首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MER rover Opportunity has carried out the first outcrop-scale investigation of ancient sedimentary rocks on Mars. The rocks, exposed in craters and along fissures in Meridiani Planum, are sandstones formed via the erosion and re-deposition of fine grained siliciclastics and evaporites derived from the chemical weathering of olivine basalts by acidic waters. A stratigraphic section more than seven meters thick measured in Endurance crater is dominated by eolian dune and sand sheet facies; the uppermost half meter, however, exhibits festoon cross lamination at a length scale that indicates subaqueous deposition, likely in a playa-like interdune setting. Silicates and sulfate minerals dominate outcrop geochemistry, but hematite and Fe3D3 (another ferric iron phase) make up as much as 11% of the rocks by weight. Jarosite in the outcrop matrix indicates precipitation at low pH. Cements, hematitic concretions, and crystal molds attest to a complex history of early diagenesis, mediated by ambient ground waters. The depositional and early diagenetic paleoenvironment at Meridiani was arid, acidic, and oxidizing, a characterization that places strong constraints on astrobiologial inference.  相似文献   

2.
Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 m thick and define a “wetting-upward” succession which records a progressive increase in the influence of groundwater and, ultimately, surface water in controlling primary depositional processes.The Burns lower unit is interpreted as a dry dune field (though grain composition indicates an evaporitic source), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/s. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters.Mineralogical and elemental data indicate that the eolian sandstones of the lower and middle units, as well as the subaqueous and eolian deposits of the Burns upper unit, were derived from an evaporitic source. This indirectly points to a temporally equivalent playa where lacustrine evaporites or ground-water-generated efflorescent crusts were deflated to provide a source of sand-sized particles that were entrained to form eolian dunes and sand sheets. This process is responsible for the development of sulfate eolianites at White Sands, New Mexico, and could have provided a prolific flux of sulfate sediment at Meridiani. Though evidence for surface water in the Burns formation is mostly limited to the upper unit, the associated sulfate eolianites provide strong evidence for the critical role of groundwater in controlling sediment production and stratigraphic architecture throughout the formation.  相似文献   

3.
Sedimentary rocks exposed in the Meridiani Planum region of Mars record aqueous and eolian deposition in ancient dune and interdune playa-like environments that were arid, acidic, and oxidizing. On Earth, microbial populations have repeatedly adapted to low pH and both episodic and chronic water limitation, suggesting that, to a first approximation, the Meridiani plain may have been habitable during at least part of the interval when deposition and early diagenesis took place. On the other hand, the environmental conditions inferred for Meridiani deposition would have posed a challenge for prebiotic chemical reactions thought to have played a role in the origin of life on Earth. Orbital observations suggest that the combination of sulfate minerals and hematite found in Meridiani rocks may be unusual on the martian surface; however, there is reason to believe that acidity, aridity, and oxidizing conditions were broadly distributed on ancient Mars. When these conditions were established and how much environmental heterogeneity existed on early Mars remain to be determined. Because sulfates and iron oxides can preserve detailed geochemical records of environmental history as well as chemical, textural and microfossil signatures of biological activity, Meridiani Planum is an attractive candidate for Mars sample return.  相似文献   

4.
Iron-rich spherules (> 90% Fe2O3 from electron microprobe analyses) ∼10-100 μm in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe / Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or OH− 1. The transmission Mössbauer spectrum of a spherule-rich separate is dominated by a hematite (α-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al3+ for Fe3+ substitution and structural H2O and/or OH− 1. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.  相似文献   

5.
Exploration by the NASA rover Opportunity has revealed sulfate- and hematite-rich sedimentary rocks exposed in craters and other surface features of Meridiani Planum, Mars. Modern, Holocene, and Plio-Pleistocene deposits of the Río Tinto, southwestern Spain, provide at least a partial environmental analog to Meridiani Planum rocks, facilitating our understanding of Meridiani mineral precipitation and diagenesis, while informing considerations of martian astrobiology. Oxidation, thought to be biologically mediated, of pyritic ore bodies by groundwaters in the source area of the Río Tinto generates headwaters enriched in sulfuric acid and ferric iron. Seasonal evaporation of river water drives precipitation of hydronium jarosite and schwertmannite, while (Mg,Al,Fe3+)-copiapite, coquimbite, gypsum, and other sulfate minerals precipitate nearby as efflorescences where locally variable source waters are brought to the surface by capillary action. During the wet season, hydrolysis of sulfate salts results in the precipitation of nanophase goethite. Holocene and Plio-Pleistocene terraces show increasing goethite crystallinity and then replacement of goethite with hematite through time. Hematite in Meridiani spherules also formed during diagenesis, although whether these replaced precursor goethite or precipitated directly from groundwaters is not known. The retention of jarosite and other soluble sulfate salts suggests that water limited the diagenesis of Meridiani rocks.Diverse prokaryotic and eukaryotic microorganisms inhabit acidic and seasonally dry Río Tinto environments. Organic matter does not persist in Río Tinto sediments, but biosignatures imparted to sedimentary rocks as macroscopic textures of coated microbial streamers, surface blisters formed by biogenic gas, and microfossils preserved as casts and molds in iron oxides help to shape strategies for astrobiological investigation of Meridiani outcrops.  相似文献   

