首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Now that astronomers are, I understand, on the verge of detecting extrasolar planets, the question of whether such planets might be inhabited is beginning to be discussed in serious scientific circles. Specifically, astronomers such as Rosenqvist and Chassefiére (see the preceding article) are interested in whether spectroscopic measurements of free O2 in a planet's atmosphere might be used as evidence for life. As such, they have attempted to place constraints on the amount of O2 that might be found in the atmosphere of a lifeless planet or, more specifically, on a planet where oxygenic photosynthesis has not yet been invented. This question can be addressed by photochemical modeling, if one is careful about how one goes about it. The calculations presented here suggest an upper limit of approximately 10 mbar on the O2 partial pressure in a dominantly CO2 atmosphere.  相似文献   

2.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

3.
The chemical species containing carbon, nitrogen, and oxygen in atmospheres of giant planets, brown dwarfs (T and L dwarfs), and low-mass stars (M dwarfs) are identified as part of a comprehensive set of thermochemical equilibrium and kinetic calculations for all elements. The calculations cover a wide temperature and pressure range in the upper portions of giant planetary and T-, L-, and M-dwarf atmospheres. Emphasis is placed on the major gases CH4, CO, NH3, N2, and H2O but other less abundant gases are included. The results presented are independent of particular model atmospheres, and can be used to constrain model atmosphere temperatures and pressures from observations of different gases. The influence of metallicity on the speciation of these key elements under pressure-temperature (P-T) conditions relevant to low-mass object atmospheres is discussed. The results of the thermochemical equilibrium computations indicate that several compounds may be useful to establish temperature or pressure scales for giant planet, brown dwarf, or dwarf star atmospheres. We find that ethane and methanol abundance are useful temperature probes in giant planets and methane dwarfs such as Gl 229B, and that CO2 can serve as a temperature probe in more massive objects. Imidogen (NH) abundances are a unique pressure-independent temperature probe for all objects. Total pressure probes for warmer brown dwarfs and M dwarfs are HCN, HCNO, and CH2O. No temperature-independent probes for the total pressure in giant planets or T-dwarf atmospheres are identified among the more abundant C, N, and O bearing gases investigated here.  相似文献   

4.
Although there are considerable technical challenges to be overcome during this decade, the prospects for the detection of Earth-like planets (ELPs) orbiting nearby stars are encouraging. If life has developed on some of the ELPs that may be discovered by sophisticated telescope systems, such as the Terrestrial Planet Finder, the detection of photosynthesis is an attractive possibility. Here we discuss the likely preconditions and subsequent events that have led to the occurrence of O2-producing photosynthesis on Earth and then extend this discussion to how this may have occurred on ELPs orbiting in the habitable zone of a variety of main-sequence stars from spectral type F0V to M0V. We point out how the need for liquid water and the need to avoid UV radiation have influenced the evolution of photosynthesis on Earth, how the absorption spectra of the dominant (chlorophyll) photosynthetic pigments may have been determined in natural selection, and how and when the evolution of the ability to use water as an electron donor took place. Models for the photosynthetic productivity of ELPs orbiting at the inner edge of the habitable zone are discussed both from aquatic and land-based photosynthesis, making some allowance for global cloud cover on the ELP. The photosynthetic generation of O2 is greatest on cloud-free planets with hot (e.g., F0V) parent stars, though the advantage over cooler stars depends on the fraction of the planet covered by oceans. The low O2 generation in ELPs orbiting cooler stars is due to the poor match between the parent star's spectral energy distribution and the assumption of terrestrial pigment properties. We discuss the possibility that a three- or four-photon mechanism might operate on such planets (as opposed to the two-photon system on Earth) and how it could influence the spectral properties of the ELP. We also emphasize the role of tectonic and other geological processes as well as biology in determining the O2 level on Earth and on ELPs.  相似文献   

