首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Oceanologica Acta》1999,22(4):367-380
A statistical evaluation of vertical current velocity profiles w(z) has been undertaken using data provided by current meter profilers. The calculation of profiles w(z) involves the estimation of the standard deviation of vertical current at each depth level, and the standard deviation of the statistical variability of that estimate. Profiles w(z) have been computed for the northwestern Black Sea, using current meter and CTD data from three surveys carried out during 1992–1994. The calculations show w(z) to have a two-layered structure, with zero values occurring in the main pycnocline. Such vertical current structures are consistent with a hydrodynamic model, whereby the current field is induced by buoyancy fluxes through the lateral basin boundaries. Existence of zero vertical current velocities at the pycnoclines yields the key to understanding the mechanisms responsible for the oxic-anoxic interface, and of the zones with steep vertical gradients in hydrochemical and hydrooptical characteristics.  相似文献   

2.
Signs of mercury input and dispersion in the water mass and the atmosphere over the submarine Piip Volcano have been revealed. The mercury from hydrothermal vents has been found to release mostly as a component of hydrothermal-gas bubbles rising through the water mass to the sea’s surface. The mercury’s dispersion and the seawater’s enrichment with it is a consequence of the partial dissolution of the gas bubbles. The atmochemical dispersion zone is represented by an area of higher mercury concentration with two maximums shifted in the direction of the wind (northeastward) from the northern and southern peak of the volcano.  相似文献   

3.
4.
5.
The distribution of the total alkalinity (TA), the total inorganic carbon (TCO2), the calcium (Ca), and the CO2 partial pressure in the waters of the northwestern Bering Sea (Anadyr Bay) and in the western part of the Chukchi Sea is considered according to the data obtained in August–September 2002. It is shown that the areas treated were sinks of atmospheric CO2 in the summer of 2002: the total CO2 exchange between the atmosphere and the seawater was equal to about −20 mmol C/(m2 day). The net community production according to the TCO2 decrease in the upper photic layer in the west of the Chukchi Sea and in the Anadyr Bay waters amounted to 48 ± 12 and 72 ± 18 g C/(m2 year), respectively. The comparison with historical data allows one to tell about the pronounced increase of the TCO2, TA, and Ca concentrations in the waters of Anadyr Bay and in the western part of the Chukchi Sea in the summer 2002. The processes that might have caused the changes observed are the enrichment of the estuarine waters in marine salts under the ice formation in winter and the decrease of the supply of the waters of the Bering Slope Current to the northwestern part of the Bering Sea.  相似文献   

6.
In the late 1990s, the southeastern Bering Sea exhibited a number of anomalous conditions, including a major die-off of short-tailed shearwaters (Puffinus tenuirostris), a trans-equatorial migrant that constitutes a major portion of the marine bird biomass in the southeastern Bering Sea. As part of a larger study of the ecological role of the inner or structural front over the southeastern Bering Sea shelf, in 1997–1999, we collected short-tailed shearwaters to determine diet composition. In spring 1997, we found that short-tailed shearwaters were consuming predominately the euphausiid Thysanoessa raschii, a diet expected on the basis of past studies. However, in subsequent years, short-tailed shearwater diets in spring contained increasingly larger proportions of fish, in particular, sandlance (Ammodytes hexapterus), as well as other species of euphausiids (T. inermis in 1999). In summer and fall collections, short-tailed shearwater diets were more varied than in spring, and included both fish (age-0 gadids, 21–35% by weight) and a wider variety of euphausiid species (T. inermis and T. spinifera). In summer and fall, crab zoea (August 1998) and copepods (August 1999) were eaten by shearwaters collected while feeding within the inner front. Diets in 1997–1999 were broader than those found in previous studies of short-tailed shearwaters over the inner shelf and Bristol Bay, which had documented diets composed almost solely of T. raschii. Our data are consistent with the hypothesis that euphausiids were less available to short-tailed shearwaters foraging over the middle and coastal domains of the southeastern Bering Sea in 1997–1999 than has previously been true. Our results are also consistent with hypothesis that the inner front can affect the availability of prey to shearwaters.  相似文献   

