, and %ISA increased by more than 50% outside of the fifth ring road. These trends in urban expansion and RMAST over the last two decades in Beijing can provide useful information for urban planning decisions.  相似文献   

3.
Waterlogging and subsequent salinization and/or alkalization is the major land degradation problem in the irrigation commands of the semi-arid regions. Information on the nature, extent and spatial distribution of waterlogged areas is a pre-requisite for restoration of fertility, which has hitherto been generated conventionally. Realising the potential of spaceborne multispectral measurements in providing reliable information on spatial patterns of waterlogged areas in a timely and cost-effective manner, a study was taken up to delineate and monitor the spatial distribution pattern of waterlogged areas in Mahanadi command Stage-I covering parts of Orissa state, eastern India using Landsat-TM, Indian Remote Sensing satellite (IRS-1A) Linear Imaging Self-Scanning Sensor (LISS-II) and IRS-ID LISS-III data. A systematic on-the-screen visual interpretation approach after geo-referencing and radiometric normalization of digital multispectral data in a Silicon Graphics work station using ERDAS/ IMAGINE software was followed to realize the objectives. Results point to a significant increase in the spatial extent of waterlogged areas. Seasonally waterlogged areas increased from 29330 ha to 33421 ha and permanent waterlogged areas from 10870 ha to 12973 ha during the period 1988–89 to 1999–2000. Methodology and results are discussed in detail.  相似文献   

4.
In the present study, prioritization of sub-watersheds was carried out on the basis of sediment production rate. Further, basic hydrologic information such as peak rate of runoff and annual surface water potential were also assessed for the study watersheds and these are essential requisites for effective watershed management. The 10 sub watersheds of Tarai development project area are selected for the present study. Morphometric parameters pertaining to study area are used in the estimation of sediment production rate. The sediment production rate in the study area varies between 2.45 to 11.0 ha-m/100 km2/year. The remote sensing data has been utilized for generating land use/land cover data which is an essential prerequisite for land and water resource planning and development. The remote sensing data can especially play significant role in collection of real time information from remote areas of river basins for generation of parameters required for hydrologic modeling.  相似文献   

5.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

6.
Shallow karst water resources and caves may influence land surface temperatures due to cold transfer property of rocks and evaporation from buried karst. The objective of this research was to develop a method for recognition of karst areas based on evaluating the surface characteristics that manifest itself by low land surface temperature in the satellite images. Investigation of thermal ETM+ image of the study region in Iran showed that parts of carbonate rocks that bear karst water are relatively cooler compared to areas with similar terrain conditions. Relational modeling provided useful information on spatial distribution of areas that have the potential to hold karst water resources and/or caves. Further inspection of ASTER images, along with geotechnical, geophysical and geological field surveys verified the approach. Significant correlation was found between electrical resistivity and thermal band values. The method may be used as a primary exploratory tool for shallow karst water explorations in similar areas.  相似文献   

7.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   

8.
Ardeotis nigriceps, commonly known as Great Indian Bustard (GIB), is a Critically Endangered, Evolutionary Distinct and Globally Threatened (EDGE) and endemic species to the Indian subcontinent. GIB is under tremendous threat in its last strongholds and sliding inextricably towards extinction. The GIB sanctuary in Maharashtra (India) is one of the last refuges of the bird constituting an area of 8496 km2 spread over in seven talukas of Solapur and Ahemednagar districts. Major portion of the sanctuary (94.3 %) consists of privately owned lands under a variety of economic vocations and large number of villages and townships. In view of the legal restrictions relating to Protected Area under the Wildlife (Protection) Act of India 1972, the inhabitants of villages and townships faced a very difficult situation regarding use of their lands, development of properties and deriving benefits from planned local and regional development. This created conflict between local people and the forest department over the use of land, which necessitated the rationalization of the sanctuary. The objective of the present study was to map the suitable habitat of GIB in GIB Wildlife Sanctuary as an input for the realignment of the GIB Sanctuary by identifying areas that are important for the GIB. Main parameters considered for the habitat suitability assessments are, habit and habitat of GIB, slope, minimum patch size and disturbance sources. Based on the criteria derived for the ecological and biological requirements of GIB, binary deductive habitat suitability modeling has been done using remote sensing and GIS and prioritized the potential habitats of GIB. The net area of important suitable habitat of GIB in GIB sanctuary is 2304.99 km2 out of 8496.44 km2. The output of the present study has been used as an input by the committee (set by Honorable Supreme court of India) on rationalization of the GIB Sanctuary and the sanctuary has been rationalized with an area of 1222 km2.  相似文献   

