首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-four years of AVHRR-derived sea surface temperature (SST) data (1985–2008) and 35 years of NOCS (V.2) in situ-based SST data (1973–2008) were used to investigate the decadal scale variability of this parameter in the Mediterranean Sea in relation to local air–sea interaction and large-scale atmospheric variability. Satellite and in situ-derived data indicate a strong eastward increasing sea surface warming trend from the early 1990s onwards. The satellite-derived mean annual warming rate is about 0.037°C year–1 for the whole basin, about 0.026°C year–1 for the western sub-basin and about 0.042°C year–1 for the eastern sub-basin over 1985–2008. NOCS-derived data indicate similar variability but with lower warming trends for both sub-basins over the same period. The long-term Mediterranean SST spatiotemporal variability is mainly associated with horizontal heat advection variations and an increasing warming of the Atlantic inflow. Analysis of SST and net heat flux inter-annual variations indicates a negative correlation, with the long-term SST increase, driving a net air–sea heat flux decrease in the Mediterranean Sea through a large increase in the latent heat loss. Empirical orthogonal function (EOF) analysis of the monthly average anomaly satellite-derived time series showed that the first EOF mode is associated with a long-term warming trend throughout the whole Mediterranean surface and it is highly correlated with both the Eastern Atlantic (EA) pattern and the Atlantic Multidecadal Oscillation (AMO) index. On the other hand, SST basin-average yearly anomaly and NAO variations show low and not statistically significant correlations of opposite sign for the eastern (negative correlation) and western (positive correlation) sub-basins. However, there seems to be a link between NAO and SST decadal-scale variations that is particularly evidenced in the second EOF mode of SST anomalies. NOCS SST time series show a significant SST rise in the western basin from 1973 to the late 1980s following a large warming of the inflowing surface Atlantic waters and a long-term increase of the NAO index, whereas SST slowly increased in the eastern basin. In the early 1990s, there is an abrupt change from a very high positive to a low NAO phase which coincides with a large change in the SST spatiotemporal variability pattern. This pronounced variability shift is followed by an acceleration of the warming rate in the Mediterranean Sea and a change in the direction (from westward to eastward) of its spatial increasing tendency.  相似文献   

2.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

3.
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.  相似文献   

4.
A first study from the subtropical western Atlantic, using 231Pa/230Th ratios as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of Meridional Overturning Circulation (MOC) over the last deglaciation. However, these results warrant confirmation from additional locations and water depths because the interpretation of the sedimentary 231Pa/230Th ratio in terms of circulation vigor can be biased by variations in particle flux and composition. We have measured 231Pa/230Th in a core from the Iberian margin, in the Northeastern Atlantic basin, and have compared these new results to the data from the western Atlantic basin. We find that the reduction in the circulation during H1 and YD and the subsequent increases first recognized in the sediment deposited on Bermuda Rise are also evident in the eastern basin, in a totally different sedimentary regime, confirming that sedimentary 231Pa/230Th ratios record basin-wide changes in deep water circulation. However, some differences between the eastern and western records are also recognized, providing preliminary evidence to differentiate between renewal rates in the two North Atlantic basins and between shallower and deeper overturning. Our results suggest the possible existence of two sources of Glacial North Atlantic Intermediate Deep Water (GNAIW), one in the south Labrador Sea and another west of Rockall Plateau. Both sources contributed to the meridional overturning but the two had different sensitivity to meltwater from the Laurentide and the Fennoscandian ice sheets during the deglaciation. These results indicate that additional information on the geometry and strength of the ventilation of the deep Atlantic can be obtained by contrasting the evolution of sediment 231Pa/230Th in different sections of the Atlantic Ocean.  相似文献   