7.
日本海、鄂霍次克海和白令海的古海洋学研究进展   总被引:2,自引:0,他引:2  
边缘海的存在使大陆和大洋之间的物质和能量交换变得相当复杂。在构造运动和海平面升降的控制下,边缘海和大洋之间时而连通时而隔绝,各种古气候变化信号都在一定程度上被放大。基于近期有关西北太平洋边缘海的古海洋学研究成果,简要概述了日本海、鄂霍次克海、白令海以及北太平洋地区自中新世以来的古气候和古海洋环境演化特征,并认为它们与全球其它地区一样也受控于因地球轨道参数变化引起的太阳辐射率的变化,大尺度的气候变化具有与地球轨道偏心率周期相对应的100ka周期,而41ka的小尺度周期则受地球自转轴斜率变化的控制。一些突发性的气候变化则是由气候不稳定性、海峡的关闭与开启和其它一些地球气候系统的非线性活动所驱动。但同时作为中高纬度边缘海,它们的古海平面、古海水温度、古洋流等古海洋环境因子的变化特征还受到冰盖扩张和退缩、构造运动、冰川性地壳均衡补偿、东亚季风等因素的影响,具有一定的区域特点。  相似文献   

8.
南海主要上升流及其与渔场的关系   总被引:3,自引:0,他引:3  
<正>南海是我国的重要渔业产区,目前我国每年在这一海区的捕捞产量大约3×106 t。无论在南海北部还是在南海中部和南部海域都分布有优良渔场,这些渔场往往与上升流存在着密切关系。上升流是一种海水垂直向上的运动现象,通常因表层水体辐散所致,是海洋环流中的重要组成部分。上升流涌升速度与水平流速相比甚小,一般只有10–4~10–2 cm/s[1]。上升流可以把底层营养盐带到表层,为浮游植物的生长提供物质基础,进而为浮游动物、鱼类、虾类等  相似文献   

9.
10.
Eleven seismic reflection profiles across Shirshov Ridge and the adjacent deep-water sedimentary basins (Komandorsky and Aleutian Basins) are presented to illustrate the sediment distribution in the western Bering Sea. A prominent seismic reflecting horizon, Reflector P (Middle—Late Miocene in age), is observed throughout both the Aleutian and Komandorsky Basins at an approximate subbottom depth of 1 km. This reflector is also present, in places, on the flanks and along the crest of Shirshov Ridge. The thickness of sediments beneath Reflector P is significantly different within the two abyssal basins. In the Aleutian Basin, the total subbottom depth to acoustic basement (basalt?) is about 4 km, while in the Komandorsky Basin the depth is about 2 km.Shirshov Ridge, a Cenozoic volcanic feature that separates the Aleutian and Komandorsky Basins, is an asymmetric bathymetric ridge characterized by thick sediments along its eastern flank and steep scarps on its western side. The southern portion of the ridge has more structural relief that includes several deep, sediment-filled basins along its summit.Velocity data from sonobuoy measurements indicate that acoustic basement in the Komandorsky Basin has an average compressional wave velocity of 5.90 km/sec. This value is considerably larger than the velocities measured for acoustic basement in the northwestern Aleutian Basin (about 5.00 km/sec) and in the central Aleutian Basin (5.40–5.57 km/sec). In the northwestern Aleutian Basin, the low-velocity acoustic basement may be volcaniclastic sediments or other indurated sediments that are overlying true basaltic basement. A refracting horizon with similar velocities (4.6–5.0 km/sec) as acoustic basement dips steeply beneath the Siberian continental margin, reaching a maximum subbottom depth of about 8 km. The thick welt of sediment at the base of the Siberian margin may be the result of sediment loading or tectonic depression prior to Late Cenozoic time.  相似文献   

