首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The French Massif Central (FMC) represents the whole West European Variscan (WEV) belt, in terms of both the geodynamic evolution and the metallic content. Thus, a study of the metallogenic evolution of the FMC may elucidate the conditions that allow the mineralisation of a collision belt, since recent collision belts, e.g. the Himalayas or the Alps show that mineralisation does not necessarily result from the collision process. The Palaeozoic history of the FMC is divided into three geodynamic stages unevenly involved from the metallogenic view point. The Eo-Variscan stage (Cambrian to Silurian) was not important; the Meso-Variscan stage (Devonian-Early Carboniferous) was of limited importance; and most of the mineralisations formed during the Neo-Variscan stage (Late Carboniferous-Early Permian). In addition, some more mineralisation was produced during the Mesozoic because of the thermal reactivation linked with the Alpine orogenies. The Eo-Variscan stage (Cambrian-Silurian) corresponded to the pre-collision history, marked at the WEV belt scale by a fragmentation of the northern Gondwana (immature crust evolved from the Late Proterozoic Cadomian orogeny), up to the break-up of the crust and the formation of oceanic basins (Cambrian-Ordovician), followed by their resorption by subduction during the Silurian. In the FMC, no subduction-related magmatism is known (being rare at the WEV belt scale), and consequently subduction-related mineralisation, e.g. porphyry copper, is unknown in the WEV belt. Although some ophiolitic remnants are known, they never display Cyprus-type VMS deposits, nor massive podiform chromitites. Beside platformal sedimentary deposits on passive margins, the only deposits formed during the Eo-Variscan stage were of the SEDEX type, linked with the early rifting of the Gondwanian crust. The Meso-Variscan stage (Devonian-Early Carboniferous) corresponded to the collision proper, with the formation of crustal-scale nappe structures and the intrusion of collision-related peraluminous granites. Although these granites were enriched in rare metals they did not yield significant hydrothermal mineralisation, due to the great depth of their emplacement, as the similar granites in the Himalayas. However, they were a source of rare metals (in particular, uranium) for later mineralisation events. At the WEV belt scale Devonian distensive events are coeval with the collision. They were recorded by the formation of sedimentary basins of limited time and space extent, corresponding to the splitting of the continental crust (up to formation of oceanic domains in many cases), and were characterised by a bi-modal (“spilite-keratophyre”) volcanism. These basins formed in transtensional (or pull-apart) settings along major strike-slip faults, a peculiarity of the Variscan collision belt (which may conveniently be described as a “strike-slip orogen”). In such basins, many deposits linked with the volcanic thermal energy were formed: SEDEX deposits of the Meggen-type, iron deposits of the Lahn-Dill-type and VMS base metal deposits, the latter being the only ones known in the FMC (Brévenne deposits). The Neo-Variscan stage corresponded to the “hypercollision” and was characterised by a shift from compressional tectonics (late thickening of the crust during the Sudetian event and long-lasting dextral strike-slip tectonics along NW-SE to NE-SW fault zones) towards extensional tectonics (“basin and range” of the Late Stephanian-Early Permian), as well as by high heat flows, recorded by LP-HT metamorphism, extensive granitisation and granulitisation of the lower crust. These characteristics record the development of a lithospheric delamination process. In response to the energetic input released by this process, numerous hydrothermal deposits were formed in the FMC, as well as in the whole WEV belt, during the Neo-Variscan stage. These are mainly: (1) high-temperature granite-centered tungsten deposits, mainly associated with cordierite-bearing high level intrusions of Namurian-Westphalian age; (2) rare metal granites (and the associated hydrothermal tin mineralisations), resulting from fluid-induced low-degree partial melting of the middle crust in relation with the devolatilisation of the granulitised lower crust; (3) shear-zone hosted gold and antimony deposits, related to crustal-scale hydrothermal circulation, triggered by the transition to extensional tectonics at about 300 Ma; and (4) uranium deposition in extensional settings related to the Early Permian distension. The Post-Variscan mineralising events recorded the renewal of thermal flows in the lithosphere linked with early Alpine events (mainly the Trias-Lias distension in the Tethyan realm and the middle Cretaceous opening of the Bay of Biscay in the Pyrenean realm). They resulted in low-enthalpy geothermal systems, leading to a variety of deposits, mainly: (1) F-Ba districts, reworking F and Ba from Late Variscan granites and ignimbrites; (2) a major uranium deposit (Lodève), reworking uranium from the Permian Lodève basin; and (3) Zn-Pb districts of the MVT-type. Finally, the mineralisation of the Variscan collision belt is mainly the consequence of the Neo-Variscan lithospheric delamination process. By contrast, the absence of such a process in collision belts like the Himalayas or the Alps is the key of them being devoid of mineralisation. It appears that the mechanical energy released by the collision itself is not sufficient to mobilise and concentrate the trace elements involved in the metallogenic processes. Received: 1 September 1998 / Accepted: 3 February 1999  相似文献   

