首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The history of Quaternary sedimentation in the subtidal Wash is described using high-resolution seismic profiles. The Pleistocene sequence is divided into three depositional units, comprising Anglian till overlain by possible Late Devensian subglacial scour fill and lacustrine sediments. These latter sediments may provide further evidence for a lake in the Wash impounded by ice along the Lincolnshire–Norfolk coast. The Holocene sequence is divided into six depositional units, each truncated by the one above. Estuarine sediment resting on a marine flooding surface forms the earliest unit. This sediment was partially eroded by migration of the shoreface as the marine flooding progressed landward. The following four units comprise sand and gravel banks deposited on the erosion surface. Bank deposition was followed by an episode of tidal scour caused either by increased tidal current velocities following reclamation of the Fenland or by breakdown of postulated former offshore barriers. The youngest and most extensive Holocene unit rests on the scoured surface and comprises several types of deposit. These are: large sand banks around the periphery of the subtidal area with sediment extending seawards into two NE–SW aligned troughs; low sand banks on a central ridge dividing the troughs and partially covering the sediments in the troughs; thick gravels towards the mouth of the Wash; muddy sediments forming drapes over the sand in the centre of the Wash. The data provide information on the variety of processes related to the advance and retreat of Pleistocene ice sheets in eastern England and the subsequent Holocene marine flooding of the Wash–Fenland embayment. The Holocene sequence reveals periods of widespread sedimentation separated by periods of both local and regional erosion, with possible implications for climatic and hydrodynamic change. © 1997 John Wiley & Sons, Ltd.  相似文献   

2.
Observations have been made of parts of the channels and the outer portions of the sand banks in the Wash using 1 : 10 000 air photographs and brief ground surveys at low spring tides. Two principal structures are found. In the channels megaripples 0.3–0.6 m high and of 10–15 m modal spacing are dominantly flood orientated. They do not reverse during ebb tide. On the outer parts of banks low ridges of 0.5 m height and 50-100 m spacing are interpreted as wave-formed ridge and runnel structure. They contain wave-rippled mud patches in the runnels and although they have shorewards asymmetry do not appear to migrate to any great extent. It is suggested that only in sheltered areas do the Wash intertidal flats show a lower mudflat subfacies; the norm is outer bank sand flats with ridge and runnel structure eventually overlain by Arenicola sand-flats during progradation.  相似文献   

3.
The Tofts located in north-western Fenland is a low ridge composed of sandy silt, elevated several metres above the surrounding land. Stratigraphically, the feature is the landward edge of an intertidal-subtidal sand body that stretches east into The Wash. It was the location of a Medieval salt-making industry. The ridge seems to have been initiated after 2100?cal?years BP by storm waves and/or wind transporting sediment landward from adjacent intertidal flats. Differential consolidation of peat on its landward side and dumping of sediment onto the surface during salt-making enhanced its morphological expression.  相似文献   

4.
During the Carboniferous Period the Yarrol and New England Orogens comprised an active depositional margin east of cratonised parts of Australia. Patterns of deposition within the orogens were probably controlled by dextral shear systems believed responsible for tectonism and the positions of the various depositional elements (volcanic chain, shelf, slope and basin, pull‐apart troughs and graben), and global changes in sea level. These patterns are illustrated by a series of non‐palin‐spastic palaeogeographic reconstructions.

In the Early Carboniferous, similar patterns of deposition existed within the western volcanic chain, marine shelf, and eastern slope and basin provinces of both orogens. Sediments were deposited in two cycles. They range from volcanic fluvial and marine sandstone to siltstone, mudstone and turbidites. Complex depositional patterns within shelfal regions are shown in detailed palaeogeographic reconstructions.

This uniform pattern changed during the latest Visean and Namurian, with the uplift of the New England Arch, subsidence of a non‐marine graben (Werrie Trough) to the west, and development of a new shelf in the east. The Werrie Trough received volcanics as well as fluvial and glacigene sediments, and the shelf marine sandstone and siltstone. The Yarrol Orogen was unaffected by tectonism but there was a change in provenance.

