首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Average source parameters for three large North Aegean events are obtained from body wave inversion for the moment tensor. The parameters for the events are as follows: The events exhibit dextral strike-slip faulting with theT axis striking NS and nearly horizontal, implying extension in this direction. The focal mechanisms obtained are in agreement with the seismotectonic regime of the North Aegean. It is known that the region is tectonically controlled by the existence of the strike-slip Anatolian fault and its westward continuation in the Aegean, as well as the NS extension the whole Aegean area undergoes.The components of the moment tensor show that the region is dominated by compression in the EW direction which is encompassed by extension in the NS direction. All the events were found to be shallow (10 km) with a source time function of approximately 8 s duration and small stress drop values.The teleseismic long period verticalP-waves exhibited distortions, that could be attributed to lateral inhomogeneities in the source structure or more probably to a nonflat water-crust interface.  相似文献   

2.
The North Anatolian Fault (NAF), which extends from Karl?ova in Eastern Turkey to the Gulf of Saros in the Northern Aegean Sea, is one of the longest active strike-slip faults in the world with a length of about 1500 km. Within the North Anatolian Shear Zone (NASZ) there are long splays off the main trunk of the NAF veering towards the interior parts of Anatolia. Although the whole shear zone is still seismically active, the major seismicity is concentrated along the main branch of the NAF. Splays of the NAF dissect the shear zone into different continental blocks. The largest splay of the NAF was selected to analyze the distribution of movements between the faults delimiting these blocks. Four years of GPS measurements and modeling results indicate that the differential motion between the Anatolian collage and the Eurasian plate along the central part of the NAF is partitioned between fault splays and varies between 18.7 ± 1.6 and 21.5 ± 2.1 mm/yr with the main branch taking ∼90% of the motion.  相似文献   

3.
4.
We excavated five trenches across the North Anatolia fault zone (NAFZ)along the Ganos fault (Gazikoy-Saros segment), which last produced surfacerupture in 1912, near Kavakkoy where the fault enters the Gulf of Saros. The trenches exposed faulted sediments in a flood-plain environment withabundant detrital charcoal and scattered land-snail shells. Twenty-tworadiocarbon dates place constraints on the ages of the exposed sediments,which range from less than a few hundred years to about 6000 years inage. In two closely spaced trenches, we identified five discrete earthquakeevent horizons in the upper 2.5 m of stratigraphy based on abruptupward termination of shear zones, folding, fissuring, and abruptstratigraphic thickening, four of which may corresponded to historicallyrecorded large regional earthquakes. The earliest of the identified eventsoccurs below an unconformity and dates to about 4 ka B.P. The morerecent four events all occurred within the past 1000–1200 years and maycorrespond to large earthquakes in A.D. 824, ca 1354, 1509, 1766 and1912 (Ambraseys and Finkel, 1987, 1991, 1995). In another trench,we identified at least two events that have occurred during the past 500years and probably correspond to the large events of 1766 and 1912. These observations support an average return period of about 250–300years for the Gazikoy-Saros segment of the NAFZ. They also suggest thatthis segment, which is bound both to the east and west by large releasingstepovers, behaves in a quasi-periodic fashion, at least for the past severalsurface ruptures.Most of the 23 mm/yr of dextral shear between Anatolia and Europeobserved by GPS occurs on the North Anatolian fault. We use18 mm/yr and the 250–300 year recurrence rate, as determined fromour trenching and the historical record, to suggest that each of theearthquakes observed in our trenches produced several meters of slip,consistent with their inferred sizes from the extent of historical damage. Considering that Istanbul has not suffered a large nearby event in theMarmara Sea since 1766, we suggest that about 4 m of strain hasaccumulated across faults in the Marmara during these past centuries. Thisis similar to the average slip in many of the large earthquakes on the NorthAnatolian fault this century. If released seismically, this could result in anearthquake in the M 7.2–M 7.6 range, similar to the August and November,1999 earthquakes east of the Marmara Sea.  相似文献   