6.
Analyses of outcrops created by the impact craters Endurance, Fram and Eagle reveal the broad lateral continuity of chemical sediments at the Meridiani Planum exploration site on Mars. Approximately ten mineralogical components are implied in these salt-rich silicic sediments, from measurements by instruments on the Opportunity rover. Compositional trends in an apparently intact vertical stratigraphic sequence at the Karatepe West ingress point at Endurance crater are consistent with non-uniform deposition or with subsequent migration of mobile salt components, dominated by sulfates of magnesium. Striking variations in Cl and enrichments of Br, combined with diversity in sulfate species, provide further evidence of episodes during which temperatures, pH, and water to rock ratios underwent significant change. To first order, the sedimentary sequence examined to date is consistent with a uniform reference composition, modified by movement of major sulfates upward and of minor chlorides downward. This reference composition has similarities to martian soils, supplemented by sulfate anion and the alteration products of mafic igneous minerals. Lesser cementation in lower stratigraphic units is reflected in decreased energies for grinding with the Rock Abrasion Tool. Survival of soluble salts in exposed outcrop is most easily explained by absence of episodes of liquid H2O in this region since the time of crater formation.  相似文献   

7.
New data returned from the Mars Exploration Rover (MER) mission have revealed abundant evaporites in the sedimentary record at Meridiani Planum. A working hypothesis for Meridiani evaporite formation involves the evaporation of fluids derived from the weathering of martian basalt and subsequent diagenesis. On Earth, evaporite formation in exclusively basaltic settings is rare. However, models of the evaporation of fluids derived from experimentally weathering synthetic martian basalt provide insight into possible formation mechanisms. The thermodynamic database assembled for this investigation includes both Fe2+ and Fe3+ in Pitzer's ion interaction equations to evaluate Fe redox disequilibrium at Meridiani Planum. Modeling results suggest that evaporation of acidic fluids derived from weathering olivine-bearing basalt should produce Mg, Ca, and Fe-sulfates such as jarosite and melanterite. Calculations that model diagenesis by fluid recharge predict the eventual breakdown of jarosite to goethite as well as the preservation of much of the initial soluble evaporite component at modeled porosity values appropriate for relevant depositional environments (< 0.30). While only one of several possible formation scenarios, this simple model is consistent with much of the chemical and mineralogical data obtained on Meridiani Planum outcrop.  相似文献   

8.
The Devonian–Carboniferous Tsetserleg terrane of Mongolia forms part of the complex Central Asian Orogenic Belt (CAOB). The Tsetserleg terrane consists mainly of clastic sediments, and is situated in the southern Hangay–Hentey Basin. Internally the terrane is divided into the Erdenetsogt (Middle Devonian), Tsetserleg (Middle‐Upper Devonian) and Jargalant (Lower Carboniferous) Formations. Provenance and tectonic setting of the Hangay–Hentey Basin remains controversial, with proposals ranging from passive margin through to island‐arc. A suite of 94 Tsetserleg sandstones and mudrocks was collected with the aim of constraining provenance, source weathering, and depositional setting, using established petrographic and whole‐rock geochemical parameters. Petrographically the sandstones are immature, with average compositions of Q22F14L64, Q14F17L69, and Q18F12L70 in the Erdenetsogt, Tsetserleg, and Jargalant Formations, respectively. Lv/L ratios range from 0.81 to 1.00 (average 0.95), and P/F from 0.68 to 0.93 (average 0.83). Framework compositions indicate deposition in an undissected or transitional arc. Geochemically, the sandstones are classified as greywackes. Geochemical contrasts between sandstone and mudrock averages in each formation are small, with lithotype means for SiO2 ranging only from 65.54 to 68.62 wt.%. These features and weak trends on variation diagrams reflect the immaturity of the sediments. Comparison of elemental abundances with average upper continental crust, major element discriminant scores, and immobile element ratios indicate a uniform average source composition between dacite and rhyolite. The maximum value for the Chemical Index of Alteration in the Erdenetsogt Formation is about 78 after correction for K‐metasomatism, indicating moderate source weathering. Lower maximum values (61 and 63, respectively) in the Tsetserleg and Jargalant Formations indicate they were derived from a virtually unweathered and tectonically active source. Tectonic setting discrimination parameters indicate a continental island‐arc environment, similar to several other CAOB suites of similar age. This arc source may have been built on a continental fragment situated within the Mongol–Okhotsk Ocean during Middle Devonian‐Lower Carboniferous time.  相似文献   

