首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 242 毫秒
1.
Quanshu Yan  Xuefa Shi 《Island Arc》2014,23(3):221-235
Major element and trace element compositions, and Sr, Nd and Pb isotopic compositions for postcollisional granites from the Laoshan granitic complex, in the eastern side of the Triassic suture between the South China and North China tectonic blocks were determined. The granites are alkaline, A‐type and can be further classified as A1 granites. The trace element composition of these granites is transitional between those of oceanic island basalt and enriched mid‐oceanic ridge basalt, with depletions in Ba, Sr, P, and Ti that can be ascribed to mineral fractionation and enrichments in Cs, Rb, Th and U possibly resulted from the involvement of slab fluids. The isotopic signature of Laoshan granites represent a mixture between an enriched mantle type 1 (EMI)‐like end‐member and lower continental crust (LCC). We propose that the magmas that formed the Laoshan A1 granites are a mixture between those derived from the EMI‐like delaminated eclogitic rocks (subsequently enriched by fluids released from Mesozoic Pacific subducted slab) and those derived from the LCC, which consists of granulites or metamorphic residues from the prior generation of I‐type granites in the region. The mixed magmas then experienced a strongly alkali feldspar‐dominated fractionation prior to their emplacements as A‐type granites in the Laoshan granitic complex.  相似文献   

2.
Geochemistry and petrogenesis of ophiolites from Northern Pindos (Greece)   总被引:1,自引:0,他引:1  
The ophiolitic complex of Northern Pindos (Greece) contains ocean-floor basalts and low-Ti mafic rocks. The former rocks are similar to recent mid-ocean ridge basalts with a light REE depletion and a La/Yb ratio < 2. The low-Ti rocks resemble boninites in their high Mg and very low Ti and Zr contents and in their REE patterns which have convex-downwards shape with a slight light REE enrichment. However, their Zr/Ti, Ti/V and Zr/Y ratios are lower than in boninites. Both rock-types could be generated by dynamic partial melting of a rising upper mantle diapir. Slight enrichment in light REE, Sr, Rb and Ba in low-Ti rocks could be the result of either metasomatic or alteration processes. Although a subduction zone origin of the sequence is possible, the geochemical data do not necessarily imply such a setting.  相似文献   

3.
Amphibolitic metamorphic rocks are associated with the Thetford, Asbestos and Orford ophiolites as well as the Mont Albert and Pennington Sheet peridotites of the Québec Appalachians. An augmented compilation of the existing data on their field relations, mineralogy, geochronology, structural features and geothermobarometry is presented in order to help reconstruct the timing and processes of marginal basin closure and ophiolite emplacement during the Ordovician. A new, refined 40Ar/39Ar incremental release spectrum and isochron age is presented for the Thetford Mines ophiolite dynamothermal sole. The new 477 ± 5 Ma age resolves the existing disparity between the crustal (plagiogranite) and sole ages. The sole was formed shortly after crustal formation, suggesting that the ophiolite was decoupled at or near a spreading centre. A hitherto undescribed ultramafic-mafic amphibolitic sole beneath the Asbestos ophiolite was decoupled and rotated during the continental emplacement of the overlying ophiolite. Dating of the sole at Asbestos was hampered by presence of low K2O amphiboles, but an Acadian (377 Ma) age was obtained from orthoclase. The Orford sole was dismembered and incorporated within a serpentinitic mélange that contains other ophiolitic lithologies. Sheared amphibolites from alongside the Pennington Sheet in the Flintkote Mine are reinterpreted as a dynamothermal sole, rather than a metasomatically generated amphibole-bearing metasediment.  相似文献   

4.
The concentrations of the rare earth elements (REE), K, Rb, Sr, Ba, U, Zr and Cr for the Luna 20 soil and four different Apollo 16 soils are reported. These trace element abundances imply: (1) that the lunar highlands consist of a mixture of rocks rich in large ion lithophile (LIL) elements and LIL-element impoverished anorthosites; or (2) that the bulk of the aluminum-rich crust did not originate by upward segregation of plagioclase in a primitive liquid shell. The Luna 20 soil is distinguished from the Apollo 16 soil by lower aluminum and LIL element abundances.  相似文献   

5.
Pei  XianZhi  Ding  SaPing  Zhang  GuoWei  Liu  HuiBin  Li  ZuoChen  Li  GaoYang  Liu  ZhanQing  Meng  Yong 《中国科学:地球科学(英文版)》2007,50(2):264-276