Late in the Carboniferous the Yarrol Orogen was restructured by the intrusion of granitoids into the former volcanic chain, and development of the Yarrol and North D'Aguilar Troughs as probable pull‐apart basins. In the New England Arch, deformation and metamorphism were followed by intrusion of S‐type granitoids. A comparable episode of deformation and metamorphism affected the southeastern part of the Yarrol Orogen at the end of the Carboniferous Period. This partial cratonisation of the mobile zone was a prelude to widespread basin formation during the Permian Period.  相似文献   

5.
This paper reviews the pattern of climate and environmental change in eastern England over the period of the Early and Middle Pleistocene, focussing especially upon northern East Anglia. Particular attention is given to the climate and tectonics that have brought about these changes and the distinctive geology, topography and biology that has developed. Throughout, an attempt is made to describe the new models that have been proposed for the Early and Middle Pleistocene of eastern England, and explain the reasons for these changes. The Early Pleistocene experienced relatively high insulation and relatively low magnitude climatic change and is represented primarily by non-climatically forced processes in the form of tidal current- and wave-activity which formed shallow marine deposits. It is possible to recognise a tectonic control in the distribution of deposits of this age because the surface processes do not have the power to remove this signature. The early Middle Pleistocene was dominated by higher magnitude climatic change involving, occasionally, climatic extremes that ranged from permafrost to mediterranean. The landscape at this time was dominated by the behaviour of major rivers (Thames, Bytham, Ancaster) and extensive coastal activity. In the latter part of the early Middle Pleistocene and the Late Middle Pleistocene the climate experienced major changes which resulted in periods of lowland glaciation and short intervals when the climate was warmer than the present. Details of tectonic activity are difficult to identify because they are removed by powerful surface processes, but it is possible to infer uplift focussed on the major interfluves of central England and subsidence in the North Seas basin. In the areas of glaciation the landscape changed radically from an organised terrain dominated by large rivers and extensive shallow coastal zones to complex, with small valleys, disrupted drainage and often discontinuous river, slope and coastal deposits. Likewise the switching off of the North Sea Delta and the opening of the Strait of Dover, separating Britain from continental Europe can be attributed to the onset of lowland glaciation. The case is made that eastern England was glaciated four times during the Middle Pleistocene: during MIS 16, 12, 10 and 6, and attention is given to recent evidence contradicting this model. Over the period of the Middle Pleistocene there is evidence for high biomass production occurring over short intervals coinciding with the climatic optima of MIS 19, 17, 15, 13, 11, and 7c, 7a and during most of these warmer periods, extending back to c. 750 ka (MIS 19/17), there is evidence in the region for the brief appearance of humans.  相似文献   

6.
Pleistocene sediments at Leet Hill, southern Norfolk are examined in terms of their sedimentary structures, palaeocurrent indicators, clast and heavy mineral lithology and litho- and morphostratigraphic position. Colour of the quartzite and vein-quartz clasts is used to differentiate the Bytham and the Kesgrave sands and gravels, with the Bytham sands and gravels having a significantly higher proportion of coloured material. The Kirby Cane sands and gravels are the lower sedimentary unit and were deposited by the Bytham river, which drained a catchment extending into central England. At Leet Hill, erosion of the Kesgrave Sands and Gravels by the Bytham river has given the Kirby Cane sands and gravels a distinctive lithological assemblage. Trace clast lithologies suggest that the Kesgrave Sands and Gravels in the region of Leet Hill were deposited in a coastal location with an input from northern sources as well as southern and Welsh sources diagnostic of the Thames catchment. The glaciofluvial Leet Hill Sands and Gravels were deposited by outwash from the Anglian Scandinavian ice sheet. Initially the flow direction of the outwash was determined by the Bytham river valley, but this changed to a southerly direction once the valley had been infilled. This paper provides the first indication of the location of the boundary (Early Pleistocene coastline) between the fluvial Kesgrave Sands and Gravels and the marine equivalent reworked by coastal processes, and demonstrates the way the pre-glacial relief initially controlled patterns of glaciofluvial sedimentation during the early part of the Anglian glaciation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Undisturbed core samples of Recent sediments from the Wash tidal flats, East Anglia, England, obtained using a Delft corer, were studied with special reference to the diagenesis and geochemical behaviour of iron. The Mössbauer effect in 57Fe was used to monitor the distribution of Fe between different phases as a function of depth, together with the magnetic mineralogy and palaeomagnetic properties.The cores consist of, successively downwards: 0.36 m brown clay; 1.5 m finely laminated silts and fine sands, and 7.14 m homogeneous fine sands. The dominant minerals are quartz, feldspar, calcite and clay minerals, and chemical analysis for Al, Si, Mg, Mn, Ca, Fe, Na, K showed variations closely linked to lithological changes. Illite is the most abundant clay mineral (mean 48%), followed by mixed layer illite-montmorillonite and montmorillonite, kaolinite and chlorite. Chlorite is the major iron-bearing clay mineral and represents 4 to 10% of the <2 μm fraction throughout the core. Sulphide minerals are present throughout the core, including framboidal pyrite.Computer fit analysis of the Mössbauer spectra of best quality showed contributions from Fe2+ and Fe3+ in clay minerals (essentially chlorite), low-spin Fe2+ in pyrite, and magnetically ordered iron in greigite (Fe3S4). Systematic variations, as a function of sample depth, indicate a relative increase in the amount of Fe in pyrite at the expense of the clay minerals.Magnetite and titanium-bearing magnetite are the carriers of natural magnetic remanence in these sediments.The direction and intensity of natural remanence in the samples compare well with the known secular variation of the Earth's magnetic field derived from the historic-archaeomagnetic record and this enables the samples to be dated and sedimentation rates to be determined (1.5 mm yr?1 for the upper 2 m and ~7.7 mm yr?1 for the lower 7 m).  相似文献   