2.
Subduction of both the Iapetus and Rheic oceans began relatively soon after their opening. Vestiges of both the Iapetan and Rheic oceanic lithospheres are preserved as supra-subduction ophiolites and related mafic complexes in the Appalachian–Caledonian and Variscan orogens. However, available Sm–Nd isotopic data indicate that the mantle source of these complexes was highly depleted as a result of an earlier history of magmatism that occurred prior to initiation of the Iapetus and Rheic oceans. We propose two alternative models for this feature: either the highly depleted mantle was preserved in a long-lived oceanic plateau within the Paleopacific realm or the source for the basalt crust was been recycled from a previously depleted mantle and was brought to an ocean spreading centre during return flow, without significant re-enrichment en-route. Data from present-day oceans suggest that such return flow was more likely to have occurred in the Paleopacific than in new mid-ocean ridges produced in the opening of the Iapetus and Rheic oceans. Variation in crustal density produced by Fe partitioning rendered the lithosphere derived from previously depleted mantle more buoyant than the surrounding asthenosphere, facilitating its preservation. The buoyant oceanic lithosphere was captured from the adjacent Paleopacific, in a manner analogous to the Mesozoic–Cenozoic “capture” in the Atlantic realm of the Caribbean plate. This mechanism of “plate capture” may explain the premature closing of the oceans, and the distribution of collisional events and peri-Gondwanan terranes in the Appalachian–Caledonian and Variscan orogens.  相似文献   

3.
Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens.  相似文献   

4.
沈龙  李媞  赵寒冬 《地质与资源》2011,20(6):420-425
以火成岩构造组合的概念和方法为指导,以近几年在嘉荫、伊春、鹤岗、鸡西、牡丹江等地区开展的1∶5万、1∶25万区调研究为基础,基于侵入岩锆石U-Pb年龄,建立了研究区古生代构造岩浆阶段划分的初步方案.划分出与洋壳俯冲事件有关的火成岩构造组合5期,分别为加里东期早寒武世、早中奥陶世、中志留世,华力西期晚石炭世和晚二叠世.与...  相似文献   

5.
桂北-桂东加里东期盆地构造沉降史分析   总被引:2,自引:2,他引:0  
对造山带各地史阶段的沉积盆地进行构造沉降分析,进而探讨其地球动力学过程,是近年来盆地分析的前缘研究之一。本文采用回剥分析技术,分别编绘了桂北、桂东地区加里东期盆地沉降曲线,并进行了构造沉降史分析。结果表明,桂北、桂东加里东期盆地演化均经历了从拉张裂解到挤压闭合的完整过程。但与桂东大瑶山地区相比,桂北兴安地区在裂陷阶段的沉积速率和构造沉降速率明显偏低;热沉降阶段的持续时间偏长;裂陷阶段与前陆挠曲阶段的分界拐点偏晚;前陆挠曲阶段,由构造宁静期的缓慢沉降向构造活动期的快速沉降转化的分界拐点也偏晚。这些差别这一方面说明了两地区具有不同的构造背景,另一方面也反映了华夏板块由南东逐渐地向北西扬子板块靠拢,沉积盆地相应地向西北迁移的动力学过程。  相似文献   