5.
Based on the data on the wavelength dependence of geometrical albedo for the disks of Jupiter and Saturn, we determined the trends in the height variation of the aerosol optical depth in the upper atmospheric layers of these planets, the fractional methane concentration in the Jovian atmosphere (0.00125), and the monochromatic methane absorption coefficients (or the superposition of these coefficients for methane and ammonia) typical of the thermal conditions in the atmospheres of Jupiter and Saturn in the wavelength range from 527 to 956 nm.  相似文献   

6.
This paper deals with two common problems and then considers major aspects of chemistry in the atmospheres of Mars and Venus. (1) The atmospheres of the terrestrial planets have similar origins but different evolutionary pathways because of the different masses and distances to the Sun. Venus lost its water by hydrodynamic escape, Earth lost CO2 that formed carbonates and is strongly affected by life, Mars lost water in the reaction with iron and then most of the atmosphere by the intense meteorite impacts. (2) In spite of the higher solar radiation on Venus, its thermospheric temperatures are similar to those on Mars because of the greater gravity acceleration and the higher production of O by photolysis of CO2. O stimulates cooling by the emission at 15 μm in the collisions with CO2. (3) There is a great progress in the observations of photochemical tracers and minor constituents on Mars in the current decade. This progress is supported by progress in photochemical modeling, especially by photochemical GCMs. Main results in these areas are briefly discussed. The problem of methane presents the controversial aspects of its variations and origin. The reported variations of methane cannot be explained by the existing data on gas-phase and heterogeneous chemistry. The lack of current volcanism, SO2, and warm spots on Mars favor the biological origin of methane. (4) Venus’ chemistry is rich and covers a wide range of temperatures and pressures and many species. Photochemical models for the middle atmosphere (58-112 km), for the nighttime atmosphere and night airglow at 80-130 km, and the kinetic model for the lower atmosphere are briefly discussed.  相似文献   

7.
The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term “Earth-like” is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?  相似文献   

8.
Keiko Atobe  Shigeru Ida 《Icarus》2004,168(2):223-236
We have investigated obliquity variations of possible terrestrial planets in habitable zones (HZs) perturbed by a giant planet(s) in extrasolar planetary systems. All the extrasolar planets so far discovered are inferred to be jovian-type gas giants. However, terrestrial planets could also exist in extrasolar planetary systems. In order for life, in particular for land-based life, to evolve and survive on a possible terrestrial planet in an HZ, small obliquity variations of the planet may be required in addition to its orbital stability, because large obliquity variations would cause significant climate change. It is known that large obliquity variations are caused by spin-orbit resonances where the precession frequency of the planet's spin nearly coincides with one of the precession frequencies of the ascending node of the planet's orbit. Using analytical expressions, we evaluated the obliquity variations of terrestrial planets with prograde spins in HZs. We found that the obliquity of terrestrial planets suffers large variations when the giant planet's orbit is separated by several Hill radii from an edge of the HZ, in which the orbits of the terrestrial planets in the HZ are marginally stable. Applying these results to the known extrasolar planetary systems, we found that about half of these systems can have terrestrial planets with small obliquity variations (smaller than 10°) over their entire HZs. However, the systems with both small obliquity variations and stable orbits in their HZs are only 1/5 of known systems. Most such systems are comprised of short-period giant planets. If additional planets are found in the known planetary systems, they generally tend to enhance the obliquity variations. On the other hand, if a large/close satellite exists, it significantly enhances the precession rate of the spin axis of a terrestrial planet and is likely to reduce the obliquity variations of the planet. Moreover, if a terrestrial planet is in a retrograde spin state, the spin-orbit resonance does not occur. Retrograde spin, or a large/close satellite might be essential for land-based life to survive on a terrestrial planet in an HZ.  相似文献   