5.
Isotope signatures in precipitation from the Global Network for Isotopes in Precipitation around the Mediterranean basin and literature data are compared with isotopic data from a large karstic aquifer in southeast Spain to explain the origin and type of the precipitation events dominating recharge. Analysis of the deuterium excess d at the scale of the Mediterranean basin and at the regional scale allows us to understand the isotopic context of the study area: Campo de Dalias and the Sierra de Gador (Almería province). The origin of precipitation can be determined from its d value. The d value changes as a function of the initial evaporation condition. It depends on the relative humidity and temperature during the evaporation producing the water vapour of the clouds. The water vapour, which dominates the study area, is generated in two areas: the Atlantic Ocean (d = 10‰) and the western Mediterranean basin (d = 15‰). With increasing precipitation volume, the western Mediterranean character dominates. These heavier storms contribute mainly to recharge, as illustrated by the d value of 13·6‰ in deep groundwater of the Campo de Dalias. Weighted d values increase with the volume of precipitation, giving a significant relationship for the southern and eastern coasts of the Iberian Peninsula. This selectivity of d to monthly precipitation was used to estimate the return period of precipitation leading to aquifer recharge at 0·9–4·9 years. Moderate rainfall, which occurs more frequently, still represents ~60–90% of the total precipitation. One of the challenges to meet ever‐growing water demands is to increase recharge from moderate events yielding intermediate quantities per event, but forming the bulk of the annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The Orbetello lagoon, one of the largest Western Mediterranean lagoons, was affected by high algal blooms and severe anoxic crises in 1992 and 1993, with fish mortality throughout most of the lagoon and a drastic reduction of benthic species. Many measures were undertaken between 1994 and 1996 to remove the severe eutrophication of this lagoon. Such measures included harvesting of the floating seaweed biomass, removal of all wastewater and sea channel enlargement by dredging activity. The aim of the present research was to study the macrozoobenthic assemblage in 1999 and to compare it with previous research in order to assess the recovery of the lagoon. A total of 106 taxa and 45,175 individuals were collected in three areas (sea inlets, western and eastern lagoon) having different organic matter loading during winter and summer. The results of multivariate and correlation analyses indicated that trophic status and its seasonal dynamics were crucial in determining species distribution among the different areas. Moreover, comparison of the macrozoobenthic structure between winter 1995 and 1999 showed differences in species composition and structural parameters in the western and eastern lagoon, where a clear recovery of benthic assemblages was observed in 1999. However, the dominance of opportunistic species in most of the lagoon and the decrease in some structural parameters during summer suggested that this basin still presented signs of disturbance in 1999, six years after the last extended anoxic crises and even after completion of the restoration measures carried out in the environment. It was hypothesized that a secondary disturbance, sustained by a high seasonal release of nutrients from the sediments, could create considerable deviations from the expected improvement in benthic conditions.  相似文献   

7.
Naidenov  V. I.  Krutova  N. M. 《Water Resources》2002,29(3):270-281
Nonlinear mechanisms of long-term variations in the Caspian Sea level are described. It is shown that with account taken of the dependence of the evaporation depth from the Volga basin surface on soil moisture content and the dependence of the evaporation depth from the sea surface on its level, we obtain a fundamentally new (chaotic) oscillation mechanism with several attraction levels. The stochastic differential equations describing the water budget of the sea basin and the sea proper and the respective solutions of the Fokker–Planck–Kolmogorov equation are shown to have stationary bimodal density of the level probability. The random process, characterizing the sea level variations at a nonlinear dependence between the evaporation rate and the level is found to be non-Gaussian. Noise-induced transitions, caused by nonlinear evaporation processes are described. A new nonlinear stochastic theory describing the Caspian Sea level variations and based on predicted physical effects is suggested.  相似文献   

8.
Gargopa  Yu. M. 《Water Resources》2002,29(6):690-697
Correlation is established between the long-term variations in the frequency of the atmospheric circulation forms, water balance elements, and the Sea of Azov water salinity. It is found that the river runoff into the sea and the sea freshwater balance increase and the sea salinity decreases in the periods, when northern and western forms of atmospheric processes develop; in the periods with a greater frequency of the eastern type of atmospheric macroprocesses, the situation is reverse. It is also found that the effect of atmospheric circulation on the sea salinity tends to strengthen, whereas the effect of the human-induced decrease in river runoff tends to diminish. The current desalination of the Sea of Azov down to 10.5 is shown to be mainly due to the development of western and northern forms of atmospheric circulation in the cold season of a year during the last 10–15 years.  相似文献   

9.
The Arctic Ocean is almost entirely surrounded by land, with shallow openings to the Pacific through Bering Strait (~ 45 m deep) and to the Atlantic through the Barents Sea (~50—450 m deep) and Fram Strait where the sill depth is around 2500 m. The bathy…  相似文献   

