首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple geochemical model of Solfatara, Phlegraean Fields (Italy), is proposed on the basis of gas composition and temperature at the surface.Data on the Solfatara fumaroles have been collected since 1979 within the framework of a geochemical monitoring for the surveillance of the Phlegraean volcanic system.Surface manifestations of Solfatara are likely to be fed through isoenthalpic expansion of dry steam, which separates from a geothermal liquid in an intensively fractured zone at about 236°C. This value is consistent both with gas composition and surface temperature.The gas/steam ratio appears to be the most effective parameter to detect changes of heat flow at depth.Actually a remarkable decrease in the gas/steam ratio has been observed since 1981, while the gas composition and the temperature did not change significantly. These facts suggest increased heat flow at depth.  相似文献   

2.
Low-to-high temperature fumaroles discharging from the Active Crater of Lascar volcano (northern Chile) have been collected in November 2002, May 2005 and October 2006 for chemical and isotopic analysis to provide the first geochemical survey on the magmatic-hydrothermal system of this active volcano. Chemical and isotopic gas composition shows direct addition of high-temperature fluids from magmatic degassing, mainly testified by the very high contents of SO2, HCl and HF (up to 87,800, 29,500 and 2,900 μmol/mol) and the high R/Ra values (up to 7.29). Contributions from a hydrothermal source, mainly in gas discharges of the Active Crater rim, has also been detected. Significant variations in fluid chemistry, mainly consisting of a general decrease of magmatic-related compounds, i.e. SO2, have affected the fumarolic system during the period of observation, indicating an increase of the influence of the hydrothermal system surrounding the ascending deep fluids. The chemical composition of Active Crater fumaroles has been used to build up a geochemical model describing the main processes that regulate the fluid circulation system of Lascar volcano to be utilized in volcanic surveillance.  相似文献   

3.
The Okinawa trough is a spreading back-are basin featuring emitting hydrothermal solutions (black chimney type) and modem sulfide precipitation on the sea floor. The study of fluid inclusions in water-rock interaction products in the Jade hydrothermal field indicates that the deep hydrothermal system beneath the sea floor is fairly rich in gas and there are two independent and coexisting fluids-CO2-hydrocarbon fluid and salt aqueous fluid. On the whole, the composition of CO2-hydrocarbon fluid inclusions is similar to that of the fluid inclusions in natural gas fields. The dominant composition of the inclusions in aqueous fluid is H2O with CO2 and CH4 being oversaturated. The salt aqueous fluid of the Jade hydrothermal system might be emitted through a black chimney, whereas CO2-rich fluids discharge CO2 bubbles and CO2 hydrate through fissures. Hydrocarbons in gas phase or in fluid might be enclosed somewhere under the sea. Large storage of CO2-CH4-H2S gas or fluid and reaction of this gas or fluid with salt water will lead to commercial sulfide deposits.  相似文献   

4.
Carbon dioxide flux from the soil is regularly monitored in selected areas of Vesuvio and Solfatara (Campi Flegrei, Pozzuoli) with the twofold aim of i) monitoring spatial and temporal variations of the degassing process and ii) investigating if the surface phenomena could provide information about the processes occurring at depth. At present, the surveyed areas include 15 fixed points around the rim of Vesuvio and 71 fixed points in the floor of Solfatara crater. Soil CO2 flux has been measured since 1998, at least once a month, in both areas. In addition, two automatic permanent stations, located at Vesuvio and Solfatara, measure the CO2 flux and some environmental parameters that can potentially influence the CO2 diffuse degassing. Series acquired by continuous stations are characterized by an annual periodicity that is related to the typical periodicities of some meteorological parameters. Conversely, series of CO2 flux data arising from periodic measurements over the arrays of Vesuvio and Solfatara are less dependent on external factors such as meteorological parameters, local soil properties (porosity, hydraulic conductivity) and topographic effects (high or low ground). Therefore we argue that the long-term trend of this signal contains the “best” possible representation of the endogenous signal related to the upflow of deep hydrothermal fluids.  相似文献   

5.