9.
The quest for other habitable worlds and the search for life among them are major goals of modern astronomy. One way to make progress towards these goals is to obtain high-quality spectra of a large number of exoplanets over a broad range of wavelengths. While concepts currently investigated in the United States are focused on visible/NIR wavelengths, where the planets are probed in reflected light, a compelling alternative to characterize planetary atmospheres is the mid-infrared waveband (5–20 μm). Indeed, mid-infrared observations provide key information on the presence of an atmosphere, the surface conditions (e.g., temperature, pressure, habitability), and the atmospheric composition in important species such as H2O, CO2, O3, CH4, and N2O. This information is essential to investigate the potential habitability of exoplanets and to make progress towards the search for life in the Universe. Obtaining high-quality mid-infrared spectra of exoplanets from the ground is however extremely challenging due to the overwhelming brightness and turbulence of the Earth’s atmosphere. In this paper, we present a concept of space-based mid-infrared interferometer that can tackle this observing challenge and discuss the main technological developments required to launch such a sophisticated instrument.  相似文献   

10.
Laser-induced plasmas in various gas mixtures were used to simulate lightning in other planetary atmospheres. This method of simulation has the advantage of producing short-duration, high-temperature plasmas free from electrode contamination. The laser-induced plasma discharges in air are shown to accurately simulate terrestrial lightning and can be expected to simulate lightning spectra in other planetary atmospheres. Spectra from 240 to 880 nm are presented for simulated lightning in the atmospheres of Venus, Earth, Jupiter, and Titan. The spectra of lightning on the other giant planets are expected to be similar to that of Jupiter because the atmospheres of these planets are composed mainly of hydrogen and helium. The spectra of Venus and Titan show substantial amounts of radiation due to the presence of carbon atoms and ions and show CN Violet radiation. Although small amounts of CH4 and NH3 are present in the Jovian atmosphere, only emission from hydrogen and helium is observed. Most differences in the spectra can be understood in terms of the elemental ratios of the gas mixtures. Consequently, observations of the spectra of lightning on other planets should provide in situ estimates of the atmospheric and aerosol composition in the cloud layers in which lightning is occuring. In particular, the detection of inert gases such as helium should be possible and the relative abundance of these gases compared to major constituents might be determined.  相似文献   

11.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

12.
J.E. Chambers 《Icarus》2007,189(2):386-400
The stability of an additional planet between the orbit of Mars and the asteroid belt is examined in the context of the Planet V hypothesis. In this model, the Solar System initially contained a fifth terrestrial planet, “Planet V,” which was removed after ∼700 Myr, a possible trigger for the late heavy bombardment on the inner planets. The model is investigated using 96 N-body integrations of the 8 major planets with an additional body between Mars and the asteroid belt. In more than 1/4 of simulations, Planet V survives for 1000 Myr. In most other cases, Planet V collides with the Sun or hits another planet after several hundred Myr, leaving 4 surviving terrestrial planets. In 24/96 simulations, Planet V is lost by ejection or collision with the Sun while the other four terrestrial planets survive without undergoing a collision. In 18 cases, Planet V is removed at least 200 Myr after the beginning of the simulation. The endstate depends sensitively on the mass of Planet V. Collision with the Sun is likely when Planet V's mass is 0.25 Mars masses or less. When Planet V is more massive than this, collisions involving it and/or other terrestrial planets become commonplace. In unstable systems, the times of first encounter and first collision/ejection depend on the initial aphelion distance of Mars. Reducing Mars's aphelion distance increases these times and also increases the fraction of systems surviving for 1000 Myr. When Mars's current orbit is used, the stability of Planet V increases when these two planets are widely separated initially. Planet V's aphelion distance Q typically begins to cross the asteroid belt within a few tens to a few hundred Myr, and its orbit last leaves the belt several hundred Myr later in most cases. The total time spent with Q>2.1 AU is typically less than 200 Myr.  相似文献   

13.
Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO2 and H2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO2, quickly removing it and preventing it from having a significant greenhouse effect.  相似文献   

