共查询到20条相似文献,搜索用时 12 毫秒
1.
Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model 下载免费PDF全文
The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude–longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude–longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland–Iceland–Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude–longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity. 相似文献
2.
Patrick F. Cummins 《大气与海洋》2013,51(3):563-575
Abstract A central problem in climate and ocean modelling is the accurate simulation of the climatological state of the oceanic density field. A constant vertical diffusivity for heat and salt is frequently employed in ocean general circulation models (OGCMs) and it is usually assigned a value designed to optimize the depth of the pycnocline. One undesired consequence of this choice is a poor representation of the deep water, which is usually insufficiently stratified. In contrast to the uniform diffusivity of many models, some observational studies suggest that the vertical diffusivity is not constant but increases with depth, possibly in inverse proportion to the local buoyancy frequency. Numerical experiments with an OGCM are presented that demonstrate that allowing the vertical diffusivity to increase below the pycnocline substantially increases the stratification of the abyssal water mass of these models without significantly affecting the pycnocline depth, and hence may lead to a better representation of the vertical density structure. 相似文献
3.
A coupled model, consisting of an ocean wave model and an atmospheric general circulation model (AGCM), is integrated under permanent July conditions. The wave model is forced by the AGCM wind stress, whereas the wind waves modify the AGCM surface fluxes of momentum, sensible and latent heat. We investigate the following aspects of the coupled model: how realistic are the wave fields, how strong is the coupling, and how sensitive is the atmospheric circulation to the spatially and temporally varying wave field. The wave climatology of the coupled model compares favorably with observational data. The interaction between the two models is largest (although weak) in the storm track in the Southern Hemisphere. Young windsea, which is associated with enhanced surface fluxes is generated mostly in the equatorward frontal area of an individual cyclone. However, the enhancement of the surface fluxes is too small to significantly modify the climatological mean atmospheric circulation.This paper was presented at the Second International Conference on Modelling of Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil 相似文献
4.
B. G. Hunt 《Climate Dynamics》2011,37(1-2):19-34
Wind forcing of the oceans is analysed for a millennium-length period of a simulation with a global coupled model. The time mean value of the zonal wind energy input to the oceans was found to be 0.97?TW, similar to other estimates, with maximum inputs in the Southern Ocean and Equatorial Pacific Ocean. The meridional wind energy input was also evaluated. The time series of the zonal wind energy input consisted of white noise, with marked multiannual and multidecadal variability, and had a range of 1.6 between minimum and maximum values. Seasonal variations in the wind energy input were most marked in the Pacific Ocean. Composites of the various climatic terms involved in the wind energy input, for maximum and minimum values of the input time series, identified distinct differences in anomaly values, particularly over the Southern Ocean. The temporal variability of the Pacific equatorial wind energy input was clearly identified with ENSO events. The model reproduced the observed structure of the Atlantic meridional overturning circulation surprisingly well. The time series of this circulation exhibited interannual to centennial variability. Correlations, both instantaneous and lagged, failed to identify any meaningful relationship between the temporal variability of the circulation and the wind energy input to the Southern Ocean. The optimum correlation was found between time smoothed versions of the time series for this circulation and the heat input to the North Atlantic Ocean, implying, as noted elsewhere, that this heat input is the principal driver of the temporal variability of the circulation. 相似文献
5.
The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere
general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input
of 0.625 Sv and then reduced again to 0 (both instantaneously and linearly decreasing over 250 years). The resulting freshening
forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of
the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic
reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern
North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient,
the intertropical convergence zone over the Atlantic is displaced southward and the westerlies in the Northern Hemisphere
gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the
overturning circulation of the Atlantic leads to longer residence times of the surface water in high-northern latitudes, which
allows them to accumulate more precipitation and runoff from the continents. As a consequence the stratification in the North
Atlantic becomes more stable. This effect is further amplified by an enhanced northward atmospheric water vapour transport,
which increases the freshwater input into the North Atlantic. The reduced northward oceanic heat transport leads to colder
sea-surface temperatures and an intensification of the atmospheric cyclonic circulation over the Norwegian Sea. The associated
Ekman transports cause increased upwelling and increased freshwater export with the East Greenland Current. Both the cooling
and the wind-driven circulation changes largely compensate for the effects of the first two feedbacks. The wind-stress feedback
destabilizes modes without deep water formation in the North Atlantic, but has been neglected in almost all studies so far.
After the meltwater input stops, the North Atlantic deepwater formation resumed in all experiments and the meridional overturning
returned within 200 years to a conveyor belt pattern. This happened although the formation of North Atlantic deep water was
suppressed in one experiment for more than 300 years and the Atlantic overturning had settled into a circulation pattern with
Antarctic bottom water as the only source of deep water. It is a clear indication that cooling and wind-stress feedback are
more effective, at least in our model, than advection feedback and increased atmospheric water vapour transport. We conclude
that the conveyor belt-type thermohaline circulation seems to be much more stable than hitherto assumed from experiments with
simpler models.