5.
Theoretical considerations of lithosphere deformation across transform plate boundaries predict an expression in terms of 3istributed deformation. The magnitude of rotation is expected to diminish away from the fault zone in a way which depends on the length of the fault, the amount of displacement, and the ductility of the lithosphere. Palaeomagnetic studies across the North Anatolian transform fault zone, which separates the Eurasian Plate and Anatolian Block in northern Turkey, show that clockwise rotations predicted from the sense of dextral motion are indeed present and have attained finite rotations of up to 270° during the 5 Ma history of Neotectonic deformation. Such rotations are, however, confined to narrow ( 10 km wide) zones between system-bounding faults and appear to have resulted from rotation in ball-bearing fashion of equidimensional blocks a few kilometres in size. Outside of this zone only anticlockwise rotations are observed; these are unrelated to deformation across the fault zone and record regional anticlockwise rotation of Turkey which is complementing clockwise rotation of Greece and accompanying Neogene opening of the Aegean Sea. The observed behaviour of continental lithosphere satisfies no plausible value of power law behaviour. We therefore conclude that relative motion across this transform boundary occurs as a discrete zone of intense deformation within a brittle layer comprising the seismogenic upper crust. This is presumed to be detached from a continuum deformation response to shearing in the lower crust and mantle beneath.  相似文献   

6.
The North Anatolian fault is a well-defined tectonic feature extending for 1400 km across Northern Turkey. The space-time distribution of seismicity and faulting of this zone has been examined with a particular emphasis on the identification of possible seismic gaps. Results suggest several conclusions with respect to the temporal and spatial distribution of seismicity. First, the earthquake activity appears not to be stationary over time. Periods of high activity in 1850–1900 and 1940 to the present bracket a period of relatively low activity in 1910–39. Second, there appears to have been a two-directional migration of earthquake epicenters away from a central region located at about 39°E longitude. The migration to the west has a higher velocity (>50 km/yr) than the migration to the east (10km/yr). The faulting associated with successive earthquakes generally abuts the previous rupture. Some existing gaps were filled by later earthquakes.At present there are two possible seismic gaps along the North Anatolian fault zone. One is at the western end of the fault, from about 29° to 30°E. Unless this is a region of ongoing aseismic creep, it could be the site of a magnitude 6 or greater earthquake. The other possible gap is at the eastern end, from about 42° to 43°E, to the west of the unexpected M=7.3 event of 24 November 1976.  相似文献   

7.
8.
An analysis is presented of the accumulation of stress along the North Anatolian fault. The analysis is based on the time-dependent reloading of the plate boundary by using a modified Elsasser model of a coupled lithosphere-asthenosphere system.It is found that many of the North Anatolian fault earthquakes are likely to have been triggered by adjacent ruptures, while the time intervals between large earthquakes may have been partly modulated by the relaxation of the viscoelastic asthenosphere.  相似文献   

9.
Space-based tectonic studies on the western part of the North Anatolian Fault Zone (NAFZ) have been conducted over two decades. After the August 17, 1999, Izmit earthquake (Mw = 7.4), this region attracted greater scientific interest, and the collected data became more valuable. The Geodesy Department of the Kandilli Observatory and Earthquake Research Institute (KOERI) at Bogazici University established three micro-geodetic networks to the east of Akyazi, east of Iznik, and west of Lake Sapanca in the eastern part of the Marmara region; GPS data have been continually collected at these locations since 1994. The NAFZ branches out in the western part of the Marmara region and extends up to the Aegean Sea. Segments of the fault passing through the Marmara Sea are considered active, and this has increased concern regarding imminent earthquakes. Conventional geodetic measurements made between 1990 and 1994 are not sufficient for monitoring small movements. However, GPS has played a very important role in detecting such deformations in the area after 1994. The Iznik network, with 10 points, is bilaterally located on the Iznik-Mekece fault. Six years of GPS data for 2004–2010 collected for the monitoring of crustal deformation showed that the Iznik-Mekece fault segment moves westward at about 22 ± 1 mm/yr with respect to the Eurasia fixed reference frame. The GPS observations show that there is no strain accumulation in the area.  相似文献   