9.
We have conducted a survey of zeolite occurrences in saline-alkaline paleolake deposits on Earth to identify the most prominent zeolite alteration patterns and to characterize the most common authigenic minerals and their paragenetic relationships. We collected the bulk mineral assemblages (from previous and our studies) as identified by X-ray diffraction from zeolitic tuff beds and associated sedimentary beds from thirteen paleolake deposits from the USA, Mexico, Greece, and Tanzania. We applied the Kohonen Self-Organizing Maps (SOM) to look for interesting patterns in the tuff bed mineral assemblages without prescribing any specific interpretation, and for information reduction and classification. Decision Tree (DT) method was applied to characterize these clusters. We were able to define clear class boundaries between fresh glass, non-analcime zeolites, analcime, and K feldspar. The non-analcime zeolites were further grouped into several classes based on mineral type. We also discuss the potential implications for Mars, showing that the mineral assemblages of diagenetic facies identified by SOM and DT can be used to test or validate the orbital, in situ, or modeling results, while the trained SOM provides a robust generalized ability to classify the new mineral assemblage data into the most common diagenetic facies identified in saline-alkaline paleoenvironments that contain zeolites. The study concludes that generalizing the complex geochemical behaviors using unsupervised statistical learning methods can help to identify the most prominent geochemical behaviors.  相似文献   

10.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

11.
The sedimentation rate of the sediment drift in the southeast of Dongsha Islands is as high as 49 cm/ka in the last 1.05 Ma. Although the sedimentation rate changes with time, the contents of rare elements of the sediments remain almost the same, indicating that the source area of the sediments has been constant with time. On the triangular diagrams of La-Th-Sc and Th-Sc-Zr/10, the samples from the southeast of Dongsha Islands fall within the continental island arc field, overlapping the samples from Taiwan, while the samples from the Pearl River, those from the west of the Philippines that contain volcanic material, are separated from them. This indicates that the sediments from the southeast of Dongsha Islands have a close relationship to those from Taiwan in terms of provenance. In fact, the sediments on the northern slope of the South China Sea were derived from northeast direction, as well as from Taiwan, most probably transported from Taiwan through Penghu channel into the South China Sea. The terrigenous part of the deep-sea sediments in the north of the South China Sea was provided by different sources.  相似文献   

12.
Hydrogen peroxide can form through the interaction of pyrite and anoxic water. The oxidation of pyrite results in the precipitation of sulfates and iron oxides, high redox potentials (~ 1000 mV) and acidic pH (3–4). The oxidative potential of the resultant solution may be responsible for the oxidation of organic compounds, as observed in the subsurface of the Rio Tinto Mars analog. On Mars subsurface migration of groundwater interacting with volcanogenic massive pyrite deposits would have mobilized acidic and oxidizing fluids through large portions of the crust, resulting in the widespread deposition of sulfates and iron oxides. This groundwater could have leached substantial volumes of aquifer material and crustal rocks, thereby erasing any organic compounds possibly down to depths of hundreds of meters. Therefore, the preservation of organic biosignatures must have been severely constrained in the portions of the ancient Martian crust that were exposed to aqueous processes, calling for a redefinition of the future targets in the search for biomolecular traces of life on Mars.  相似文献   

13.
~~Salinity variation of formation water and diagenesis reaction in abnormal pressure environments@解习农 @焦赳赳 @李思田 @成建梅~~~~  相似文献   