Baihua meta-igneous complex consists mainly of pyroxenite-gabbro(diorite)-diorite-quartz diorite. They form a complete comagmatic evolutionary series. The geochemical characteristics of basic-intermediate basic igneous rocks indicate that they belong to a tholeiite suite. The REE distribution pattern is nearly flat type and LREE is slightly enriched type, and their primitive mantle-normalized and MORB-normalized trace element spider diagrams are generally similar; the LIL elements (LILE) Cs, Ba, Sr, Th and U are enriched, but Rb, K and the HFSEs Nb, P, Zr, Sm, Ti and Y are relatively depleted. All these show comagmatic evolution and origin characteristics. The tectonics environment discrimination of trace element reveals that these igneous complexes formed in an island-arc setting. The LA-ICP-MS single-zircons U-Pb age of Baihua basic igneous complex is 434.6±1.5 Ma (MSWD = 1.3), which proves that the formation time of the island-arc type magmatite in the northern zone of West Qinling is Late Ordovician or Early Silurian, also reveals that the timing of subduction of paleo-ocean basin represented by the Guanzizhen ophiolite and resulting island-arc-type magmatic activities is probably Middle-Late Ordovician to Early Silurian.

  相似文献   

6.
Major element, Rb, Sr, Ba, Cr and V analyses as well as 13 new rare earth element (REE) analyses are presented for the greywacke basement surrounding the Taupo Volcanic Zone (TVZ). On this basis the basement rocks are divided into a Western Basement of approximately andesitic composition ( 62% SiO2) and an Eastern Basement of approximately granodiorite composition ( 75% SiO2). These analyses, 5 new REE analyses for the rhyolites, and published data for the volcanic rocks of TVZ are used to investigate the petrogenesis of rhyolitic rocks in the area.Least-squares mixing calculations for major elements show that 88% fractional crystallisation of high-alumina basalt produces a liquid of rhyolitic bulk composition, but Rayleigh fractionation models show that the trace element concentrations of the rhyolites are inconsistent with basalt fractionation. 57% fractionation of the assemblage plagioclase (35.6%), orthopyroxene (9.7%), clinopyroxene (7.8%), ilmenite (0.6%) and magnetite (3.4%) from a plagioclase-pyroxene andesite can produce liquids of rhyolitic bulk composition. REE concentrations produced by this model are consistent with those observed in the rhyolites but predicted Ba and Rb values are lower and V concentrations are higher than those in the rhyolites. Andesite fractionation also produces an unrealistic fractionation of the Cr/V ratio.A non-modal melting model involving 35% melting of a granulitic assemblage (plagioclase + quartz + clinopyroxene + orthopyroxene + biotite + magnetite + cordierite) with a bulk composition equivalent to the Western Basement can reproduce the REE pattern of the rhyolites as well as the concentrations of Rb and Ba. Sr values remain anomalously high, but the Cr/V ratio does not indicate fractionation. Absolute values of Cr and V are within the uncertainties of published crystal—liquid partition coefficients. The rhyolites have relatively flat REE patterns (La/Yb 7.5), as do the greywackes (La/Yb 8.2), so it is therefore unlikely that the rhyolites equilibrated with a garnet or amphibole-bearing assemblage.  相似文献   

7.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

8.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

9.
A useful tool to elucidate past tectonic environments is the geochemistry of volcanic and sedimentary rocks when used together.The regional structural setting of the Oman Mountains indicates that deep-water sediments and volcanic rocks formed adjacent to the rifted Arabian margin in the Late Triassic near the axis of a narrow ocean basin of Red Sea-type. Tholeiitic to trachytic extrusives formed seamounts associated with Late Triassic reefal build-ups. “Immobile” trace element compositions point to a within-plate origin. The interbedded and overlying Late Triassic deep-sea sedimentary cover comprises ribbon radiolarites and both distal siliclastic and calcareous turbidites that accumulated on an abyssal plain at least ca. 180 km northeast of the Arabian continent. Associated ferromanganiferous oxide-sediments are interpreted as chemical precipitates derived from high-temperature vents in the spreading axis of the young ocean basin. Pervasive regional subsidence took place during end Triassic/Early Jurassic time.Later, in the Cretaceous, oceanic crust was consumed in a northeast-dipping subduction zone. MORB-type crust was subducted while Late Triassic volcanic edifices and sedimentary cover were accreted. During eventual trench-margin collision the Semail ophiolite split into blocks allowing sub-ophiolite melange rocks to be expelled upwards through corridors, creating the Batinah Melange. As the ophiolite nappe ploughed inboard over already thrust-assembled abyssal plain sediments (Hawasina Complex), some duplexes were uplifted, oversteepened, overturned and then slid backwards onto the ophiolite to form the Batinah Sheets.  相似文献   

