首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An explanation is offered for the impulsive increase in the concentration of cosmogenic radiocarbon in annual tree rings (Δ14C ~ 12‰) from AD ?775. A possible cause of such an increase could be the high-energy emission from a Galactic gamma-ray burst. It is shown that such an event should not lead to an increase in the total production of 10Be in the atmosphere, as distinct from the effect of cosmic-ray fluxes on the atmosphere. At the same time, the production of an appreciable amount of 36Cl, which can be detected in Greenland and Antarctica ice samples of the corresponding age, should be expected. This allows the effects caused by a gamma-ray burst and anomalously powerful proton events to be distinguished.  相似文献   

2.
In this work we investigate the variations of the Earth’s rotation in the interval of periods from 2 to 8 years using the longest available observational series obtained both by means of astrometry and space geodesy. We found an abrupt change of the variation pattern in the middle of the 1980s, when classical ground-based astrometric facilities for studying the Earth Rotation Parameters (ERP) were replaced with space geodesy methods. Variations with a 6-year periodicity and ∼0.2-ms amplitude practically disappeared (space geodesy instruments did not detect these variations right from the start), but the 2- to 4-year periodicities increased in amplitude and began to dominate in this frequency range under consideration. In this study, we analyze some possible excitation sources and possible causes of the change in the variability pattern.  相似文献   

3.
The appearance of features with cusp points on the diagrams of changes in the coordinates of the Earth’s instantaneous pole (polhodes) is considered as the result of mapping onto the plane of its displacement over the surface during the Earth’s rotational-translational motion. The results of qualitative and quantitative analyses of the data on the coordinates of the Earth’s instantaneous pole are discussed. The basic principles of the theory of Whitney singularities and their application for explaining the bifurcations of the equilibrium positions for the Zeeman catastrophe machine (Arnold 1990) are used in the analyses.  相似文献   

4.
5.
6.
The effect of the Earth??s compression on the physical libration of the Moon is studied using a new vector method. The moment of gravitational forces exerted on the Moon by the oblate Earth is derived considering second order harmonics. The terms in the expression for this moment are arranged according to their order of magnitude. The contribution due to a spherically symmetric Earth proves to be greater by a factor of 1.34 × 106 than a typical term allowing for the oblateness. A linearized Euler system of equations to describe the Moon??s rotation with allowance for external gravitational forces is given. A full solution of the differential equation describing the Moon??s libration in longitude is derived. This solution includes both arbitrary and forced oscillation harmonics that we studied earlier (perturbations due to a spherically symmetric Earth and the Sun) and new harmonics due to the Earth??s compression. We posed and solved the problem of spinorbital motion considering the orientation of the Earth??s rotation axis with regard to the axes of inertia of the Moon when it is at a random point in its orbit. The rotation axes of the Earth and the Moon are shown to become coplanar with each other when the orbiting Moon has an ecliptic longitude of L ? = 90° or L ? = 270°. The famous Cassini??s laws describing the motion of the Moon are supplemented by the rule for coplanarity when proper rotations in the Earth-Moon system are taken into account. When we consider the effect of the Earth??s compression on the Moon??s libration in longitude, a harmonic with an amplitude of 0.03?? and period of T 8 = 9.300 Julian years appears. This amplitude exceeds the most noticeable harmonic due to the Sun by a factor of nearly 2.7. The effect of the Earth??s compression on the variation in spin angular velocity of the Moon proves to be negligible.  相似文献   

7.
Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth–Moon \(\hbox {L}_{1}\) and \(\hbox {L}_{2}\) points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun–Earth–Moon restricted four-body problem until its insertion, with a second impulse, onto the \(\hbox {L}_{2}\) stable manifold in the Earth–Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid’s initial obit to the stable manifold associated with Earth–Moon \(\hbox {L}_{2}\) point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun–Earth circular restricted three-body problem and subsequent transfer to the Earth–Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth–Moon system.  相似文献   

8.
In this paper, the mathematical algorithm elaborated by González, Getino and Farto (1998) is applied to four different nonrigid Earth models, in order to obtain the analytical expressions of the corresponding free frequencies. The solutions are studied, and the contributions of the different considered effects are evaluated. A numerical integration is also carried out, showing the validity of the obtained analytical solutions.  相似文献   

9.
We present the results of our processing of the first observations of extragalactic radio sources obtained with the eight-element International VLBI Network, which includes the Svetloe Russian Radio Astronomy Observatory equipped with a Mark 3A recording terminal. Our observations and their processing yielded highly accurate coordinates (in meters) of the Svetloe Observatory in the ITRF 2000 system: X = 2730173.854 ± 0.002, Y = 1562442.668 ± 0.004, Z = 5529969.069 ± 0.007. We also show that including the Svetloe Observatory in the International Network led to an appreciable improvement in the accuracy of determining the Earth’s rotation parameters (microarcseconds for the coordinates of the pole and nutation angles, microseconds for Universal Time): Xp = ?154683 ± 77, Yp = 361809 ± 59, UT1-UTC = ?325162.9 ± 2.5, Δψ = ?53147 ± 114, Δε = ?2286 ± 47.  相似文献   