14.
Geochemical characterization and numerical modelling of surface water and ground water, combined with hydrological observations, provide quantitative estimates of meteoric diagenesis in Pleistocene carbonates of the northern Bahamas. Meteoric waters equilibrate with aragonite, but water‐ rather than mineral‐controlled reactions dominate. Dissolutional lowering of the undifferentiated bedrock surface is an order of magnitude slower than that within soil‐filled topographic hollows, generating small‐scale relief at a rate of 65–140 mm ka?1 and a distinctive pocketed topography. Oxidation of organic matter within the subsoil and vadose zones generates an average P of 4·0 × 10?3 atm, which drives dissolution during vadose percolation and/or at the water table. However, these dissolution processes together account for <60% of the average rock‐derived calcium in groundwaters pumped from the freshwater lens. The additional calcium may derive from oxidation of organic carbon within the lens, accounting for the high P of the lens waters. Mixing between meteoric waters of differing chemistry is diagenetically insignificant, but evapotranspiration from the shallow water table is an important drive for subsurface cementation. Porosity generation in the shallow vadose zone averages 1·6–3·2% ka?1. Phreatic meteoric diagenesis is focused near the water table, where dissolution generates porosity at 1·4–2·8% ka?1. Maximum dissolution rates, however, are similar to those of evaporation‐driven precipitation, which occludes porosity of 4·0 ± 0·6% ka?1. This drives porosity inversion, from primary interparticle to secondary mouldic, vug and channel porosity. In the deeper freshwater lens, oxidation of residual organic carbon and reoxidation of reduced sulphur species from deeper anaerobic oxidation of organic carbon may generate porosity up to 0·06% ka?1. Meteoric diagenesis relies critically on hydrological routing and vadose thickness (controlled by sea level), as well as the geochemical processes active. A thin vadose zone permits direct evaporation from the water table and drives precipitation of meteoric phreatic cements even where mineral stabilization is complete. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Processes driving carbonate diagenesis in islands of the northern Bahamas are investigated using major ion, dissolved oxygen and dissolved organic carbon analyses of water samples from surface and ground waters, and measurements of soil gas P. Meteoric waters equilibrate with aragonite, but reactions are water controlled rather than mineral‐controlled and drive dissolution rather than concurrent precipitation of calcite. Surface runoff waters equilibrate with atmospheric P and rapidly recharge the vadose zone, limiting subaerial bedrock dissolution to only 6·6–15 mg l?1 Ca. P of soil gas measured in the summer wet season ((7·4 ± 3·7) × 10?3 atm) is elevated compared with that of the atmosphere, despite the thin skeletal organic nature of the soil and the discontinuous soil cover. Soil waters retained in surface pockets are equilibrated with respect to aragonite and have dissolved 51 ± 19 mg l?1 Ca. This is substantially less than the 93 ± 18 mg l?1 Ca in samples from pumping boreholes that sample meteoric waters from the freshwater lens. The high P of the freshwater lens ((16 ± 8·3) × 10?3 atm for pumping boreholes) suggests that significant additional CO2 may be derived by oxidation of soil‐ and surface‐derived organic carbon within the lens. The suboxic nature of the majority of the freshwater lens and the observed depletion in sulphate support this suggestion, and indicate that both aerobic and anaerobic oxidation may take place. Shallow lens samples from observation boreholes are calcite supersaturated and have a lower P than deeper lens waters, indicating that CO2 degasses from the water table, driving precipitation of calcite cements. We suggest that the geochemical evolution of waters in the vadose zone and upper part of the freshwater lens may be determined by the presence of a body of ground air with P controlled by production in the freshwater lens and soil and by degassing to the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Contaminated sediments deposited within urban water bodies commonly exert a significant negative effect on overlying water quality. However, our understanding of the processes operating within such anthropogenic sediments is currently poor. This paper describes the nature of the sediment and early diagenetic reactions in a highly polluted major urban water body (the Salford Quays of the Manchester Ship Canal) that has undergone remediation focused on the water column. The style of sedimentation within Salford Quays has been significantly changed as a result of remediation of the water column. Pre‐remediation sediments are composed of a range of natural detrital grains, predominantly quartz and clay, and anthropogenic detrital material dominated by industrial furnace‐derived metal‐rich slag grains. Post‐remediation sediments are composed of predominantly autochthonous material, including siliceous algal remains and clays. At the top of the pre‐remediation sediments and immediately beneath the post‐remediation sediments is a layer significantly enriched in furnace‐derived slag grains, input into the basin as a result of site clearance prior to water‐column remediation. These grains contain a high level of metals, resulting in a significantly enhanced metal concentration in the sediments at this depth. Porewater analysis reveals the importance of both bacterial organic matter oxidation reactions and the dissolution of industrial grains upon the mobility of nutrient and chemical species within Salford Quays. Minor release of iron and manganese at shallow depths is likely to be taking place as a result of bacterial Fe(III) and Mn(IV) reduction. Petrographic analysis reveals that the abundant authigenic mineral within the sediment is manganese‐rich vivianite, and thus Fe(II) and Mn(II) released by bacterial reactions may be being taken up through the precipitation of this mineral. Significant porewater peaks in iron, manganese and silicon deeper in the sediment column are most probably the result of dissolution of furnace‐derived grains in the sediments. These species have subsequently diffused into porewater above and below the metal‐enriched layer. This study illustrates that the remediation of water quality in anthropogenic water bodies can significantly impact upon the physical and chemical nature of sedimentation. Additionally, it also highlights how diagenetic processes in sediments derived from anthropogenic grains can be markedly different from those in sediments derived from natural detrital material. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone.  相似文献   