10.
横跨大兴安岭与海拉尔盆地和松辽盆地结合地带的大地电磁测深剖面揭示了盆山构造的深部电性结构.剖面西起海拉尔盆地东缘,向东延伸穿过大兴安岭中部,一直到达松辽盆地西缘.本文对剖面测点的二维偏离度、构造走向等进行了计算和分析,采用非线性共轭梯度(NLCG)二维反演方法对TM模式的数据进行了反演,获得了该剖面的地壳、上地幔电性结构模型,划分出三个典型构造单元:海拉尔盆地、大兴安岭和松辽盆地.研究结果表明,海拉尔盆地东缘和松辽盆地西缘浅部都呈低阻特征,但松辽盆地西缘深部电性结构比较复杂,而大兴安岭整体呈高阻特征.海拉尔盆地东缘可能属于兴安块体,松辽盆地西缘与大兴安岭接触关系复杂.海拉尔盆地东缘岩石圈厚度约为110km,大兴安岭岩石圈厚度约为110~150km.大兴安岭上地壳基本呈高阻特征,可能为多次叠置的岩浆岩,代表大兴安岭经历了多期次岩浆作用;中下地壳横向存在较大范围低阻体,可能反映了大兴安岭地壳内部非刚性的特点;残存在岩石圈地幔的高阻异常,说明其下地壳可能发生过拆沉作用.大兴安岭与松辽盆地结合带存在一个岩石圈尺度的西倾低阻带,向下延伸到岩石圈底部,可能是早期松嫩地块向兴安地块俯冲并以软碰撞形式拼合的构造遗迹.  相似文献   

11.
Nine new intermediate water ages estimated with coupled uranium-series and radiocarbon measurements on deep-sea corals from the northeastern Atlantic are presented. Together with six intermediate and deep-water ages from the western North Atlantic [Adkins et al., Science 280 (1998) 725-728] and one from the equatorial Atlantic [Mangini et al., Nature 392 (1998) 347-348] they span the time period from 15?400 to 560 yr ago and show abrupt variations of intermediate and deep-water ages from 270 up to 2320 yr. Both major pulses of meltwater discharge MWP 1A, following Heinrich Event 1 and MWP 1B after the Younger Dryas cold event are followed by enhanced supply of southern source water at intermediate depths in the North Atlantic, together with reduced formation of well-ventilated glacial North Atlantic intermediate water (1000-2000 m). This result gives strong support to numerical models, predicting fast and sharp increase of bottom water age in the Atlantic triggered by pulses of freshwater discharge into the North Atlantic [Rahmstorf, Nature 372 (1994) 82-85; Stocker and Wright, Radiocarbon 40 (1998) 359-366].  相似文献   

12.
2012-2018年巢湖水质变化趋势分析和蓝藻防控建议   总被引:4,自引:3,他引:1  
巢湖自1990s中期至2012年间水质明显改善,但是近年来水质改善效果变缓,2018年蓝藻水华面积显著增加,为有效评估巢湖水体环境的变化,通过对20122018年巢湖17个点位的逐月调查数据分析阐述了近年来巢湖水质和藻情的变化特征,并在流域空间尺度上分析了巢湖流域水污染治理的进展和不足,为后续治理方向的调整和确定提供支撑.20122018年湖区调查数据显示:巢湖湖体总磷和总氮浓度显著升高,铵态氮浓度显著下降,水华蓝藻总量显著升高.在空间上,各污染指标水平呈现由西向东呈逐渐降低的趋势,但是各指标在不同湖区随时间的变化趋势差异明显,西部湖区的总磷、总氮和水华蓝藻指标近年来略有下降或持平,中部和东部湖区则显著升高,所以巢湖湖体总氮和总磷浓度的升高主要源于中、东部湖区的升高,这也是这两个湖区水华蓝藻变动的主要驱动因素.主要入湖河口数据显示:西部4条主要入湖污染河流(南淝河、十五里河、塘西河和派河)水质明显改善,但仍处于较高污染水平,中东部入湖河流(兆河、双桥河和柘皋河)总磷浓度明显升高,是中东部湖区水体营养盐升高的主要原因.中东部河流入湖污染的增加加剧了该区域湖体的富营养化水平,尤其是总磷浓度明显提升,导致中东部湖区夏季水华蓝藻的优势种从鱼腥藻种类演替为微囊藻种类.夏季微囊藻的大量繁殖,使得2018年巢湖中东部湖区部分月份水华面积异常增高.因此,巢湖流域的治理应该在持续强化流域西部合肥市污染治理的同时,增加对流域中部和东部治理的关注和投入.  相似文献   