10.
华北地区断层现今活动速率与特征   总被引:15,自引:1,他引:14       下载免费PDF全文
车兆宏  范燕 《地震地质》1999,21(1):69-76
系统分析了华北地区跨断层形变资料,计算了断层活动平均速率,研究了断层活动年变率的动态演化。结果表明,华北地区现今断层活动水平较低,平均速率为0.17mm/a;山西—延怀地区断层活动水平高于华北地区平均水平;山西带及郯庐带北端活动速率呈上升趋势,这与现今及近期的地震活动有密切关系;强烈地震发生前,存在大范围断层活动平均速率的增加;大范围断层活动方式的转折,可能是地震活动分期的重要标志之一  相似文献   

11.
INTRODUCTION ThesustainedcollisionoftheIndiaplateintotheEurasiaplatesince50MaBPgaverisetotheintenseCenozoictectonicdeformationandupliftingofmountainsintheQinghai Xizang(Tibet)Plateauanditsvicinityandhadafar reachingimpactonthegeomorphicpatternsandenvironm…  相似文献   

12.
本文用地质方法确定了全新世以来红河断裂(北段)位错速率:狭谷段(定西岭)水平位错速率8毫米/年,垂直位错速率1.8毫米/年;宽谷段(大理)水平位错速率5毫米/年,垂直位错速率9毫米/年。据断裂位错参数计算,本区6.8级左右地震重复发生的时间间隔是178±29年;它与6—7级历史地震重复时间间隔150±50年在时间尺度上相当,这对地震中长期预报有参考价值  相似文献   

13.
We argue that seismotectonic activity in the Central Mediterranean area and the Aegean–Balkan zone is driven by the NNE-ward motion of Africa and westward motion of Anatolia with respect to Eurasia. These boundary conditions can plausibly and coherently account for E–W shortening and roughly S–N extension in the Aegean domain, thrusting and uplift at the boundary between the Aegean–Balkan system and the Adriatic/Ionian domain (Hellenic trench, Cephalonia fault, Epirus, Albanides and Southern Dinarides), the kinematics of the Adria plate (a large block encompassing the Adriatic continental domain, the northern Ionian zone and Hyblean-Adventure block) and consequently, the complex pattern of deformation recognized at its boundaries. Furthermore, the fact that in our scheme Adria moves almost in connection with Africa is consistent with the lack of an active decoupling zone between Adria and Africa, an evidence that can hardly be reconciled with the kinematics so far proposed for these two plates. The reasons why we adopt an Africa–Eurasia relative motion different from that implied by the popular NUVEL-1 global solution are discussed in detail. Finally, we make some considerations about the possible implications of the presently available geodetic data on the long-term plate kinematics.  相似文献   

14.
喀什河断裂带古地震研究   总被引:3,自引:2,他引:3       下载免费PDF全文
喀什河断裂带是我国北天山西段一条规模较大的活动断裂,第四纪以来垂直运动速率为3.8毫米/年,现今地震活动频繁。历史上曾发生过1812年尼勒克8级地震,沿断层带造成长达80公里的形变带,史前地震也很活跃,经初步研究,断裂带至少发生过两次古地震活动,大震复发周期为2000—2500年  相似文献   

15.
The chemical compositions of a total of 120 thermal water samples from four different tectonically distinct regions (Central, North, East and West Anatolia) of Turkey are presented and assessed in terms of geothermal energy potential of each region through the use of chemical geothermometers. Na–Ca–HCO3 type waters are the dominant water types in all the regions except that Na–Cl type waters are typical for the coastal areas of West Anatolia and for a few inland areas of West and Central Anatolia where deep water circulation exists. The discharge temperature of the springs ranges up to 100°C, and the bottom-hole temperatures in drilled wells up to 232°C. Geothermometry applications yield reservoir temperatures of about 125°C for Central Anatolia, 110°C for North Anatolia, 136°C for East Anatolia and 251°C for West Anatolia, the latter agreeing with some of the bottom hole temperatures measured in drilled wells. The results reveal that the highest geothermal energy potential in Turkey is associated with the West Anatolian extensional tectonics which provides a regional, deep-seated heat source and a widespread graben system allowing deep circulation of waters. The North Anatolian region, bounded to the south by the dextral North Anatolian Fault along which most of the geothermal sites are located, has the lowest energy potential, probably due to the restriction of the heat source to local magmatic activities confined to pull-apart basins. The East Anatolian region (undergoing contemporary compression) and the Central Anatolian region (where the compressional regime in the east is converted to the extensional regime in the west) have moderate energy potential. Although the recently active volcanoes suggest the presence, at depth, of still cooling magma chambers that are potential heat sources, the lack of well-developed fault systems is probably responsible for the comparatively low energy potential of these regions. Almost all the thermal waters of Turkey are saturated with respect to calcite and, hence, have a significant calcite scaling potential which is particularly high for West Anatolian waters.  相似文献   