Received 31 January 1996/Accepted 22 August 1996 相似文献
6.
E. I. Klimchuk 《Russian Meteorology and Hydrology》2013,38(2):106-112
Analyzed is the interannual variability of the meridional mass transport ψS in the North Atlantic based on the Sverdrup relation. The continuous (1980–2005) monthly wind stress dataset with the spatial resolution of 1 × 1° was used as the initial data. Sverdrup transport analysis performed for different latitudinal transects within the North Atlantic subtropical gyre demonstrated that the maximum long-term Sverdrup transport (?25.2 Sv) can be found at 33°N. Studied is a mechanism of the interaction between the meridional Sverdrup transport and the water flow in the Florida Strait. The significant correlation coefficient (0.5) is revealed for the Florida Strait water discharge and the mass transport at 27°N. Analyzed is the relationship between ψS and the North Atlantic Oscillation index and the statistically significant correlation coefficient (0.45) is obtained for the Sverdrup transport at 49°N. 相似文献
7.
Seawater property changes in the North Atlantic Ocean affect the Atlantic meridional overturning circulation (AMOC), which transports warm water northward from the upper ocean and contributes to the temperate climate of Europe, as well as influences climate globally. Previous observational studies have focused on salinity and freshwater variability in the sinking region of the North Atlantic, since it is believed that a freshening North Atlantic basin can slow down or halt the flow of the AMOC. Here we use available data to show the importance of how density patterns over the upper ocean of the North Atlantic affect the strength of the AMOC. For the long-term trend, the upper ocean of the subpolar North Atlantic is becoming cooler and fresher, whereas the subtropical North Atlantic is becoming warmer and saltier. On a multidecadal timescale, the upper ocean of the North Atlantic has generally been warmer and saltier since 1995. The heat and salt content in the subpolar North Atlantic lags that in the subtropical North Atlantic by about 8–9 years, suggesting a lower latitude origin for the temperature and salinity anomalies. Because of the opposite effects of temperature and salinity on density for both long-term trend and multidecadal timescales, these variations do not result in a density reduction in the subpolar North Atlantic for slowing down the AMOC. Indeed, the variations in the meridional density gradient between the subpolar and subtropical North Atlantic Ocean suggest that the AMOC has become stronger over the past five decades. These observed results are supported by and consistent with some oceanic reanalysis products. 相似文献
8.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse. 相似文献
9.
We describe results of an experiment in which the Hamburg Large-Scale Geostrophic Ocean General Circulation Model was driven by a spatially correlated white-noise freshwater flux superimposed on the climatological fluxes. In addition to the red-noise character of the oceanic response, the model exhibits pronounced variability in a frequency band around 320 years. The centers of action of this oscillation are the Southern Ocean and the Atlantic.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil. 相似文献
10.
A. B. Polonskii S. B. Krasheninnikova D. V. Basharin 《Russian Meteorology and Hydrology》2017,42(10):653-660
Average long-term and average annual values of meridional Ekman heat (mass) transport are estimated using the NCEP/NCAR (for 1948-2014) and 20CR (for 1871-2012) atmospheric reanalyses, and their interdecadal variability is analyzed. It was corroborated that the typical period of interdecadal variability of meridional Ekman transport in the North Atlantic coincides with that of the Atlantic Multidecadal Oscillation (AMO) and is about 60 years. The strengthening of northeastern trade winds and westerlies accompanied by the development of the negative phase of AMO occurred in the 1880s-1920s and in the 1960s-1990s. The opposite trend is observed for the 1930s-1950s and for the period from the 1990s till the beginning of the 21st century. 相似文献
11.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during
1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where
a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well
those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional
overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and,
to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual
to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux
convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25%
of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced
northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland
ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region
during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer
timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does
not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled
by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward
salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification
precedes that of the MOC by several years. 相似文献
12.
The problem of error propagation is considered for spatially uncorrelated errors of the barotropic stream function in an oceanic general circulation model (OGCM). Such errors typically occur when altimetric data from satellites are assimilated into ocean models. It is shown that the error decays at first due to the dissipation of the smallest scales in the error field. The error then grows exponentially before it saturates at the value corresponding to the difference between independent realizations. A simple analytic formula for the error behavior is derived; it matches the numerical results documented for the present primitive-equation ocean model, and other models in the literature. 相似文献
13.
A century scale integration of a near-global atmosphere–ocean model is used to study the multi-decadal variability of the thermohaline circulation (THC) in the Atlantic. The differences between the coupled and two supplementary ocean-only experiments suggest that a significant component of this variability is controlled by either a collective behavior of the ocean and the atmosphere, particularly in the form of air-sea heat exchange, or sub-monthly random noise present in the coupled system. Possible physical mechanisms giving rise to the mode of this THC variability are discussed. The SST anomaly associated with the THC variability resembles an interdecadal SST pattern extracted from observational data, as well as a pattern associated with the 50–60 year THC variability in the GFDL coupled model. In each case, a warming throughout the subpolar North Atlantic but concentrated along the Gulf Stream and its extension is indicated when the THC is strong. Concomitantly, surface air temperature has positive anomalies over the warmer ocean, with the strongest signal located downwind of the warmest SST anomalies and intruding into the western Eurasian Continent. In addition to the thermal response, there are also changes in the atmospheric flow pattern. More specifically, an anomalous northerly wind develops over the Labrador Sea when the THC is stronger than normal, suggesting a local primacy of the atmospheric forcing in the thermohaline perturbation structure. 相似文献
14.