9.
We estimated urbanization rates (2001–2006) in the Gulf of Mexico region using the National Land Cover Database (NLCD) 2001 and 2006 impervious surface products. An improved method was used to update the NLCD impervious surface product in 2006 and associated land cover transition between 2001 and 2006. Our estimation reveals that impervious surface increased 416 km2 with a growth rate of 5.8% between 2001 and 2006. Approximately 1110.1 km2 of non-urban lands were converted into urban land, resulting in a 3.2% increase in the region. Hay/pasture, woody wetland, and evergreen forest represented the three most common land cover classes that transitioned to urban. Among these land cover transitions, more than 50% of the urbanization occurred within 50 km of the coast. Our analysis shows that the close-to-coast land cover transition trend, especially within 10 km off the coast, potentially imposes substantial long-term impacts on regional landscape and ecological conditions.  相似文献   

10.
Abstract

In the present study, the multi-temporal satellite images of IRS P6 LISS III were used to map waterlogging dynamics over different seasons. An area of 594.36 km2 (6.75%) and 4.17 km2 (0.04%) was affected by surface waterlogging during pre and postmonsoon season, respectively. The average annual groundwater level fluctuations were calculated using 18 years (1990–2007) pre and postmonsoon groundwater level data to identify the areas which are under groundwater induced waterlogging conditions. The soil map clearly indicates that salinity and sodicity exhibit the highest severity and occur in areas with shallow groundwater levels. The hydrogeomorphical units mapped using IRS P6 LISS III satellite images are flood plain, alluvial plain, paleochannels, and oxbow lakes. The study revealed that 44.65% areas have very good to excellent groundwater resources. The litholog data clearly indicate an alternating sequence of clay and sand in which deep aquifers made up of coarse sand would be best suited for adequate water supply and good groundwater quality. The integrated study utilizing digital spatial data pertaining to waterlogging, soil salinity, water level fluctuation, and lithological variation proved that planning of any surface and subsurface water resources development activity should be taken up after assessments of said parameters.  相似文献   

11.
尾矿库是矿山企业选矿的必要设施,同时对周围环境也是一个重大的危险源。为研究流域范围内尾矿库的溃坝路径以及对矿区地表造成的风险,以赤城县为例,利用GF-1高分辨率遥感影像,基于遥感RS(Remote Sensing)及地理信息系统GIS(Geographic Information System)手段对尾矿库的流域风险进行了监测分析。首先,通过分析尾矿库在遥感影像上的纹理、色调、形状以及大小等特征,制作了用于目标检测的尾矿库样本集,然后,在原始SSD目标检测网络基础上添加了反卷积模块和连接模块构建多尺度融合目标检测算法MSF_SSD,在目标检测结果基础上使用PSPnet算法实现尾矿库结构分割,得到了尾矿库内部结构—坝体以及库区,运用RS与GIS技术对尾矿库的上游汇水面以及事故可能径流进行提取,进而基于Arc Hydro模型模拟尾矿库的溃坝路径。最后,通过构建溃坝路径的缓冲区,得到尾矿库发生溃坝所造成的地物影响范围及面积。研究结果表明:赤城县尾矿库的溃坝路径总体是从西向东,从北向南,受溃坝影响的地物总面积达到480 km2。其中,林地176.52 km2,耕地175.52 km2,城市建设用地43.74 km2,农村建设用地2.47 km2,水体17.72 km2,草地和牧场分别为3.60 km2、1.22 km2。研究成果可用于分析尾矿库溃坝造成的地物损失以及影响范围面积等信息,提升尾矿库的风险管理水平及应急响应能力,为有关部门制定决策提供理论依据。  相似文献   

12.
Population growth worldwide leads to an increasing pressure on the land. Recent studies reported that many areas covered by badlands are decreasing because parts of badlands are being levelled and converted into arable land. It is important to monitor these changes for environmental planning. This paper proposes a remote-sensing-based detection method which allows mapping of badland dynamics based on seasonal vegetation changes in the lower Chambal valley, India. Supervised classification was applied on three Landsat (Thematic Mapper) images, from 3 different seasons; January (winter), April (summer) and October (post-monsoon). Different band selection methods were applied to get the best classification. Validation was done by ground referencing and a GeoEye-1 satellite image. The image from January performed best with overall accuracy of 87% and 0.69 of kappa. This method opens the possibilities of using semi-automatic classification for the Chambal badlands which is so far mapped with manual interpretations only.  相似文献   