Metallogensis of the Xiadian gold deposit in Shandong Province has been a question under dispute for a long time. There are many points such as metamorphic hydrothermal, magamatic hydrothermal and meteoric water. Detailed study shows that mantle-rooted fluids were involved in the ore-forming processes. Evidence for this argumentation comes from: (1) discor-dogenic fault; (2) intersecting and accompanying of basic veins and lodes; (3) geochemistry of stable isotopes; (4) geochemistry of fluid inclusions; and (5) multi-level circulation and exchanging of mantle-rooted fluids. Based on the characteristics of the circulation system of mantle-rooted fluids and its close relation to magmatic hydrothermal fluids and meteoric water, ore-bearing fluids are divided into three subsystems: (1) C-H-O-rich fluid circulation subsystem in mantle, (2) Si-rich fluid circulation subsystem in the middle and lower crust; and (3) S-rich fluid circulation subsystem in shallow and surface crust. Ore-forming functions of these subsystems are controlled respectively by their different geodynamic settings.

  相似文献   

6.
Metallogensis of the Xiadian gold deposit in Shandong Province has been a question under dispute for a long time. There are many points such as metamorphic hydrothermal, magamatic hydrothermal and meteoric water. Detailed study shows that mantle-rooted fluids were involved in the ore-forming processes. Evidence for this argumentation comes from: (1) discor-dogenic fault; (2) intersecting and accompanying of basic veins and lodes; (3) geochemistry of stable isotopes; (4) geochemistry of fluid inclusions; and (5) multi-level circulation and exchanging of mantle-rooted fluids. Based on the characteristics of the circulation system of mantle-rooted fluids and its close relation to magmatic hydrothermal fluids and meteoric water, ore-bearing fluids are divided into three subsystems: (1) C-H-O-rich fluid circulation subsystem in mantle, (2) Si-rich fluid circulation subsystem in the middle and lower crust; and (3) S-rich fluid circulation subsystem in shallow and surface crust. Ore-forming functions of these subsystems are controlled respectively by their different geodynamic settings.  相似文献   

7.
Metallogensis of the Xiadian gold deposit in Shandong Province has been a question under dispute for a long time. There are many points such as metamorphic hydrothermal, magamatic hydrothermal and meteoric water. Detailed study shows that mantle-rooted fluids were involved in the ore-forming processes. Evidence for this argumentation comes from: (1) discordogenic fault; (2) intersecting and accompanying of basic veins and lodes; (3) geochemistry of stable isotopes; (4) geochemistry of fluid inclusions; and (5) multi-level circulation and exchanging of mantle-rooted fluids. Based on the characteristics of the circulation system of mantle-rooted fluids and its close relation to magmatic hydrothermal fluids and meteoric water, ore-bearing fluids are divided into three subsystems: (1) C-H-O-rich fluid circulation subsystem in mantle, (2) Si-rich fluid circulation subsystem in the middle and lower crust; and (3) S-rich fluid circulation subsystem in shallow and surface crust. Ore-forming functions of these subsystems are controlled respectively by their different geodynamic settings.  相似文献   

8.
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed.  相似文献   

9.
We report chemical compositions (major and trace components including light hydrocarbons), hydrogen, oxygen, helium and nitrogen isotope ratios of volcanic and geothermal fluids of Mutnovsky volcano, Kamchatka. Several aspects of the geochemistry of fluids are discussed: chemical equilibria, mixing of fluids from different sources, evaluation of the parent magmatic gas composition and contributions to magmatic vapors of fluids from different reservoirs of the Kamchatkan subduction zone. Among reactive species, hydrogen and carbon monoxide in volcanic vapors are chemically equilibrated at temperatures >300°C with the SO2-H2S redox-pair. A metastable equilibrium between saturated and unsaturated light hydrocarbons is attained at close to discharge temperatures. Methane is disequilibrated. Three different sources of fluids from three fumarolic fields in the Mutnovsky craters can be distinguished: (1) magmatic gas from a large convecting magma body discharging through Active Funnel, a young crater with the hottest fumaroles (up to 620°C) contributing ~80% to the total volcanic gas output; (2) volcanic fluid from a separate shallow magma body beneath the Bottom Field of the main crater (96–280°C fumaroles); and (3) hydrothermal fluid with a high relative and absolute concentrations of CH4 from the Upper Field in the main crater (96–285°C fumaroles). The composition of the parent magmatic gas is estimated using water isotopes and correlations between He and other components in the Active Funnel gases. The He-Ar-N2 systematics of volcanic and hydrothermal fluids of Mutnovsky are consistent with a large slab-derived sedimentary nitrogen input for the nitrogen inventory, and we calculate that only ~1% of the magmatic N2 has a mantle origin and <<1% is derived from the arc crust.  相似文献   