6.
The break-up of Pangaea after the Variscan Orogeny included rifting extending southwards from the Barents Sea via the Norwegian–Greenland Rift and into the North Sea, and northwards from the Central Atlantic. These two major rift systems interacted to form an approximately 1200-km-wide transfer zone across the British Isles, where a complex network of basins developed during the Mesozoic. Fault patterns were commonly controlled by reactivation of Precambrian, Caledonian and Variscan structures. The two main rift systems were unable to breach this regional transfer zone, where the crust had been thickened by the Caledonian and Variscan orogenies, until the Eocene. Breaching did not occur down the North Sea and through the English Channel because of Alpine contraction in NW Europe. Instead, breaching occurred around the west of Ireland and NW Scotland, so the British Isles remained connected to Europe rather than to the North American Plate.  相似文献   

7.
P. Matte 《地学学报》2001,13(2):122-128
The Variscan belt of western Europe is part of a large Palaeozoic mountain system, 1000 km broad and 8000 km long, which extended from the Caucasus to the Appalachian and Ouachita mountains of northern America at the end of the Carboniferous. This system, built between 480 and 250 Ma, resulted from the diachronic collision of two continents: Laurentia–Baltica to the NW and Gondwana to the SE. Between these two continents, small, intermediate continental plates separated by oceanic sutures mainly have been defined (based on palaeomagnetism) as Avalonia and Armorica. They are generally assumed to have been detached from Gondwana during the early Ordovician and docked to Laurentia and Baltica before the Carboniferous collision between Gondwana and Laurentia–Baltica. Palaeomagnetic and palaeobiostratigraphic methods allow two main oceanic basins to be distinguished: the Iapetus ocean between Avalonia and Laurentia and between Laurentia and Baltica, with a lateral branch (Tornquist ocean) between Avalonia and Baltica, and the Rheic ocean between Avalonia and the so‐called Armorica microplate. Closure of the Iapetus ocean led to the Caledonian orogeny: a belt resulting from collision between Laurentia and Baltica, and from softer collisions between Avalonia and Laurentia and between Avalonia and Baltica. Closure of the Rheic ocean led to the Variscan orogeny by collision of Avalonia plus Armorica with Gondwana. A tectonic approach allows this scenario to be further refined. Another important oceanic suture is defined: the Galicia–Southern Brittany suture, running through France and Iberia and separating the Armorica microplate into North Armorica and South Armorica. Its closure by northward (or/and westward?) oceanic and then continental subduction led to early Variscan (430–370 Ma) tectonism and metamorphism in the internal parts of the Variscan belt. As no Palaeozoic suture can be detected south of South Armorica, this latter microplate should be considered as part of Gondwana since early Palaeozoic times and during its Palaeozoic north‐westward drift. Thus, the name Armorica should be restricted to the microplate included between the Rheic and the Galicia–Southern Brittany sutures.  相似文献   

8.
造山带热结构对大陆碰撞带的形态大小、构造式样、岩浆活动和变质作用具有重要控制作用。然而,热结构对碰撞成矿作用的控制还不清楚。本文概述比利牛斯、阿尔卑斯、加里东、扎格罗斯、青藏高原和华力西等全球主要碰撞带的热结构与成矿系统发育特征,对比各个造山带内不同矿床类型成矿温度变化,探讨热结构对碰撞成矿的控制作用。研究表明,碰撞带主要发育盆地流体有关的密西西比河谷型铅锌矿床、变质流体有关的造山型金矿床和岩浆热液有关矿床(斑岩铜矿床、云英岩型钨锡矿床和岩浆热液有关的铌钽锂铍矿床等)。其中,前两者在大多数碰撞带内均有发育,代表了大陆碰撞成矿作用的基本类型。这些矿床的成矿温度在热碰撞带比较高而在冷碰撞带则偏低。岩浆热液有关矿床一般只出现在比较热的碰撞带内,这些热碰撞带的温度压力条件有很大区域在湿固相线以内,热扰动能够造就地壳发生部分熔融形成含矿岩浆。  相似文献   