11.
The benthic and planktonic foraminiferal assemblages and the distribution of coarse grain-size factions were studied in the upper 4.5 m of the Core SO201-2-85KL (57°30.30′ N, 170°24.79′ E, water depth 968 m) retrieved from the Shirshov Ridge. This part of the core covers 7.5 to 50 kyr BP. The glacial period is established to be characterized by low surface water productivity, the wide distribution of sea ice and/or icebergs in this area, and a high oxygen concentration in the bottom layer. Enhanced productivity is inferred from the maximum abundance of planktonic foraminifers at the very beginning of the deglaciation. The late Bølling-Allerød interstadial and the early Holocene were marked by the further two-phase increase in the surface productivity and the weakened ventilation of the bottom water.  相似文献   

12.
Vertical distribution of phytoplankton in early warming season in the eastern Bering Sea and adjacent sea areas was investigated. In the surface layer which was under the influence of newly melted sea ice in the shelf water region of the Bering Sea in May, remarkably dense populations ofThalassiosira hyalina andT. nordenskiöldii and relatively large populations ofFragilaria andNavicula occupied large part of phytoplankton community. In June, although theThalassiosira populations sunk into the bottom layer and withered, a certain part of theFragilaria-Navicula populations was still suspended in subsurface layer. Thus,Fragilaria-Navicula were the leading components of the June community in the shelf region.In the Bering Basin region, no dense phytoplankton populations were developed until a shallow thermocline was established. In June when the shallow thermocline developed near shelf edge,Thalassiosira decipiens burst out. As the shallow thermocline extended from near shelf to central part of the Basin region with surface warming, the areas of blooming also shifted from near shelf to the central part.Contribution No. 73 from the Research Institute of North Pacific Fisheries, Hokkaido University.  相似文献   

13.
On geostrophic reference levels in the Bering Sea basin   总被引:1,自引:0,他引:1  
Various data sets in the deep Bering Sea are examined in an effort to find suitable reference levels for geostrophic transport computations. Because of the lack of other data, classical methods are used: mainly vertical structure of differences in geopotential (method of Defant) and mass conservation. In the western Bering Sea, maximum transports are usually, but not always, obtained by using reference levels near the bottom. In the central region, there is considerable variability, both spatial and temporal, in the depth of the most suitable reference level, which varies from 500 to at least 1500 db. The variations seem to be related to depth of inflow in the passes, to near-surface salinity gradients, and to features such as upward movement of water or well-developed eddies.  相似文献   

14.
1999年白令海夏季水文特征分析   总被引:4,自引:3,他引:4  
利用1999年7~9月中国首次北极科学考察队北极科学考察,在白令海获得的42个站次的CTD资料,分析了白令海中北部的温度、盐度垂直分布特征,讨论了白令海的夏季表层水和冬季残留水的分布和结构,以及陆架坡折处温盐锋及白令海的水因特征.与多年平均资料相比,1999年7月夏季白令海冷中间层的温度,比多年平均温度低1℃以上,盐度低0.2左右.  相似文献   

15.
The vertical distribution of density, salinity, temperature, dissolved oxygen, apparent oxygen utilization, nutrients, preformed phosphate, pH, alkalinity, alkalinity: chlorinity ratio, in situ partial pressure of carbon dioxide, and percent saturation of calcite and aragonite, for the Southeastern Bering Sea, is studied and explained in terms of biological and physical processes. Some hydrological interactions between the Bering Sea and the North Pacific Ocean are explained. The horizontal distribution of dissolved oxygen at 2000 and 2500 m depths, throughout the Bering Sea, indicates that deep water is flowing from the Pacific, through the Kamchatka Strait, and then northward and eastward in the Bering Sea. Based on the dissolved oxygen distribution we estimate roughly that it takes 20 years for the deep waters to move from the Kamchatka Strait to the Southeastern part of the eastern basin. The surface concentration of nutrients is higher in the Bering Sea than in the North Pacific Ocean, probably because of upwelling and intense vertical mixing in the Bering Sea. A multivariable regression analysis of dissolved oxygen as a function of phosphate concentration and potential temperature was applied for the region where the potential temperature-salinity diagram is straight, and the confidence interval of the PO4 coefficient, at the 95% probability level, was found consistent with theRedfield biochemical oxidation model. The calcium carbonate saturation calculations show that the Bering Sea is supersaturated with aragonite in the upper 100 m, and with calcite in the upper 200 m. Below these depths seawater is undersaturated with respect to these two minerals.  相似文献   