13.
The utility of Landsat multispectral data for small scale soil mapping has been demonstrated in this study. The scene used for the study has path-row number 153-054 of Landsat-1 dated 26th February, 1973 covering parts of Ramnad, Tirunelveli and Kanyakumari districts of Tamil Nadu. Associations of sub groups have been delineated on 1 : 250,000 scale using computer-aided multispectrcl data analysis system (M-DAS). Soil map prepared using the computer has been found to be camparable with the soil map prepared by conventional methods at the same scale. Apart from the soil associations, other land use/land cover classes like water bodies forest/scrub/hiliy areas, crcps etc. were also categorised in the colour coded soil map.  相似文献   

14.
小区地表温度与下垫面结构关系研究   总被引:3,自引:0,他引:3  
以北京市为例,选取了商业区、学校、生活区和公园4种典型小区24个,基于遥感及GIS的方法反演地表温度,获取下垫面覆盖信息;研究了不同类型小区地表温度热场与下垫面结构的关系.结果表明:水体、绿地具有明显的降温功能,建筑地面则增温效果明显,这3种地表所占的面积比例与小区平均地表温度关系密切;在所选取的绿地结构指数中,对温度影响从大到小依次为绿地覆盖率、分离度、缀块平均面积、连通指数、形状指数和分维数,其中,分离度与温度呈现正相关,其它指数与温度呈负相关;在所有类型小区中,温度从高到低依次为商业区、学校、生活区和公园;公园的温度分布在所有类型小区中最分散,商业区最集中.  相似文献   

15.
The study aims at delineating groundwater potential zones using geospatial technology and analytical hierarchy process (AHP) techniques in mining impacted hard rock terrain of Ramgarh and part of Hazaribagh districts, Jharkhand, India. Relevant thematic layers were prepared and assigned weight based on Saaty’s 9-point scale and normalized by eigenvector technique of AHP to identify groundwater prospect in the study area. The weighted linear combination method was applied to prepare the groundwater potential index in geographic information system. Final groundwater prospects were classified as excellent, very good, good, moderate, poor and very poor groundwater potential zones. Study thus revealed that the excellent, very good and good groundwater potential zones, respectively, cover 148.3, 373.66 and 438.86 km2 of the study area, whereas the poor groundwater potential zone covers 180.05 km2. Validation was done through a receiver operating characteristic curve, which indicated that AHP had good prediction accuracy (AUC = 75.45%).  相似文献   

16.
Tongyu County in Northeast China is highly prone to land degradation due to its fragile physical settings characterized by a flat topography, a semi-arid climate, and a shallow groundwater table. This study aims to determine the causes of land degradation through detecting the long-term trend of land cover changes. Degraded lands were mapped from satellite images recorded in 1992 and 2002. These land cover maps revealed that the area subject to land degradation in the form of soil salinization, waterlogging and desertification increased from 2400 to 4214 km2, in sharp contrast to most severely degraded land that decreased by 122.5 km2. Newly degraded land stems from productive farmland (263 km2), harvested farmland (551 km2), and grassland (468 km2). Therefore, the worsened degradation situation is attributed to excessive reclamation of grassland for farming, over cultivation, overgrazing, and deforestation. Mechanical, biological, ecological and engineering means should be adopted to rehabilitate the degraded land.  相似文献   

17.
Abstract

Land use and land cover change, perhaps the most significant anthropogenic disturbance to the environment, mainly due to rapid urbanization/industrialization and large scale agricultural activities. In this paper, an attempt has been made to appraise land use/land cover changes over a century (1914–2007) in the Neyyar River Basin (L=56 km; Area = 483.4 km2) in southern Kerala – a biodiversity hot spot in Peninsular India. In this study, digital remote sensing data of the Indian Remote Sensing satellite series I-D (LISS III, 2006–2007) on 1:50,000 scale, Survey of India (SOI) toposheet of 1914 (1:63,360) and 1967 (1:50,000) have been utilized to map various land use/land cover changes. Maps of different periods have been registered and resampled to similar geographic coordinates using ERDAS Imagine 9.0. The most notable changes include decreases in areas of paddy cultivation, mixed crops, scrub lands and evergreen forests, and increases in built-up areas, rubber plantations, dense mixed forests, and water bodies. Further, large scale exploitation of flood plain mud and river sand have reached menacing proportions leading to bank caving and cut offs at channel bends. Conservation of land and water resources forms an important aspect of ecosystem management in the basin.  相似文献   