13.
The spatial and temporal changes in the Lena River runoff over the last 9 thousand years are reconstructed through studying the freshwater microfossils in sediment cores obtained from the Laptev Sea inner shelf immediately adjacent to the Lena delta and subject to the freshening effect of river water inflowing the sea through the main arms of the delta (the Trofimovskaya, Bykovskaya, and Tumatskaya arms), the sediments having been thoroughly AMS 14C dated. The freshwater species of diatoms (predominantly the river ones) and green algae that enter the shelf with river water served as indicators of river runoff. The reconstruction of paleosalinity of the sea surface water in the regions under study is based on the relationships (established earlier) between the distribution of freshwater diatoms in the surface layers of sediments in the Arctic seas and the gradients of water salinity in summer. Data on variations in the composition of aquatic microfossil associations in sediments and the reconstructed paleosalinity in the regions of the eastern and western paleovalleys of the Lena River are used to determine the main paleohydrologic events that controlled the variations in the Lena runoff into the shelf zone of the Laptev Sea during the Holocene.  相似文献   

14.
Modeling interaction of fluid and salt in an aquifer/lagoon system   总被引:1,自引:0,他引:1  
To simulate the dynamic interaction between a saline lagoon and a ground water system, a numerical model for two-dimensional, variable-density, saturated-unsaturated, and coupled flow and solute transport (saltwater intrusion by finite elements and characteristics [SIFEC]) was modified to allow the volume of water and mass of salt in the lagoon to vary with each time step. The modified SIFEC allows the stage of a lagoon to vary in accordance with a functional relation between the stage and water volume of the lagoon, and also allows the salt concentration of the lagoon to vary in accordance with the salt budget of the lagoon including chemical precipitation and dissolution of salt. The updated stage and salt concentration of the lagoon are in turn used as transient boundary conditions for the coupled flow and solute transport model. The utility of the modified model was demonstrated by applying it to the eastern Mediterranean coastal region of Turkey for assessing impacts of climate change on the subsurface environment under scenarios of sea level rise, increased evaporation, and decreased precipitation.  相似文献   

15.
We propose a plate-tectonic model for evolution of the Dinaric-Carpathian and Hellenic-Balkan systems since the Upper Jurassic/Lower Cretaceous. Initially, an oceanic area lying between the African and European continents was being consumed in north-dipping subduction zones situated close to the European margin. This process gave rise to Lower Cretaceous calc-alkaline magmatism occurring in the Vardar zone, and to Upper Cretaceous/Lower Eocene calc-alkaline and K-alkaline magmatism (Banatitic igneous activity) of the Apuseni-Timok-Srednogora alignment.A back-arc thrust belt (in the meaning of Dickinson) developed behind the Hellenic-Balkan system, while a marginal basin was opened up behind the Dinaric-Carpathian system.In Lower Miocene times an important evolutionary change reversed the subduction polarity in the Dinaric-Carpathian system, causing the closure of the previous marginal basin, and the formation of the Neogene Carpathian arc and the Pannonian and Transylvanian ensialic marginal basins; in the Hellenic-Balkan system, a southward migration of the arc-trench system occurred. This change was almost contemporaneous with complex changes in the western Mediterranean and with the re-arrangement of plate movements in Atlantic, Pacific and Indian areas.  相似文献   

16.
Abstract

The isotopic compositions (18O and D) of groundwater, springs, rivers and lake waters are used to account for the hydrological processes in the area of the closed maar Lake Masoko in Tanzania. Springs and groundwater from the northern, western and southern parts of the lake basin display relatively stable compositions, close to those of the mean precipitation, evidencing their fast infiltration rate. Springs located in the eastern part of the basin have enriched compositions, which are on the mixing line between the ?"non evaporated? water and the evaporated lake water. This underlines the hydraulic continuity between the lake and the eastern springs and supports a previous proposition of grounwater outflow from Lake Masoko. The mixing parts of lake water calculated at each spring are constant through time, evidencing the inertia of the system. Furthermore, the mixing part of the lake water decreases linearly with the distance from the lake, suggesting an homogeneous and continuous aquifer. These observations point to a west to east groundwater flow, in agreement with the altitude of different potentials.  相似文献   