18.
Yong Il  Lee  Dong Hyun  Lim 《Island Arc》2008,17(1):152-171
Abstract The Gyeongsang Basin is a non‐marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF‐A consists of the lower Nakdong Formation with average Q73F12R15; PF‐B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF‐C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF‐D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF‐A and PF‐B, whereas calcite and chlorite are dominant diagenetic minerals in PF‐C and PF‐D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF‐C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF‐A and PF‐B. Late‐stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF‐A and lower PF‐B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF‐C and PF‐D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late‐stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate.  相似文献   

19.
The history of water is fundamental to understanding the geological evolution of Mars and to questions concerning the possible development of life on the Red Planet. Today, Mars is cold and dry; its regolith is permanently frozen and except under highly localised and transient conditions, liquid water is unstable at the surface. Intriguingly, we have identified geological features that could be markers of very late-Amazonian “wet” or ice-rich periglacial processes in Utopia and western Elysium Planitiae: 1. rimless, flat-floored and lobate, sometimes scalloped, depressions that are suggestive of terrestrial alases (evaporated/drained thermokarst lakes); 2. small-sized polygonal patterned-ground (perhaps formed by thermal-contraction cracking and possibly underlain by ice wedges); and, 3. circular/near-circular raised-rim depressions (consistent in morphology and scale with pingo-scars) that are nested in rimless depressions. In terrestrial cold-climate, non-glacial environments, landscape assemblages of this type occur only in the presence of ice-rich permafrost.Commenting upon the origin of the putative periglacial features on Mars, most workers have suggested that sublimation and not evaporation has been the dominant process. By contrast, we propose that two key characteristics of the rimless depressions – inner terraces and orthogonally-oriented polygons – are markers of stable, ponded water and its slow loss by evaporation or drainage. If the raised-rim landforms are pingo scars, then this also points to boundary conditions that are supportive of stable liquid water.With regard to the relative age of the features described above, previous work identified some lobate depressions superposed on crater-rim gullies in the region (Soare et al., 2007). Gullies could be amongst the youngest geological features on Mars; superposed depressions point to an origin that is more youthful than the gullies. In turn, as some raised-rim landforms are superposed on rimless depressions, this is indicative of an origin that is even more recent than that of the depressions. Together with the geological evidence showing that the rimless depressions could have been formed by ponded water, the stratigraphy of the putative periglacial-landscape in this region suggests that the very late Amazonian period could have been warmer and wetter than had been thought hitherto.  相似文献   

20.
In-Chang Ryu 《Island Arc》2003,12(4):398-410
Abstract Sandstone petrography considered within a sequence stratigraphic framework provides a better understanding of the characteristics of the Eocene Tyee Basin, an accretionary and forearc sequence, southern Oregon Coast Range. Detailed comparison of the relative abundance of major framework grains documents a marked difference in the sandstone composition of each depositional sequence. Such a difference is mainly due to an abrupt change in provenance, from a local Klamath Mountains metasedimentary source to a more distant extrabasinal Idaho Batholith‐Clarno volcanic arc source. Furthermore, the composition of framework grains varies systematically from the lowstand systems tract to the highstand systems tract within a depositional sequence. This suggests that relative sea level change in the depositional basin, and tectonics in the source area, can affect the patterns of sedimentation and sandstone composition. In addition, the Eocene Tyee Basin sandstones have a down‐section distribution of authigenic minerals, consisting of early formed zeolites and late‐stage quartz, as well as a change in the abundance of smectite to mixed‐layer chlorite/smectite with increasing burial depth. The down‐section distribution of authigenic minerals is also causally linked to the compositional variation of framework grains in each depositional sequence with increasing burial temperature. Much primary porosity has been filled with these authigenic minerals, which diminishes the permeability of potential reservoir rocks. Reservoir‐quality porosities and permeabilities, however, are present locally in the basin. The development of these reservoir‐quality sandstones within the Eocene Tyee Basin sequence is due to a complex burial diagenesis, which is directly related to temporal and spatial variations in original detrital mineralogy, in sedimentation pattern, and in burial temperature in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号