10.
Hydrothermal alteration zones have been investigated by X-ray diffraction, mineralogical–petrographical techniques, and geochemical analysis. Examination of cores and cuttings from two drill sites, obtained from a depth of about 814–1020 m, show that the hydrothermal minerals occuring in the rock include: K-feldspar, albite, chlorite, alunite, kaolinite, smectite, illite, and opaque minerals.In the studied area, silicified, smectite, illite, alunite, and opal zones have been recognized. These alteration mineral assemblages indicate that there are geothermal fluids, which have temperatures of 150–220°C in the reservoir.The distribution of the hydrothermal minerals shows changes in the chemical composition of the hydrothermal fluid, which are probably due not only to interaction with host rock, but also to dilution of the Na–K–Cl-rich hydrothermal fluid of the deep reservoir by cold sea water at shallow levels. Geochemical analyses of the solid and liquid phases indicate that the hydrothermal fluids of the Tuzla geothermal system are in equilibrium with alteration products.The tectonic structure of the studied area is caused by NW–SE and NE–SW directional forces. The volcanic rocks where hydrothermal zones are observed in the studied area are of Lower–Middle Miocene age comprise latite, andesite, dacite, rhyolite-type lavas, tuff, and ignimbrites.  相似文献   

11.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   

12.
The marine sector surrounding Panarea Island (Aeolian Islands, South Italy) is affected by widespread submarine emissions of CO2 -rich gases and thermal water discharges which have been known since the Roman Age. On November 3rd, 2002 an anomalous degassing event affected the area, probably in response to a submarine explosion. The concentrations of minor reactive gases (CO, CH4 and H2) of samples collected in November and December, 2002 show drastic compositional changes when compared to previous samples collected from the same area in the 1980s. In particular the samples collected after the November 3rd phenomenon display relative increases in H2 and CO and a strong decrease in the CH4 contents, while other gas species show no significant change. The interaction of the original gas with seawater explains the variable contents of CO2, H2S, N2, Ar and He which characterize the different samples, but cannot explain the large variations of CO, CH4 and H2 which are instead compatible with changes in the redox, temperature and pressure conditions of the system. Two models, both implying an increasing input of magmatic fluids are compatible with the observed variations of minor reactive species. In the first one, the input of magmatic fluids drives the hydrothermal system towards atypical (more oxidizing) redox conditions, slowly pressurizing the system up to a critical state. In the second one, the hydrothermal system is flashed by the rising high-T volcanic fluid, suddenly released by a magmatic body at depth. The two models have different implications for volcanic surveillance and risk assessment: In the first case, the November 3rd event may represent both the culmination of a relatively slow process which caused the overpressurization of the hydrothermal system and the beginning of a new phase of quiescence. The possible evolution of the second model is unforeseeable because it is mainly related to the thermal, baric and compositional state of the deep magmatic system that is poorly known.  相似文献   

13.
Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW–SE-trending onshore–offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments.Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid.Chemical geothermometers (Na/Li, Na–K–Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K–Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C.Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.  相似文献   