8.
9.
黄土坡面径流侵蚀产沙动力过程模拟与研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过室内模拟冲刷试验系统研究了3°~30°坡度范围内坡面径流的侵蚀动力及产沙特征,分析了坡面径流能耗与径流侵蚀产沙之间的关系。结果表明,坡面径流平均流速随坡度和流量的增加而增大,流速与坡度和流量之间存在指数函数关系,坡度对流速的影响大于流量。在3°~21°坡度范围内,坡面径流单宽能耗随坡度的增加而增加,当坡度超过21°时,径流能耗随坡度的增加而降低。坡度对侵蚀产沙的影响也有类似的现象,在3°~21°坡度范围内,坡面径流平均单宽输沙率随坡度的增加而增大,当坡度达到临界极值21°和24°后,坡面径流平均输沙率随坡度增加而减小;在整个试验坡度范围内,径流平均单宽输沙率随流量的增大而增大;流量对坡面径流平均单宽输沙率的影响大于坡度。坡面径流平均单宽输沙率和单宽径流能耗之间存在明显的线性关系,其临界单宽径流能耗随坡度的增加而增加,土壤可蚀性参数随坡度的变化在10.368~30.366的范围变化,试验的土壤可蚀性的平均值为14.61。  相似文献   

10.
Investigations in quarry exposures in the Asheldham Gravel and related deposits of southeast Essex are described. Section logging, mapping and borehole investigations are supported by clast lithological, heavy and clay mineralogical determinations. The sediments are derived from reworking of local Thames basin materials, fine sediment being predominantly from the London Clay. The sequence is shown to represent an aggradation that began as the fluvial infilling of the River Medway valley. The River Thames, diverted into this valley by glaciation further west, overwhelmed the Medway, reworking the deposits. The valley was subsequently drowned and fine laminated lake sediment was initially deposited. This was during a period when the valley was drowned by the glacial lake ponded in the southern North Sea basin by the Anglian/Elsterian ice sheet. Progradation by a braid-delta complex advanced along the valley and subsequently fluvial deposition returned. Valley widening and straightening accompanied the delta progradation. The deposits were dissected by deep fluvial valleys infilled by Hoxnian interglacial sediments. The Asheldham Gravel is therefore placed in the Anglian/Elsterian Stage.  相似文献   

11.
Concretions from the Kimmeridge Clay Formation are of three types: calcareous concretions, septarian calcareous concretions and pyrite/calcite concretions and nodules, which occur within different mudstone facies. Isotopic and chemical analysis of the concretionary carbonates indicate growth in the Fe-reduction, sulphate-reduction and decarboxylation zones. The septarian concretions show a long and complex history, with early initiation of growth and development spanning several phases of burial, each often resulting in the formation of septaria. Growth apparently ceased in the transitional zone between the sulphate-reduction and the methanogenesis zones. Very early growth in the Fe-reduction zones is also seen in one sample. The non-septarian concretions began growth later within the sulphate-reduction zone and have had a simpler burial history while the pyrite/calcite concretions show carbonate cementation in the sulphate-reduction-methanogenesis transition zone. A ferroan dolomite/calcite septarian nodule with decarboxylation zone characteristics also occurs. Development of concretions appears to be indirectly controlled by the sedimentation rate and depositional environment, the latter determining the organic matter input to the sediments. Calcareous concretions predominate in swell areas and during periods of low sedimentation rate in the basins with poor organic matter preservation and deposition of calcareous mudstones. Pyrite/calcite concretions occur in organic-rich mudstones deposited under higher sedimentation rates in the basins, while the ferroan dolomite nodule grew under very high sedimentation rates.  相似文献   