16.
A. Zabanbark 《Oceanology》2009,49(5):729-739
The Bering Sea sedimentary basin comprises the Bering Sea and the adjacent intermontane depressions on the continents. It includes the following subordinate sedimentary basins: the Norton; Bethel; Saint Lawrence; Anadyr; Navarin; Khatyrka; Saint George; Bristol; Cook Inlet; and Aleutian consisting of the autonomous Aleutian, Bowers, and Komandor basins. All of them exhibit significant geological similarity. The Middle and Upper Miocene terrigenous sequences, which are petroliferous through the entire periphery of the Pacific Ocean, are characterized by their high petroleum resource potential in the Bering Sea continental margin as well, which is confirmed by the oil and gas pools discovered in neighboring onshore lowlands. The younger (Pliocene) and older (up to Upper Cretaceous) sedimentary formations are also promising with respect to hydrocarbons. The integral potential oil and gas resources of the Bering Sea sedimentary basin, including the continental slopes, are estimated by the US Geological Survey to be 1120 × 106 t and 965 × 109 m3, respectively.  相似文献   

17.
A factor analysis of 180 bottom sediment samples from the east-central Bering Sea continental shelf identifies five factors that account for 95% of the variation in the 17 whole ø size classes that were used as variables. Factor I represents coarse sediments that have been bypassed in areas of active water circulation. Factors II and III represent fine and very fine sands that have been hydraulically sorted, reworked, and mixed. Factor IV represents coarse to medium silt that has been segregated from areas of relatively high energy. Factor V represents both the production of sediments finer than medium silt and deposition within the lowest-energy environment in this area.Modern and palimpsest sediments are areally prevalent over this section of the shelf. Relict sediments occur in only a few small areas. The dispersal of sediments is affected by surface and tidal currents as well as wave action. Ice rafting is not an important geological agent. Data from the eastcentral Bering Sea shelf indicate that sediments on subarctic continental shelves are not necessarily characterized by an abundance of rocky sediments or gravel.  相似文献   

18.
Izvestiya, Atmospheric and Oceanic Physics - The dynamics of mesoscale eddies in the Bering Sea is studied by the method for automated eddy identification on the basis of altimetry-derived...  相似文献   

19.
A one-dimensional numerical model with a level-2.5 turbulent closure scheme to provide vertical mixing coefficients has been used to investigate the process by which the dichothermal water is formed in the Bering Sea, the density of which is about 26.6 sigma-theta. The water column to be simulated is assumed to move along a predetermined path. That is, the present model is of the Lagrangian-type. Surface boundary conditions are given using the climatologies of heat, freshwater and momentum fluxes. In order to obtain a plausible moving speed of the water column along the path, pre-liminary experiments were done using the surface fluxes in the central part of the Bering Sea for the initial temperature and salinity profiles at the entrance of the Sea. As a result, it was found that the temperature minimum layer, i.e., the dichothermal water with temperature similar to the climatology at the exit of the Bering Sea, was formed after about two years of integration. Based on the result, the movement speed of the water column along the path was set as 4.5 cm/s in the standard run. It was found that this model could plausibly reproduce the subsurface temperature minimum layer. That is, the dichothermal water was formed in the winter mixed layer process in the Bering Sea. The existence of the subsurface halocline (pycnocline) prohibited the deeper penetration of the winter mixed layer, and therefore water with a temperature colder than that under the mixed layer was formed in the mixed layer due to wintertime surface cooling. In the warming season this water remains as the subsurface temperature minimum layer between the upper seasonal thermocline and the lower halocline. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
白令海BR断面海-气CO2通量及其参数特征   总被引:1,自引:0,他引:1  
通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明,将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号