16.
南北地震带北段及其两侧断层现今活动性   总被引:6,自引:2,他引:6  
范燕  车兆宏 《地震》2001,21(2):87-93
分析了南北地震带北段及其两侧跨断层流动形变资料,研究了各断裂带的活动水平、动态过程及其与强震的关系。结果表明,南北地震带北段及其两侧现今断层平均垂直活动速率为0.19mm/a,断层活动处于第四纪以来较低水平;区域断层活动增强是强震发生的重要标志之一;强震前断层异常活动存在由外围向震中迁移的特征;南西华山-六盘山断裂带为近年可能发生强烈地震的地区。  相似文献   

17.
华北地区断层形变异常与地震活动   总被引:2,自引:0,他引:2  
根据断层形变求解的华北地区异常参数和应变累积率, 研究了华北主要断裂带的断层形变异常及其应震特征。 同一断裂带上的形变异常与该带上的地震有较好的对应性。 河套—张家口—蓬莱活动构造带上发生的强震, 北京地区的断层形变异常参数在总体上几乎都有明显的前兆性异常。 山西带北部的断层形变异常参数对山西断陷带及其延伸部位上的强震同样有较好的反映。 断层应变累积率反映了应力的积累程度, 其值相对较大时, 测点所在地区的地震较活跃, 反之亦然。  相似文献   

18.
The focal mechanism solutions of 83 European earthquakes withM>6, selected from a total of 140, have been used to derive the directions of the principal axes of stress along the plate boundary between Eurasia and Africa from the Azores islands to the Caucasus mountains. Along most of the region, the horizontalP-axes are at an angle of 45° to 90° with the trend of the plate boundary. HorizontalT-axes are concentrated in central Italy and northern Greece in association with normal faulting. Large strike-slip motion of right-lateral character takes place at the center of the Azores-Gibraltar fault and the North Anatolian fault. From Gibraltar to the Caucasus the boundary is complicated by the presence of secondary blocks and zones of extended deformations with earthquakes spread over wide areas. Intermediate and deep earthquakes are present at four areas with arc-like structure, namely, Gibraltar, Sicily-Calabria, Hellenic arc and Carpathians.  相似文献   

19.
Recent and historical seismicity as well as reliable fault plane solutions are used to study the active deformation caused by the occurrence of intermediate depth (60–170 km) earthquakes of the Vrancea region, Rumania. In this area, located in the southeastern part of the Carpathian arc, the westward subduction of the Carpathian trench has terminated, leaving continental lithosphere, at present, at the arc. The principalT axis of the intermediate depth events trends N159°E and has a plunge of 74°, which is the same as the dip of the subducted plate. TheP axis has a trend of 314° and a shallow plunge of 15°. The analysis of the moment tensor of six focal mechanisms showed that the dominant mode of deformation of the subducted lithosphere is a down-dip extension at a rate of about 2 cm/yr, based on seismicity data.  相似文献   

20.
Long-term repeated measurements of microdisplacements in tectonic fault structures of various parts of Central Europe and the Balkan Mountains showed that displacement trends changed significantly at several points in the period from 1997 through 2000; afterward, long-term trends were restored. This phenomenon took place in the periods of strong (M > 7) earthquakes in Iran (1997) and in the North Anatolian fault zone in Turkey (1999). Two strong Izmit earthquakes of 1999 in Turkey at distances of 600 km from the Balkan Peninsula and 1400 km from observation points in Central Europe were the main seismic events of the period studied. Apparently, the crustal deformation due to the sources of the aforementioned earthquakes reaches the central part of the European craton. Anomalous displacements in some areas occurred due to deformation propagating for great distances in the heterogeneous block medium of the West European part of the Eurasian plate. Changes in stresses can be caused by impulsive deformations of various intensities acting on some structural units (fault segments) at various distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号