12.
The Hastings Block is a weakly cleaved and complexly folded and faulted terrain made up of Devonian, Carboniferous and Permian sedimentary and volcanic rocks. The map pattern of bedding suggests a major boundary exists that divides the Hastings Block into northern and southern parts. Bedding north of this boundary defines an upright box-like Parrabel Anticline that plunges gently northwest. Four cleavage/fold populations are recognised namely: E–W-striking, steeply dipping cleavage S1 that is axial surface to gently to moderately E- or W-plunging; F1 folds that were re-oriented during the formation of the Parrabel Anticline with less common N–S-trending, steeply dipping cleavage S2, axial surface to gently to moderately N-plunging F2 folds; poorly developed NW–SE-striking, steeply dipping cleavage S3 axial surface to mesoscopic, mainly NW-plunging F3 folds; and finally, a weakly developed NE–SW-striking, steeply dipping S4 cleavage formed axial surface to mainly NE-plunging F4. The Parrabel Anticline is considered to have formed during the D3 deformation. The more intense development of S2 and S3 on the western margin of the Northern Hastings Block reflects increasing strain related to major shortening of the sequences adjacent to the Tablelands Complex during the Hunter–Bowen Orogeny. The pattern of multiple deformation we have recorded is inconsistent with previous suggestions that the Hastings Block is part of an S-shaped orocline folded about near vertically plunging axes.  相似文献   

13.
Abstract

This paper summarises current knowledge on metamorphism within the entire New England Orogen (NEO) of eastern Australia. Rocks recording metamorphic assemblages characteristic of each of the three metamorphic facies series (high, medium and low P/T) have been identified within the orogen. These include high P/T blueschists and eclogites, mid P/T orogenic metamorphism and low P/T contact aureoles and sub-regional high-temperature–low-pressure (HTLP) metamorphism (regional aureoles). Metamorphism is described as it relates to six tectonic phases of development of the NEO that together comprise two major cycles of compression–extension. Medium–high-grade contact metamorphism spans all six tectonic phases while low-grade burial and/or orogenic metamorphism has been identified for four of the six phases. In contrast, exposure of high P/T eclogites and blueschists, and generation of sub-regional low P/T metamorphism is restricted to extensional phases of the orogen. Hallmarks of the orogen are two newly identified zones of HTLP metamorphism, the older of which extends for almost the entire length of the orogen.
  1. KEY POINTS
  2. The orogen is dominated by low-temperature rocks while high-temperature amphibolite to granulite facies rocks are restricted to small exposures in HTLP complexes and contact aureoles.

  3. Blueschist metamorphism falls into two categories; that associated with subduction during the Currabubula-Connors continental arc phase occurring at depths of ~13–30?km; and the other of Cambrian–Ordovician age, exposed within a serpentinite melange and associated with blocks of eclogite. The eclogite, initially from depths of ~75–90?km, appears to have been entrained in the deep crust for an extended period of geological time.

  4. A comprehensive review of contact metamorphism in the orogen is lacking and as studies on low-grade metamorphism are more extensive in the southern part of the orogen than the north, this highlights a second research gap.

  相似文献   

14.
Suspended sediment dynamics and morphodynamics in the Yellow River, China   总被引:2,自引:0,他引:2  
The Yellow River in China carries large amounts of sediments in suspension at concentrations up to several hundreds of kilograms per cubic metre; the sediment is composed mainly of silt. These high sediment concentrations influence the hydrodynamics (flow velocity and turbulence) which, in turn, determine the sediment concentration profile, whereas both the high sediment concentrations and pseudo-cohesive properties of silt determine the morphodynamics of the Yellow River. The effect of sediment on the hydrodynamics is analysed using the Richardson number and the Reynolds number to provide a framework to differentiate between various flow regimes in the Yellow River, which is calibrated and validated with Yellow River data. The flow may be sub-saturated (stable flow), super-saturated (unstable flow characterized by high deposition rates, caused by collapse of turbulence), or hyperconcentrated sub-saturated (stable flow because of hindered settling effects), depending on the Richardson number. Independent of this, the flow may be turbulent, transitional or laminar, depending on the Reynolds number. Analysis of these flow types improves understanding of the flow regimes and morphodynamics of the Yellow River. The morphodynamics of the Yellow River are also affected by pseudo-cohesive behaviour caused by shear dilatance, which results in increasing critical shear stress for erosion at decreasing grain-size. This pseudo-cohesive behaviour may be partly responsible not only for the high deposition rates which characterize the lower Yellow River, but also for mass erosion during river floods.  相似文献   