10.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

11.
Mafic granulite xenoliths have been discovered in many volcanoes (especially alkali basalt and kimberlite) all over the world. They formed generally in lower crust, and recorded lots of in- formation on the lithosphere formation and crust-mantle interacti…  相似文献   

12.
Abundant metabasites occur in highly deformed granitic and migmatitic gneisses as blocks and lenses of tens of meter size around the Haiyangsuo area, northeast part of Sulu UHP belt, eastern China. They comprise garnet-pyroxene granulites, eclogitized granulites and amphibolites. Their protolith compositions were mainly olivine tholeiite and quartz tholeiite, and show variation from Mg-rich to Fe-rich component as tholeiitic cumulates. Pearce’s element ratio slopes suggested that protolith of these rocks were comagmatic, and generated from a primary magma by fractional crystallization of plagioclase, olivine and clinopyroxene. The crystallization differentiation has also been evidenced by trace elements, such as parallel REE patterns, Ni vs Ce variations, Sr increasing depletions, although the large ion lithophile elements (LILE) were modified to different extent during metamorphism. Trace element composition and Nd isotopes indicate a depleted mantle origin for these rocks. But they are not likely to be fragments of ophiolites or tholeiites connected with subduction, they formed probably at intra-continent environment. Sm-Nd whole rock isochron age of 2252±180Ma indicates approximately the formation age of igneous protolith of these rocks, almost 2000Ma earlier than the formation of the Dabie-Sulu UHP collision zone at about 240–220 Ma.  相似文献   

13.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

14.
Cretaceous volcanic rocks (SCV) are widely developed in the northern part of the Sanandaj-Sirjan Zone, northwest Iran. Based on the mineralogy, texture and geochemical composition these rocks are divided in two main groups, the first and main one situated in the central part of the study area and the second one in the northeast. The former is dominantly basalts, andesitic basalts, and andesites and the latter comprises andesite, trachy-andesite to acidic variants, with porphyritic to microlithic porphyry and vitrophyric textures. Beside the differences between these two groups, the chemical compositions all of these rocks show a calc-alkaline affinity and enrichment in LIL elements (Rb, Ba, Th, U, and Pb) and depletion in Nb, Ti, and Zr, as evident in spider diagrams normalized to primitive mantle. The rocks are particularly enriched in Rb and depleted in Nb and Ti, as well as displaying high Rb/Sr and Rb/Ba ratios and low ratios of incompatible elements such as Nb/U (<10; range, 0.6–9), Th/U (<2), and Ba/Rb (<20). The significant U enrichment relative to neighbouring Nb and Th in the mantle-normalized variation diagram is mainly a result of source enrichment by slab-derived fluids. Significantly lower Nb/U ratios are observed in arc volcanics. These low values are generally ascribed to the strong capacity of LILE and the inability to transfer significant amounts of HFSE via slab-derived hydrous fluid. The results of geochemical modelling suggest a mantle lithospheric source that was metasomatized by fluids derived from a Neo-Tethyan subducted slab during the Middle to Late Cretaceous in the northern part Sanandaj-Sirjan Zone.  相似文献   

15.
The late syntectonic mylonite zone (45–100 m thick) within the dynamothermal aureole of the St. Anthony Complex in northwestern Newfoundland was derived from surrounding quartz and epidote amphibolites by deformation and the nearly isovolumetric metasomatism. Amphibolites have a composition typical of light REE-depleted ocean-floor tholeiites. Mylonites (biotite amphibolites) resemble transitional alkali basalts in major and trace element composition and in the interrelation among relatively immobile elements such as Ti, Zr, Nb, Y and P. Their REE patterns are enriched in light REE and show gradual depletion of heavy REE with La/Yb ratios ranging from 8.4 to 18.4. The results emphasize the need for caution in interpreting the concentration and ratios of any elements in mafic rocks which have been affected by metasomatism in an amphibolite facies shear zone.  相似文献   

16.
Characteristic geochemical features of the ophiolite suite from the Bay of Islands Complex have been determined by major and trace element analyses of 13 rocks. Based on elements, such as rare earth elements (REE), whose abundances are relatively immobile during alteration and metamorphism, we find that (1) the pillow lavas and diabases are relatively depleted in light REE similar to most tholeiites occurring along spreading oceanic ridges, in back-arc basins and comprising the early phases of volcanism in island arcs; (2) the gabbros, composed of cumulate plagioclase and olivine with poikilitic clinopyroxene, have REE contents consistent with formation as cumulates precipitated from magmas represented by the overlying pillow lavas and diabases; (3) as in most harzburgites from ophiolites, the Bay of Islands harzburgite and dunite have relative REE abundances inconsistent with a genetic relationship to the overlying basic rocks — this inconsistency may be primary or it may result from late-stage alteration, contamination and/or metamorphism; (4) some Bay of Islands lherzolites have major and trace element abundances expected in the mantle source of the overlying basic rocks. Overall, the geochemical features of this Bay of Islands ophiolite suite are similar to those from Troodos and Vourinos, but these data are not sufficient to distinguish between different tectonic environments such as deep ocean ridge, small ocean basin or young island arc.  相似文献   