14.
Methane spectral features in the visible to near-IR region are prominent in the spectra of the outer planets but laboratory data for the appropriate methane conditions are required to interpret the observational data. By use of the intracavity laser spectroscopy technique, a moderately high resolution (500,000) absorption spectrum of the 727 nm band of methane at 77 K is obtained. The methane absorption bands in the visible to near-IR region are very weak, but intracavity laser spectroscopy provides sufficient sensitivity to perform the measurements and to extract quantitative data for methane at low temperatures. Absorption coefficients are determined and are reported as averages at one Å intervals throughout the region 7127–7420 Å. By integrating over the band, an intensity of 753 cm–1 km–1 am–1 is obtained. The results compare well with previous low resolution measurements on methane at room temperature, with gas phase results calculated using the absorption spectrum of liquid methane, and with absorption coefficients derived from methane features observed in the spectra of the outer planets and Titan.  相似文献   

15.
It is generally supposed that the atmospheres of the terrestrial planets were formed by secondary degassing processes. We propose, instead, that they are of primary origin, forming as an immediate and necessary consequence of the final stages of planetary accretion. Once the planetary embryo reached a critical size, the impacting material began to vaporize. The atmosphere, so created, then decelerated other impacting material, thus limiting the rate of atmospheric growth. We show that, given reasonable assumptions concerning the chemical composition of the impacting material, an acceptable model for the early atmosphere of the Earth, and the present atmospheres of Venus and Mars results.A discussion of the noble gas data for the terrestrial atmosphere indicates that these can be readily reconciled with an impact origin.  相似文献   

16.
The emergence of life based on amino acids and RNA/DNA on an Earth-type planet requires quite narrow ranges for many of the planet's physical parameters, most notably its mass and temperature conditions. In addition, only stars of F to K spectral types can have planets suitable for life, and only very favorable combinations of certain parameters can provide the necessary conditions for evolution into multicellular animals. A planet must have a mass about 5 · 1027 g; some zones with favorable thermal conditions (273-340 K); an atmosphere that is capable of absorbing hard external radiation but is transparent to photons with energies of 1-3 eV; a sufficient density of stellar radiation; the presence of other sources of energy, e.g., of oxidation species in the atmosphere; moderate gravitation; open water with big islands or continents; a moderate rotation period, orbital eccentricity, and inclination of the equatorial plane to the orbital plane; intensive meteoritic impacts or other cosmic catastrophes, which stimulate evolution of the most perfect beings; one or more massive satellites; and intensive volcanism and/or plate tectonics.  相似文献   

17.
Terrestrial planets, with silicate mantles and metallic cores, are likely to obtain water and carbon compounds during accretion. Here I examine the conditions that allow early formation of a surface water ocean (simultaneous with cooling to clement surface conditions), and the timeline of degassing the planetary interior into the atmosphere. The greatest fraction of a planet’s initial volatile budget is degassed into the atmosphere during the end of magma ocean solidification, leaving only a small fraction of the original volatiles to be released into the atmosphere through later volcanism. Rocky planets that accrete with water in their bulk mantle have two mechanisms for producing an early water ocean: First, if they accrete with at least 1 to 3 mass% of water in their bulk composition, liquid water may be extruded onto the planetary surface at the end of magma ocean solidification. Second, at initial water contents as low as 0.01 mass% or lower, during solidification a massive supercritical fluid and steam atmosphere is produced that collapses into a water ocean upon cooling. The low water contents required for this process indicate that rocky super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact, through collapse of their atmosphere.  相似文献   