9.
A layer of relict, high-temperature, prograde eclogite has been discovered within felsic granulite of the Gföhl Nappe, which is the uppermost tectonic unit in the Moldanubian Zone of the Bohemian Massif, the easternmost of the European Variscan massifs. Pressure-temperature conditions for eclogite (≥890  °C, 18.0  kbar) and felsic granulite ( c . 1000  °C, 16  kbar) place early metamorphism of the polymetamorphic Gföhl crustal rocks within the eclogite facies, and preservation of prograde compositional zoning in small garnet grains in high-temperature eclogite requires very rapid heating, as well as cooling. Mantle-derived garnet and spinel–garnet peridotites are associated with the high temperature-high pressure crustal rocks in the Gföhl Nappe, and this distinctive lithological suite appears to be unique among European Phanerozoic orogenic belts, implying that tectonic processes during the late stages in evolution of the Variscan belt were different from those in the Caledonian and Alpine belts. The unusually high temperatures and pressures in Gföhl crustal rocks, mineralogical evidence for rapid heating and cooling, juxtaposition of lithospheric and asthenospheric mantle with crustal rocks, and widespread production of late-stage granites indicate that culmination of the Variscan Orogeny may have been driven by lithospheric delamination and asthenospheric upwelling.  相似文献   

10.
The Austroalpine basement complex has a complicated pre-Alpidic history which begins with the Caledonian era. In the late Precambrian (?) and early Paleozoic a magmatic-sedimentary rock sequence is formed presumably in an island-arc or active continental margin environment. Subduction with eclogite formation is followed by collision, high-grade metamorphism and anatexis in the Ordovician. This Caledonian basement is preserved in parts of the Austroalpine crystalline mass. The post-Caledonian deposits are mainly shelf type sediments with intercalated volcanics, although there is evidence for an oceanic basin to the south. The Variscan facies zones are arranged in SW-NE direction, oblique to the Alpidic trend. In a first stage of Variscan orogeny in the Carboniferous, south(east)-vergent decollement nappes, syntectonic flysch deposits, and granitoids are formed along with regional metamorphism. This is followed by a second stage in the Permian with north(west)-vergent thrusting, renewed granite formation, and metamorphism. The Variscan nappe pile is today exposed in a deeper level in the west or northwest than in the east or southeast.  相似文献   

11.
The European Variscan and Alpine mountain chains are collisional orogens, and are built up of pre-Variscan “building blocks” which, in most cases, originated at the Gondwana margin. Such pre-Variscan elements were part of a pre-Ordovician archipelago-like continental ribbon in the former eastern prolongation of Avalonia, and their present-day distribution resulted from juxtaposition through Variscan and/or Alpine tectonic evolution. The well-known nomenclatures applied to these mountain chains are the mirror of Variscan resp. Alpine organization. It is the aim of this paper to present a terminology taking into account their pre-Variscan evolution at the Gondwana margin. They may contain relics of volcanic islands with pieces of Cadomian crust, relics of volcanic arc settings, and accretionary wedges, which were separated from Gondwana by initial stages of Rheic ocean opening. After a short-lived Ordovician orogenic event and amalgamation of these elements at the Gondwanan margin, the still continuing Gondwana-directed subduction triggered the formation of Ordovician Al-rich granitoids and the latest Ordovician opening of Palaeo-Tethys. An example from the Alps (External Massifs) illustrates the gradual reworking of Gondwana-derived, pre-Variscan elements during the Variscan and Alpine/Tertiary orogenic cycles.  相似文献   