18.
Alteration in climatic pattern has resulted to a steady decline in quality of life and the environment, especially in and around urbanized areas. These areas are faced with increasing surface temperature arising mostly from human activities and other natural sources; hence land surface temperature has become an important variable in global climate change studies. In this paper, Landsat TM/ETM imagery acquired between 1997 and 2013 were used to extract ground brightness temperature and land use/land cover change in Kuala Lumpur metropolis. The main objective of this paper is to examine the effectiveness of quantifying UHI effects, in space and time, using remote sensing data and, also, to find the relationship between UHI and land use change. Four land use types (forest, farmland, built-up area and water) were classified from the Landsat images using maximum likelihood classification technique. The result reveals that Greater KL experienced an increase in average temperature from 312.641°K to 321.112°K which was quite eminent with an average gain in surface temperature of 8.4717°K. During the period of investigation (1997–2013), generally high temperature is been experienced mostly in concentrated built-up areas, the less concentrated have a moderate to intermediate temperature. Again, the study also shows that low and intermediate temperature classes loss more spatial extent from 2,246.89 Km2 to 1,164.53 Km2 and 6,102.42 Km2 to 3,013.63 Km2 and a gain of 4,165.963 Km2 and 307.098 Km2 in moderate and high temperature respectively from 1997 to 2013. The results of this study may assist planners, scientists, engineers, demographers and other social scientists concerned about urban heat island to make decisions that will enhance sustainable environmental practices.  相似文献   

19.
Pasture land occupies extensive areas and is increasingly of interest for sustainable intensification, land use diversification, greenhouse gas emission mitigation, and bioenergy expansion. Accurate maps of pasture and other managed land covers are needed for monitoring, intercomparison, assessing potential uses, and planning. Yet, land maps can be generated from different types of classification datasets – i.e. as a land use or land cover type – as well as different sources. In this study our aim was to assess and compare land use and land cover definitions for pasture, and examine variability in the resulting pasture land classification maps. First, we conducted a review of pasture definitions in commonly used mapping databases. We then performed a case study involving Brazil, a dominant global producer of pasture-based livestock. Six geospatial databases were harmonized and compared to each other and to MODIS land cover for Brazil including the Cerrado and Amazon biomes, which are internationally recognized for their ecological value. Total pasture area estimates for Brazil ranged by a factor greater than four, from about 430,000 km2 to over 1.7 million km2. Our analysis showed high variability in pasture land maps depending on the definitions, methods and underlying datasets used to generate them. The results are illustrative of a symptomatic problem for all manage land datasets, demonstrating the need for land categories studies and geospatial data resources that fully define land terms and describe measurable management attributes. Additionally, the suitability of individual geospatial datasets for different types of land mapping must be better described and reported. These recommendations would help bring more consistency in the consideration of managed lands in research, reporting, and policy development, as demonstrated here for pasture land using six case study datasets from multiple sources.  相似文献   

20.
Accurate information on the extent of waterlogging is required for flood prediction, monitoring, relief and preventive measures. The rule-based classification algorithms were used for differentiating waterlogged areas from other ground features using Resourcesat-2 AWiFS satellite imagery (Indian Remote Sensing Satellite with spatial resolution of 56 m). Two spectral indices normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) were used for extracting waterlogged areas in Sri Muktsar Sahib district of Punjab, India. These indices extracted the waterlogged areas (cropped areas inundated with water) but the water features were less enhanced in the NDWI-derived image (when compared with MNDWI-derived image) due to negative values of NDWI and, mixing of water with built up features. The water features were more enhanced with MNDWI and the values of MNDWI were positive for water features mixed with vegetation. The overall accuracy of waterlogged areas extracted from the MNDWI image was 96.9% with the Kappa coefficient of 0.89. The digital elevation model (DEM) was extracted from ASTER-GDEM. The relationships among depth to the water table recorded before the incessant rain in the region, DEM and classified MNDWI images explained the differences in the extent of waterlogging in various directions of the study area. These results suggest that MNDWI can be used to better delineate water features mixed with vegetation compared to NDWI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号