15.
The New England Orogen (NEO), the youngest of the orogens of the Tasmanides of eastern Australia, is defined by two main cycles of compression–extension. The compression component involves thrust tectonics and advance of the arc towards the continental plate, while extension is characterised by rifting, basin formation, thermal relaxation and retreat of the arc towards the oceanic plate. A compilation of 623 records of U–Pb zircon geochronology rock ages from Geoscience Australia, the geological surveys of Queensland and New South Wales and other published research throughout the orogen, has helped to clarify its complex tectonic history. This contribution focuses on the entire NEO and is aimed at those who are unfamiliar with the details of the orogen and who could benefit from a summary of current knowledge. It aims to fill a gap in recent literature between broad-scale overviews of the orogen incorporated as part of wider research on the Tasmanides and detailed studies usually specific to either the northern or southern parts of the orogen. Within the two main cycles of compression–extension, six accepted and distinct tectonic phases are defined and reviewed. Maps of geological processes active during each phase reveal the centres of activity during each tectonic phase, and the range in U–Pb zircon ages highlights the degree of diachronicity along the length of the NEO. In addition, remnants of the early Permian offshore arc formed during extensive slab rollback, are identified by the available geochronology. Estimates of the beginning of the Hunter-Bowen phase of compression, generally thought to commence around 265?Ma are complicated by the presence of extensional-type magmatism in eastern Queensland that occurred between 270 and 260?Ma.  相似文献   

16.
Thermoluminescence dating of Dimlington Stadial deposits in eastern England   总被引:2,自引:0,他引:2  
The loess component of a solifluction deposit of the Dimlington Stadial exposed at the inland site of Eppleworth in eastern England gave a thermoluminescence date of 17.5 ± 1.6 × 103 years. The solifluction deposit is overlain by a slightly weathered till correlated with the Skipsea Till of coastal exposures. which lies between organic horizons with radiocarbon dates of 18,500–18,240 B.P. and 13,045 B.P. Although the till must have been deposited during the Dimlington Stadial (after 18,240 B.P. at Dimlington and after 17,500 B.P. at Epplcworth), it gave apparent TL dates of 42.1 ± 3.6 × 103 years at Eppleworth and 102 ± 9 × 103 years at Dimlington, indicating that the components of the till were not exposed to light immediately before deposition.  相似文献   

17.
This paper appraises and compares the Middle-Upper Pleistocene sedimentary sequences preserved in the fluvial systems draining into the Fenland Basin and the Wash estuary. Of the main Fenland rivers the longest records, which extend back to the initial Anglian (glacial) formation of the basin, are found in the Great Ouse and its tributaries, particularly the Cam and the Nar. These sequences preserve sediments representing all four post-Anglian interglacials. The Nene also has an extensive post-Anglian history, with evidence for a Hoxnian estuary that is presumed to have been the precursor of the Wash. North of the Nene, however, the Welland and Witham (proto-Trent) have relatively short sequences, which are thought to commence with a later (post-Anglian-pre-Devensian) glaciation that affected Lincolnshire and fed the previously-recognized Tottenhill outwash delta south of Kings Lynn. Prior to Devensian deglaciation the Witham valley was occupied by the Trent, which was the trunk river of the late Middle Pleistocene Wash system. During periods of low sea level the river would have extended north-eastwards across what is now the floor of the North Sea, possibly via the Inner Silver Pit. Several of the central Fenland sequences show evidence of infrequent terrace formation during the late Quaternary, although this might in part be due to poor vertical separation between terraces, so that differentiating them has been difficult; this has been exacerbated by mixed biostratigraphical signals due to the preservation of sediments representing more than one interglacial beneath a single terrace surface. In several of the systems there is evidence for valley rejuvenation to the lowest terrace or valley-floor level during the MIS 4-3 transition. The observed differences within what, during the predominant periods of lower sea level, would have been a single Wash river system are difficult to explain.  相似文献   

18.
19.
Berry Head, a limestone headland in Torbay, southwest England, exhibits a series of subaerial marine erosion platforms and raised beaches spanning an altitude range of 97 m. Solution caves on the headland show preferred horizontal development at elevations that are correlated with the marine erosion platforms, and developed in a marine/freshwater mixing zone whose position was controlled by high sea-level still-stands. Corbridge Cave in Berry Head Quarry lies below the raised beaches in Torbay, and contains evidence of three marine transgressions in the form of fine-grained marine ponding deposits with a marine microfauna. Uranium-series dating of intercalated speleothems indicates that a transgression during oxygen isotope stage 5e reached an elevation of 5.8 m OD, while an earlier transgression (probably during stage 7) reached at least 7.2 m OD. These findings are used to constrain possible interpretations of the aminostratigraphy of raised beaches in Southwest Britain, and a correlation of the Unnamed Stage of Bowen, Sykes, Reeves, Miller, Andrews, Brew and Hare with oxygen isotope stage 5e is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号