12.
中国造山带研究的回顾和展望   总被引:8,自引:0,他引:8  
本文简要回顾了20世纪50年代以来中国地质学家在研究显生宙陆(板)缘造山带或古大陆边缘造山带中所取得的进展:多数巨型造山系经历了多阶段古洋盆形成和消亡,陆块碰撞演化历史;离散大陆边缘多样性;洋盆产出环境和消减 迁移多样性。近20年来我国学者加强了造山带三维变形运动学研究,提出了多层次滑脱叠置构造,剖面上、平面上的楔入构造等重要新认识。最后指出中国大陆造山带今后研究热点和展望。  相似文献   

13.
The south-eastern part of the basement of the Pannonian Basin is made up of Variscan crystalline complexes and early Mesozoic formations showing striking affinity with the corresponding formations in the southern margin of the European Plate. This large composite structural unit, which is actually an exotic terrane of European Plate origin, has been named the Tisza Mega-unit. Based upon relevant data of the pre-Tertiary basement of southern Hungary the reconstruction of the position of the Tisza Terrane in the early Alpine evolutionary stages, the process of its separation and break-off from the European Plate, and results of its Eo-Alpine deformations are summarised in the present paper. In the Variscan and early Alpine evolutionary stages the area of the later Tisza Mega-unit was located at the margin of the European Plate. During Variscan orogeny terrane accretion led to intensive deformation and metamorphism in this belt. This was followed by transpressional tectonics and the development of molasse basins in the late and post-Variscan stages, and passive margin evolution after the Neotethys opening in the Middle Triassic. The separation of the Tisza Mega-unit began with incipient continental rifting along the axis of the later Ligurian–Penninic–Vahic oceanic branch in the Late Triassic. The end of terrigenous material deposition in the most external zones, and a coeval change in fossil assemblage, point to the separation of the Tisza Block from the European Plate in the Early Bathonian. Significant rotation of the Tisza Mega-unit and coeval paroxysm of alkaline rift-type basalt volcanism took place in the Early Cretaceous. In the mid-Cretaceous, due to the northward motion of the Adria Block and the related closure of the westernmost Neotethys basin, the extensional regime changed to a compressional one, leading to onset of the nappe stacking and low-grade regional metamorphism within the Tisza microplate. In the foreland of the nappe systems flexural basins came into existence that are characterised by flysch-type sedimentation. In the Early Tertiary the north-eastward motion of the Alcapa and Tisza + Dacia Blocks led to the formation of the present-day heterogeneous basement of the Pannonian Basin.  相似文献   

14.
Tectonic progradation and plate tectonic evolution of the Alps   总被引:2,自引:0,他引:2  
W. Frisch 《Tectonophysics》1979,60(3-4):121-139
Rifting and spreading, trench formation, flysch deposition, subduction and nappe formation prograde from internal to external parts of the Alpine orogen. The progradation is a characteristic feature of the evolution of the Alps. A plate tectonics model based on this cognition is presented and an attempt is made to integrate the plate movements of the Alpine region during the Mesozoic and Cenozoic into the plate pattern of the Western Mediterranean.

Important events in the evolution of the Alps are the successive opening and closing of the Piedmont (South Penninic) and Valais (North Penninic) oceans, and the two continental collisions related to this. The southward drift of the Briançonian plate in the Cretaceous closes the Piedmont and opens the Valais ocean. The evolution of these oceans is related to the plate movements in the North Atlantic. The second continental collision is followed by the formation of an exogeosyncline, the molasse foredeep.