14.
Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.  相似文献   

15.
Accurate and precisely located self-potential (SP), temperature (T) and CO2 measurements were carried out in the summit area of Stromboli along 72 straight profiles. SP data were acquired every metre and T data every 2.5 m. CO2 concentrations were acquired with the same density as T, but only along seven profiles. The high density of data and the diversity of the measured parameters allows us to study structures and phenomena at a scale rarely investigated. The shallow summit hydrothermal activity (Pizzo–Fossa area) is indicated by large positive SP, T and CO2 anomalies. These anomalies are focused on crater faults, suggesting that the fracture zones are more permeable than surrounding rocks at Stromboli. The analysis of the distribution of these linear anomalies, coupled with the examination of the geologic, photographic and topographic data, has led us to propose a new structural interpretation of the summit of Stromboli. This newly defined structural framework comprises (1) a large Pizzo circular crater, about 350 m in diameter; (2) a complex of two concealed craters nested within the Pizzo crater (the Large and the Small Fossa craters), thought to have formed during the eruption of the Pizzo pyroclastites unit; the Small Fossa crater is filled with highly impermeable material that totally impedes the upward flow of hydrothermal fluids; and (3) The present complex of active craters. On the floor of the Fossa, short wavelength SP lows are organized in drainage-like networks diverging from the main thermal anomalies and converging toward the topographic low in the Fossa area, inside the Small Fossa crater. They are interpreted as the subsurface downhill flow of water condensed above the thermal anomalies. We suspect that water accumulates below the Small Fossa crater as a perched water body, representing a high threat of strong phreatic and phreatomagmatic paroxysms. T and CO2 anomalies are highly correlated. The two types of anomalies have very similar shapes, but the sensitivity of CO2 measurements seems higher for lowest hydrothermal flux. Above T anomalies, a pronounced high frequency SP signal is observed. Isotopic analyses of the fluids show similar compositions between the gases rising through the faults of the Pizzo and Large Fossa craters. This suggests a common origin for gases emerging along different structural paths within the summit of Stromboli. A site was found along the Large Fossa crater fault where high gas flux and low air contamination made gas monitoring possible near the active vents using the alkaline bottle sampling technique.  相似文献   

16.
Chromatographic analyses of fumarolic gases, collected in sampling bottles containing an alkaline solution, have been carried out using a thermal conductivity detector and a flame ionization detector, after catalytic conversion of CO and CH4. The latter method enables the concentration of carbon monoxide to be measured with sufficient accuracy for use in a CO-CO2-H2-H2O geothermometer. Application of this geothermometer to fumaroles in the crater of Solfatara in the Campi Flegrei, Italy, indicates that they are fed from a steam reservoir at 250±15 °C and at 10–36±2atm of oxygen. On the other hand, the CH4-CO2-H2-H2O geothermobarometer seems to re-equilibrate at superficial temperatures and cannot be used for infering thermodynamic conditions at depth. Regular sampling of these fumaroles together with a geothermometric interpretation of the gas analyses provides a means of monitoring, with comparative accuracy, the chemical and thermal evolution of the hydrothermal reservoir below the Solfatara crater. Such monitoring would probably detect an increase in temperature at depth and the injection of magmatic gas into the reservoir.  相似文献   

17.
The shallow-water hydrothermal system in Tutum Bay on the west side of Ambitle Island, Papua New Guinea provides us with an exceptional opportunity to study isotope systematics in a near shore setting. Compared to seawater, the hydrothermal fluids in Tutum Bay have lower values for δD, δ18O, δ13C, and 87Sr and higher values for 3H, δ34S(SO4) and δ18O(SO4). The δ18O and δD records for vents 1 and 4 indicate that fluid compositions remained stable over an extended period. Interpretation of isotope data clearly demonstrates the predominantly meteoric origin of Tutum Bay hydrothermal fluids, despite their location in a marine environment. δ18O and δD values are identical to mean average annual precipitation in eastern Papua New Guinea. The hypothesis that these fluids are a simple product of mixing between seawater and onshore hydrothermal fluids from the Waramung (W-1) and Kapkai (W-2) thermal areas has been rejected, because the observed δ37Cl, 3H, δ34S(SO4) and δ18O(SO4) values cannot be explained by a simple mixing model. The application of δ18O(SO4) and δ13C thermometers in combination with 3H values corroborates the three-step model of Pichler et al. [Pichler, T., Veizer, J., Hall, G.E.M., 1999. The chemical composition of shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea and their effect on ambient seawater. Marine Chemistry 64 (3) 229–252], where (1) phase separation in the deep reservoir beneath Ambitle Island produces a high temperature vapor that rises upward and subsequently reacts with cooler ground water to form a low pH, CO2-rich water of approximately 150–160 °C, (2) caused by the steep topography, this CO2-rich fluid moves laterally towards the margin of the hydrothermal system where it mixes with the marginal upflow of the deep reservoir fluid. This produces a dilute chloride water of approximately 165 °C, and (3) possibly the entrainment of minor amounts of ground or seawater during its final ascent.  相似文献   