17.
Effects of Arctic Sea Ice Decline on Weather and Climate: A Review   总被引:7,自引:0,他引:7  
The areal extent, concentration and thickness of sea ice in the Arctic Ocean and adjacent seas have strongly decreased during the recent decades, but cold, snow-rich winters have been common over mid-latitude land areas since 2005. A review is presented on studies addressing the local and remote effects of the sea ice decline on weather and climate. It is evident that the reduction in sea ice cover has increased the heat flux from the ocean to atmosphere in autumn and early winter. This has locally increased air temperature, moisture, and cloud cover and reduced the static stability in the lower troposphere. Several studies based on observations, atmospheric reanalyses, and model experiments suggest that the sea ice decline, together with increased snow cover in Eurasia, favours circulation patterns resembling the negative phase of the North Atlantic Oscillation and Arctic Oscillation. The suggested large-scale pressure patterns include a high over Eurasia, which favours cold winters in Europe and northeastern Eurasia. A high over the western and a low over the eastern North America have also been suggested, favouring advection of Arctic air masses to North America. Mid-latitude winter weather is, however, affected by several other factors, which generate a large inter-annual variability and often mask the effects of sea ice decline. In addition, the small sample of years with a large sea ice loss makes it difficult to distinguish the effects directly attributable to sea ice conditions. Several studies suggest that, with advancing global warming, cold winters in mid-latitude continents will no longer be common during the second half of the twenty-first century. Recent studies have also suggested causal links between the sea ice decline and summer precipitation in Europe, the Mediterranean, and East Asia.  相似文献   

18.
Palaeosalinity reconstructions in marginal marine environments based on Sr isotope data assume simple two end-member mixing of river and ocean water. An improved model that incorporates the effect of evaporation is used to demonstrate that this approach is not valid in evaporation-dominated systems. However, Sr isotope records combined with faunal and lithological constraints on salinity can be used to assess the palaeohydrological conditions of ancient marginal marine systems. This new method is used to interpret deviations from the global seawater Sr isotope curve, observed in Mediterranean successions during, and up to 3 Myr prior to, Messinian evaporite deposition. Results suggest that no absolute change in the net evaporation flux is required to explain the three- to four-fold rise in salinity of Mediterranean water at the carbonate-evaporite transition. Modelled Sr isotope records indicate that this increase in salinity was synchronous with an increase in the dominance of Atlantic water inflow in the hydrological budget of the Mediterranean. The Messinian Salinity Crisis may therefore have been the response to a marine transgression.  相似文献   

19.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Western disturbances (WDs) and Indian summer monsoon (ISM) led precipitation play a central role in the Himalayan water budget. Estimating their contributions to water resource is although a challenging but essential for hydrologic understanding and effective water resource management. In this study, we used stable water isotope data of precipitation and surface waters to estimate the contribution of ISM and WDs to the water resources in three mountainous river basins - Indus, Bhagirathi and Teesta river basins of western, central and Eastern Himalayas. The study reveals distinct seasonality in isotope characteristics of precipitation and surface waters in each river basin is due to changes in moisture source, hydrometeorology and relief. Despite steady spatial variance in the slope and intercept of regression lines from the Teesta to Indus and the Bhagirathi river basins, the slope and intercept are close to the global meteoric water line and reported local meteoric water line of other regions in the Himalayas and the Tibetan Plateau. The two-component end-member mixing method using d-excess as tracer were used to estimate the contribution from ISM and WD led precipitation to surface water in aforementioned river basins. The results suggest that the influence of the ISM on the water resources is high (>72% to annual river flow) in Teesta river basin (eastern Himalayas), while as the WDs led precipitation is dominantly contributing (>70% average annual river flow) to the surface waters in the Indus river basin (western Himalayas). The contribution of ISM and WD led precipitation in Bhagirathi river basin is 60% and 40%, respectively. The findings demonstrate that the unusual changes in the ISM and WD moisture dynamics have the potential to affect the economy and food security of the region, which is dependent on the availability of water resources. The obtained results are of assistance to policy makers/mangers to make use of the information for better understanding hydrologic response amid unusual behaviour of the dual monsoon system over the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号