Prograding orogens like the Alps are most likely to evolve in an originally continental environment by rifting. Retrograding orogens, however, indicate an originally oceanic environment with well-developed magmatic arcs and back-arc basins.  相似文献   


15.
The Tethyside orogen, a direct consequence of the separation of the Gondwanaland and the accretion of Eurasia, is a huge composite orogenic system that was generated during Paleozoic–Mesozoic Tethyan accretionary and Cenozoic continent–continent collisional orogenesis within the Tethyan domain. The Tethyside orogenic system consists of a group of diverse Tethyan blocks, including the Istanbul, Sakarya, Anatolide–Taurides, Central Iran, Afghanistan, Songpan–Ganzi, Eastern Qiangtang, Western Qiangtang, Lhasa, Indochina, Sibumasu, and Western Burma blocks, which were separated from Gondwana, drifted northwards, and accreted to the Eurasian continent by opening and closing of two successive Tethyan oceanic basins (Paleo-Tethyan and Neo-Tethyan), and subsequent continental collision.The Tethyan domain represents a metallogenic amalgamation across diverse geodynamic settings, and is the best endowed of all large orogenic systems, such as those associated with the Cordilleran and Variscan orogenies. The ore deposits within the Tethyan domain include porphyry Cu–Mo–Au, granite-related Sn–W, podiform chromite, sediment-hosted Pb–Zn deposits, volcanogenic massive sulfide (VMS) Cu–Pb–Zn deposits, epithermal and orogenic Au polymetallic deposits, as well as skarn Fe polymetallic deposits. At least two metallogenic supergroups have been identified within the eastern Tethyan metallogenic domain (ETMD): (1) metallogenesis related to the accretionary orogen, including the Zhongdian, Bangonghu, and Pontides porphyry Cu belts, the Pontides, Sanandaj–Sirjan, and Sanjiang VMS belts, the Lasbela–Khuzdar sedimentary exhalative-type (SEDEX) Pb–Zn deposits, and podiform chromite deposits along the Tethyan ophiolite zone; and (2) metallogenesis related to continental collision, including the Gangdese, Yulong, Arasbaran–Kerman and Chagai porphyry Cu belts, the Taurus, Sanandaj–Sirjan, and Sanjiang Mississippi Valley-type (MVT) Pb–Zn belts, the Southeast Asia and Tengchong–Lianghe Sn–W belts or districts, the Himalayan epithermal Sb–Au–Pb–Zn belt, the Piranshahr–Saqez–Sardasht and Ailaoshan orogenic Au belts, and the northwest Iran and northeastern Gangdese skarn Fe polymetallic belts. Mineral deposits that are generated with tectonic evolution of the Tethys form in specific settings, such as accretionary wedges, magmatic arcs, backarcs, and passive continental margins within accretionary orogens, and the foreland basins, foreland thrust zones, collisional sutures, collisional magmatic zones, and collisional deformation zones within collisional orogens.Synthesizing the architecture and tectonic evolution of collisional orogens within the ETMD and comparisons with other collisional orogenic systems have led to the identification of four basic types of collision: orthogonal and asymmetric (e.g., the Tibetan collision), orthogonal and symmetric (Pyrenees), oblique and symmetric (Alpine), and oblique and asymmetric (Zagros). The tectonic evolution of collisional orogens typically includes three major processes: (1) syn-collisional continental convergence, (2) late-collisional tectonic transform, and (3) post-collisional crustal extension, each forming distinct types of ore deposits in specific settings. The resulting synthesis leads us to propose a new conceptual framework for the collision-related metallogenic systems, which may aid in deciphering relationships among ore types in other comparable collisional orogens. Three significant processes, such as breaking-off of subducted Tethyan slab, large-scale strike-slip faulting, shearing and thrusting, and delamination (or broken-off) of lithosphere, developed in syn-, late- and post-collisional periods, repsectively, were proposed to act as major driving forces, resulting in the formation of the collision-related metallogenic systems. Widespread appearance of juvenile crust and intense inteaction between mantle and crust within the Himalayan–Zagros orogens indicate that collisional orogens have great potential for the discovery of large or giant mineral deposits.  相似文献   