18.
A thick sequence of alkaline intrusions and volcanic rocks underlies a Quaternary caldera on Lihir Island. The sequence is host to a still-active subaerial hydrothermal system and associated epithermal gold mineralization. Chondrite-normalized (La/Lu)cn and (La/Sm)cn ratios progressively increase up the alteration sequence from the potassic alteration zone, to the argillic zone to the advanced argillic zone. (Tb/Lu)cn ratios only significantly increase in argillic and advanced argillic assemblages. Surface oxide alteration lithologies and acid sulphate water precipitates possess distinctly lower (La/Lu)cn and (Tb/Lu)cn ratios than the underlying subsurface alteration units. The changes in the REE, LREE and HREE fractionation trends from subsurface to surface alteration zones reflect the transition from a magmatic-hydrothermal, neutral chloride fluid regime at depth to acid sulphate meteoric waters in the upper portion of the alteration profile.Boiling of the LREE-Eu-enriched magmatic fluids occurred at a depth of at least 750 m. It is proposed that pronounced differential flow rates of the vapour and liquid phases and solution chemistry changes approximately above 300–350 m caused the incorporation of LREE and Eu into anhydrite-calcite veins and the deposition of LREE and HREE into wallrocks of upper parts of the potassic alteration unit. Condensation of the vapour phases into meteoric waters gave rise to low-temperature acid fluids that deposited large amounts of LREE within argillic and advanced argillic alteration units. This was also accompanied by HREE mobility due to large fluid volumes, acid fluid conditions and abundant sulphate complexes within the solutions. The HREE were either lost from the hydrothermal system or deposited in oxide assemblages and acid sulphate water precipitates.  相似文献   

19.
We investigated the relationship between volcano-seismic events, recorded at La Fossa crater of Vulcano (Aeolian Islands, Italy) during 2004-2006, and the dynamics of the hydrothermal system. During the period of study, three episodes of increasing numbers of volcano-seismic events took place at the same time as geothermal and geochemical anomalies were observed. These geothermal and geochemical anomalies have been interpreted as resulting from an increasing deep magmatic component of the hydrothermal fluids. Three classes of seismic events (long period, high frequency and monochromatic events), characterised by different spectral content and various similarity of the waveforms, have been recognised. These events, clustered mainly below La Fossa crater area at depths of 0.5–1.1 km b.s.l., were space-distributed according to the classes. Based on their features, we can infer that such events at Vulcano are related to two different source mechanisms: (1) fracturing processes of rocks and (2) resonance of cracks (or conduits) filled with hydrothermal fluid. In the light of these source mechanisms, the increase in the number of events, at the same time as geochemical and geothermal anomalies were observed, was interpreted as the result of an increasing magmatic component of the hydrothermal fluids, implying an increase of their flux. Indeed, such variation caused an increase of both the pore pressure within the rocks of the volcanic system and the amount of ascending fluids. Increased pore pressures gave rise to fracturing processes, while the increased fluid flux favoured resonance and vibration processes in cracks and conduits. Finally, a gradual temporal variation of the waveform of the hybrid events (one of the subclasses of long period events) was observed, likely caused by heating and drying of the hydrothermal system.  相似文献   

20.
Seemingly stably stratified fluids, that is a heavier layer of fluid underlying an upper layer of lighter fluid, can overturn if there is a heat flux through the system. Such events are termed “rollover” in the engineering literature (occurring for instance in liquid natural gas tanks). They take place as well in lakes and ponds. In all such cases, the stratification starts off with the heavier, more dense fluid underlying lighter. Convection driven mixing at the stratification interface (due to the heat flux) as well as other processes serves to minimize with time the stabilizing density differences, which may eventually cause the stratification to invert. If gas has been contained under pressure in the lower layer, this gas may explosively vent from the fluid as it suddenly rises to the top such as occurs in liquid natural gas tanks where rollover is a hazard. These processes are quantifiable and are applied here to various scenarios that might refer to volcanic crater lakes whose lower layers are charged with volatiles. Provided herein are some examples of calculated conditions and calculated time of evolution leading to rollover with attendant release of gases from supersaturated ascending fluids. These calculations suggest rollover could occur in volcanic lakes. The August 1986 gas release at Lake Nyos is employed as an example. These estimates were made taking note that water is commonly supersaturated in CO2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号