William A. Gough 《大气与海洋》2013,51(4):495-511
Abstract Convective adjustment is examined in an ocean general circulation model which uses an isopycnal mixing parametrization. It is found that the use of an explicit convective adjustment scheme is not needed in a variety of equilibria and climate change scenario simulations. A numerical mechanism is proposed to explain this as well as the localized appearance of ‘negative’ diffusion. 相似文献
15.
Andrea A. Cimatoribus Sybren S. Drijfhout Matthijs den Toom Henk A. Dijkstra 《Climate Dynamics》2012,39(9-10):2291-2306
The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to changes in basin integrated net evaporation is highly dependent on the zonal salinity contrast at the southern border of the Atlantic. Biases in the freshwater budget strongly affect the stability of the AMOC in numerical models. The impact of these biases is investigated, by adding local anomaly patterns in the South Atlantic to the freshwater fluxes at the surface. These anomalies impact the freshwater and salt transport by the different components of the ocean circulation, in particular the basin-scale salt-advection feedback, completely changing the response of the AMOC to arbitrary perturbations. It is found that an appropriate dipole anomaly pattern at the southern border of the Atlantic Ocean can collapse the AMOC entirely even without a further hosing. The results suggest a new view on the stability of the AMOC, controlled by processes in the South Atlantic. 相似文献
16.
The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years
and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven
by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal
variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere–ocean coupled
mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales
observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related
to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies
move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening
and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the
IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by
the slow LSW advection at the intermediate depth. 相似文献
17.
The effects of ocean density vertical stratification and related ocean mixing on the transient response of the Atlantic meridional overturning circulation (AMOC) are examined in a freshwater perturbation simulation using the Bergen Climate Model (BCM). The results presented here are based on the model outputs of a previous freshwater experiment: a 300-year control integration (CTRL), a freshwater integration (FW1) which started after 100 years of running the CTRL with an artificially and continuously threefold increase in the freshwater flux to the Greenland-Iceland-Norwegian (GIN) Seas and the Arctic Ocean throughout the following 150-year simulation. In FW1, the transient response of the AMOC exhibits an initial decreasing of about 6 Sv (1 Sv=106 m3 s^-1) over the first 50-year integration and followed a gradual recovery during the last 100-year integration. Our results show that the vertical density stratification as the crucial property of the interior ocean plays an important role for the transient responses of AMOC by regulating the convective and diapycnal mixings under the enhanced freshwater input to northern high latitudes in BCM in which the ocean diapycnal mixing is stratification-dependent. The possible mechanism is also investigated in this paper. 相似文献
18.
《Dynamics of Atmospheres and Oceans》2008,44(3-4):151-170
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations. 相似文献
19.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations. 相似文献
20.
Frank O. Bryan 《Dynamics of Atmospheres and Oceans》1997,25(3):191-216
In this study we examine the axial angular momentum balance of a non-eddy-resolving global ocean general circulation model, from the perspective of the geographical and seasonal variability of angular momentum and from the perspective of the torques acting on the ocean through its surfaces. Our purpose is to provide an estimate of the magnitude of the seasonal storage of angular momentum in the ocean and hence the oceanic excitation of variability in length of day, and to elucidate the role of the ocean in transferring angular momentum between the atmosphere and the Earth's crust. We provide an assessment of the reliability of the model results by examining the sensitivity of the angular momentum and torque distributions to several model parameters.Although the Southern Ocean region containing the Antarctic Circumpolar Current (ACC) makes the largest contribution to both the annual mean oceanic angular momentum and its seasonal variability, inclusion of the rest of the world ocean reduces both of these quantities to about two-thirds of the value of the Southern Ocean alone. The annual, global mean angular momentum is found to be insensitive to most model choices except for the isopycnal diffusivity. The seasonal variability, on the other hand, is insensitive to the isopycnal diffusivity, but sensitive to the smoothness of the representation of topography and moderately sensitive to horizontal and vertical friction parameterizations. The torque balance at all latitudes, including within the Antarctic circumpolar belt, is between wind stress and bottom pressure torques. Horizontal friction torques are small but non-negligible. Bottom friction and storage of angular momentum are negligible in angular momentum budgets on seasonal time scales. Two commonly used wind stress climatologies, one based on historical marine meteorological observations and the other based on operational weather analyses, differ in the sign of the globally integrated wind stress torque. 相似文献