16.
贺西地区晚古生代早中期同沉积断层的发现及其意义   总被引:1,自引:0,他引:1  
贺西地区处于北祁连加里东褶皱带、阿拉善地块与鄂尔多斯地块的交汇处,该区晚古生代早中期处于早古生代洋盆体制与中生代陆内盆地发育期的转换时期,其盆地性质及成因争议颇多。在贺兰山地区工作中,作者发现晚泥盆世、早石炭世同沉积断层,并详细追踪了上泥盆统、下石炭统与上下地层的接触关系;结合野外相关地质现象及前人的区域地质研究成果,对贺西地区晚古生代早期盆地的性质及其成因进行了讨论,认为该期盆地既非碰撞裂谷,也非前陆盆地,而是造山后伸展型上叠盆地,同时认为该伸展盆地的形成与古特提斯洋打开呈现同步性,具有一定的区域地质意义。   相似文献   

17.
中国大地构造特征的新研究   总被引:2,自引:0,他引:2  
<正> 1945年以来,著者和他的同事们发表了一系列书刊和论文,阐述中国大地构造演化,探讨中国大地构造的某些突出特点。近年来,随着新资料的迅速积累和受到板块构造学说的启发,著者认为有必要重新考虑一些旧的结论,并对同一课题提出新的观点。由于篇幅限制,在此只能简而叙之。  相似文献   

18.
陆缘扩张型地洼盆地系及其形成机制探讨   总被引:9,自引:5,他引:4  
本文提出“陆缘扩张型地洼盆地系”这一概念,以突出表述分布于东亚陆缘壳体之上,形成于地洼余动期的张性地洼盆地系列的壳体演化—动力环境。指出陆缘海中的裂陷盆地的成因难于与大洋板块俯冲导致弧后扩张的理论模式相联系,也不同于大西洋型盆地,而是大陆地壳演化到地洼余动期,并经历过华夏期地洼型造山运动之后拉伸裂陷的结果。论证了“岩石圈底层剥落、华夏期地洼造山带拉伸裂陷”是东亚陆缘扩张发生的一种重要机制,进而建立了由华夏期地洼型挤压造山带到盆岭型构造带和陆缘海盆地系的构造发展模式。  相似文献   

19.
The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high-level magma chambers (496-482 Ma). It also induced uplift and erosion of deeply rooted crystalline complexes and triggered the development of a successor basin filled with predominantly clastic greywacke-arkosic sediments. The study demonstrates that the basement rocks exposed in the Habach terrane might be the 'missing link' between similar units of the more westerly positioned External domain (i.e., Aar, Aiguilles Rouges, Mont Blanc) and the Austroalpine domain to the east (Oetztal, Silvretta).  相似文献   

20.
In the general discussion on the Variscan evolution of central Europe the pre-Mesozoic basement of the Alps is, in many cases, only included with hesitation. Relatively well-preserved from Alpine metamorphism, the Alpine External massifs can serve as an excellent example of evolution of the Variscan basement, including the earliest Gondwana-derived microcontinents with Cadomian relics. Testifying to the evolution at the Gondwana margin, at least since the Cambrian, such pieces took part in the birth of the Rheic Ocean. After the separation of Avalonia, the remaining Gondwana border was continuously transformed through crustal extension with contemporaneous separation of continental blocks composing future Pangea, but the opening of Palaeotethys had only a reduced significance since the Devonian. The Variscan evolution in the External domain is characterised by an early HP-evolution with subsequent granulitic decompression melts. During Visean crustal shortening, the areas of future formation of migmatites and intrusion of monzodioritic magmas in a general strike–slip regime, were probably in a lower plate situation, whereas the so called monometamorphic areas may have been in an upper plate position of the nappe pile. During the Latest Carboniferous, the emplacement of the youngest granites was associated with the strike–slip faulting and crustal extension at lower crustal levels, whereas, at the surface, detrital sediments accumulated in intramontaneous transtensional basins on a strongly eroded surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号