17.
The Dras volcanic rocks form a part of the ophiolite belt along the Indus Suture Zone in the Kashmir Himalaya. These volcanic rocks have suffered alteration as in any other ophiolite zone. Three types of alterations spilitisation, submarine weathering and ridongitisation were suggested. The spilitic mineralogy appears to be secondary and must have developed due to the reaction of these rocks with hot sea water. Depletion of MgO and CaO and enrichment of K2O of these rocks relate to the submarine weathering at lower temperatures. Rodingitisation effect is reflected in the chemistry of some rocks with enriched CaO and depleted SiO2. The trace elements — Co, Cr, Ni, Cu, Pb and Rb do not show any considerable changes during alteration.  相似文献   

18.
腾冲火山岩稀土和微量元素地球化学研究   总被引:3,自引:0,他引:3  
本通过腾冲火山岩稀土和微量元素丰度的测试与分析,结合前人部分资料探讨了该区火山岩的稀土和微量元素地球化学特征:各喷发期火山岩均富集LREE和Rb、Sr、Ba、U、Th等不相容元素;均具极为相似的稀土分配型式和微量元素地球化学模式,这可能反映了各其火山岩初始岩浆的同源性。  相似文献   

19.
Rare earth element (REE) abundances determined by activation analysis in rocks, plagioclase and mafic separates from the Fiskenaesset Complex are presented together with data on major and trace elements in the minerals. The REE data for the rocks and plagioclases are distinct from those of many other anorthositic complexes and the abundances are some of the lowest recorded for plagioclase from terrestrial anorthosites. The bulk and trace element compositions of the Fiskenaesset plagioclases show a number of similarities to those of lunar plagioclases. The plagioclases show a positive Eu anomaly of about 10 and a depletion in the heavy REE relative to the light ones. The mafic separates are enriched in the heavy REE relative to the light ones, and show no Eu anomaly except in one sample with a positive anomaly not attributable to plagioclase contamination. It is estimated, from experimental partition coefficient data, that the REE pattern in the magma at an early stage of fractionation was La (17×) to Lu (0.7× chondrites) with a possible positive Eu anomaly. This highly fractionated REE pattern may be attributed to partial melting of a garnet-bearing source.  相似文献   

20.
The Tiefosi granitic pluton is located 5 km northwest of Xinyang City,northern Dabie Orogen,and was emplaced in the Proterozoic Qinling Group. SHRIMP zircon U-Pb dating suggests its crystallization at 436 ± 11 Ma. It is composed of monzogranite and syenogranite containing some amounts of muscovite and few mafic minerals. The rocks are characterized by high and restricted SiO2 content,low FeO,Fe2O3 and MgO contents,high K2O/Na2O ratio,and display high-K calc-alkaline and peraluminous (ACNK>1.1) characteristics. They are generally enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). They can be divided into three groups in light of rare earth elements (REE) and trace elements. Group I is moderate in ΣREE and characterized by the absence of Eu anom-aly,high (La/Yb)N ratio,and moderate Rb/Sr and Rb/Ba ratios. Group Ⅱ has moderately negative Eu anomaly,low (La/Yb)N ratio and high ΣREE contents,Rb/Sr and Rb/Ba ratios. Group Ⅲ displays positive Eu anomaly,moderate (La/Yb)N ratio,and low ΣREE,Rb/Sr and Rb/Ba ratios. The calculated εNd(440Ma) values of the rocks vary from 8.8 to 9.9 and Nd depleted mantle model ages are about 2.0 Ga,which resemble those of the paragneisses from the Qinling Group. The results indicate that the Tiefosi granite is crust-derived,syn-collisional S-type granite. Generation of Group I was related to low degree melting of the Qinling Group,while Group Ⅱ was formed by fractionational crystallization of plagioclase from Group I magmas,and Group Ⅲ resulted possibly from magma mingling with plagioclase cumulates. The Tiefosi granite was formed within crustal level related to the collision between the North China and South China blocks in the Early Paleozoic time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号