18.
Hitherto Jupiter's spectrum at short millimeter wavelenghts showed a clear discrepancy with model calculations (e.g., G.L. Berge and S. Gulkis, 1976, In Jupiter (T. Gehrels, Ed.), pp. 621–692. Univ. of Arizona Press, Tucson). A similar although less pronounced, discrepancy appears to exist for Uranus and Neptune. One explanation of this discrepancy is that additional absorbers not included in the model calculations are present in the atmosphere. It was suggested that uncertainties in the absorption coefficient of ammonia, especially at millimeter wavelengths, may be responsible for at least part of the discrepancy. A comparison of various model atmosphere calculations with data for all four giant planets is shown. The absorption profile of ammonia at centimeter wavelengths was assumed to be rightly represented by a Ben Reuven line profile, which enabled the derivation of information on the vertical distribution of ammonia in these planets' atmospheres. It appeared that ammonia must be depleted in the upper atmospheres of all four planets by a factor of 4–5 with respect to the solar abundance for Jupiter (and Saturn) and by a factor of 100–200 for Uranus and Neptune. At deeper layers the optical depth is larger, due either to a larger abundance of ammonia or to absorption by the presence of water. Given the vertical ammonia distribution in the atmospheres as derived from the centimeter data, a best fit to the millimeter spectra of all four planets was found by changing the high frequency tail of the ammonium lineshape profile. This, we feel, is legitimate since the profile at millimeter wavelenghts is not or is only poorly known due to the absence of laboratory spectra for ammonia as a trace constituent in an otherwise hydrogen gas. It was found that a line profile which at millimeter wavelenghts more closely resembles a Van Vleck-Weisskopf lineshape than the usually adopted Ben Reuven profile gives a rather satisfactory fit to the data of all four gaseous planets.  相似文献   

19.
R.J. de Kok  D.M. Stam 《Icarus》2012,221(2):517-524
The transmission of light through a planetary atmosphere can be studied as a function of altitude and wavelength using stellar or solar occultations, giving often unique constraints on the atmospheric composition. For exoplanets, a transit yields a limb-integrated, wavelength-dependent transmission spectrum of an atmosphere. When scattering haze and/or cloud particles are present in the planetary atmosphere, the amount of transmitted flux not only depends on the total optical thickness of the slant light path that is probed, but also on the amount of forward-scattering by the scattering particles. Here, we present results of calculations with a three-dimensional Monte Carlo code that simulates the transmitted flux during occultations or transits. For isotropically scattering particles, like gas molecules, the transmitted flux appears to be well-described by the total atmospheric optical thickness. Strongly forward-scattering particles, however, such as commonly found in atmospheres of Solar System planets, can increase the transmitted flux significantly. For exoplanets, such added flux can decrease the apparent radius of the planet by several scale heights, which is comparable to predicted and measured features in exoplanet transit spectra. We performed detailed calculations for Titan’s atmosphere between 2.0 and 2.8 μm and show that haze and gas abundances will be underestimated by about 8% if forward-scattering is ignored in the retrievals. At shorter wavelengths, errors in the gas and haze abundances and in the spectral slope of the haze particles can be several tens of percent, also for other Solar System planetary atmospheres. We also find that the contribution of forward-scattering can be fairly well described by modelling the atmosphere as a plane-parallel slab. This potentially reduces the need for a full three-dimensional Monte Carlo code for calculating transmission spectra of atmospheres that contain forward-scattering particles.  相似文献   

20.
The detection and investigation of EUV heated, extended and non-hydrostatic upper atmospheres around terrestrial exoplanets would provide important insights into the interaction of the host stars plasma environment as well as the evolution of Earth-type planets their atmospheres and possible magnetic environments. We discuss different scenarios where one can expect that Earth-like planets should experience non-hydrostatic upper atmosphere conditions so that dynamically outward flowing neutral atoms can interact with the stellar plasma flow so that huge hydrogen coronae and energetic neutral atoms (ENA) can be produced via charge exchange. By observing the size of the extended upper atmospheres and related ENA-clouds and by determining the velocities of the surrounding hydrogen atoms, conclusions can be drawn in respect to the origin of these features. Due to the large number of M-type stars in our neighbourhood and their long periods of strong and moderate stellar activity in comparison to G-stars, we expect that M-type stars represent the most promising candidates for the detection of hydrogen ENA-clouds and the subsequent study of the interaction between the host star and the planets?? upper atmosphere. We show that the low mass of M-type stars also makes them preferable targets to observe extended hydrogen clouds around terrestrial exoplanets with a mass as low as one Earth mass. Transit follow-up observations in the UV-range of terrestrial exoplanets around M-type stars with space observatories such as the World Space Observatory-UV (WSO-UV) would provide a unique opportunity to shed more light on the early evolution of Earth-like planets, including those of our own Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号