10.
A study of the Earth’s rotation in space reveals a complex pattern of variations in its orientation, the excitation mechanisms of these variations, and their manifestations in various natural processes. The Earth’s rotation rate is not constant but exhibits complex fluctuations that account for some fraction of 108 (corresponding to variations of several milliseconds (ms) in the length of the day). These variations span a wide spectrum of time scales, from hours to centuries or longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. We discuss the results of our statistical comparison of long series of observations to reveal the most coherent variations. The spectral composition of the experimental time series has been determined using modified periodogram and single-channel autoregression methods. A comparative analysis has been performed by a two-channel autoregression spectral estimation method. The results of our comparison of the time series suggest that the fluctuations with periods of about 73 years are highly coherent.  相似文献   

11.
Is there an asteroid type or meteorite class that best exemplifies the materials that went into the Earth? Carbonaceous chondrites were once the objects of choice, and in the minds of many this choice is still valid. However, the origin of primitive chondritic meteorites is unclear. At the extremes they could either be fragments of very small parent bodies that never became hot enough to undergo geochemical modification other than mild lithification, or remnants of the uppermost layers of a body that had undergone a significant degree of internal differentiation, while the top layers remained cool due to radiative heat loss or loss of volatiles to space. This latter case is problematic if one considers these objects as precursors to the Earth since the timescale for the evolution of such a small body could be longer than the timescale for the accretion of the Earth. Large-scale circulation of materials in the primitive solar nebula could greatly increase the diversity of materials near 1 AU while also making the entire inner solar system both more homogeneous and much wetter than previously expected. The total mass of the nebula is an important, but poorly constrained factor controlling the growth of planetesimals. There is also a selection effect that dominates our sampling of the planetesimals that may have existed 4.5 billion years ago; namely, small fragile bodies are more likely to be lost from the system or ground down by collisions between small bodies, yet these are precisely those that may have dominated the population from which the Earth accreted. The composition of these aggregates could have played a very important role in the early chemical evolution of the Earth. In particular, the Earth may have been much wetter and richer in hydrocarbons and other reducing materials than previously suspected.  相似文献   

12.
We consider the history of discovery and justify the existence in the Solar system of a new class of bodies—minicomets, i.e., bodies of cometary nature and composition but of low mass. Two classes of minicomets are distinguished: icy ones similar to the Tunguska meteorite, and snow ones, which break up at high altitudes.  相似文献   

13.
A set of spherical harmonics is the most widely used representation of the Earth’s gravity potential. This series converges outside and on the surface of a reference sphere enveloping the Earth. However, the Earth’s surface is better approximated by the reference ellipsoid—a compressed ellipsoid of revolution that covers the entire Earth. The gravity potential can be expanded in a series over ellipsoidal harmonics on the surface of the reference ellipsoid and on the surface of other external confocal ellipsoids of revolution. In contrast to spherical harmonics, depending on the associated Legendre functions of the first kind, ellipsoidal harmonics depend also on the associated Legendre functions of the second kind. The latter contain the very slowly converging hypergeometric Gauss series. The number of series increases with increasing the order of their derivatives. In this work, we derived new series for the gravitational potential of the Earth and its derivatives over ellipsoidal harmonics. Starting from the first order derivative, all the series corresponding to higher order derivatives depend on the same two hypergeometric Gauss series. The latter converges considerably faster than that for the hypergeometric series previously used when computing the gravity potential and its derivatives.  相似文献   

14.
The main points are presented of a new hypothesis of the origin of the Earth—Moon system, developed on the basis of Savi's (1961) theory of the origin of rotation of celestial bodies. The cooling off and contraction due to gravitational attraction on vast particle systems, with the pushing out of electrons from atom shells result in a continually increasing density. Depending on the amount of mass, this pushing out can lead to the expulsion of electrons and the creation of a magnetic field by which a rotational motion is brought about. These conditions are satisfied for the Earth's mass and all larger masses. If the Earth and the Moon formed a unique body, the protoplanet, then once rotational motion had begun, the primeval spherical body must have taken the shape of a large Jacobi ellipsoid. New condensation followed, however no longer solely around the centre of the protoplanet, but also along the edge of the ellipsoid, the process leading to the creation of the dual Earth—Moon system.  相似文献   

15.
We consider the processes related to the formation of the so-called foreshock region upstream of the Earth’s bow shock. We suggest a model based on the surfing of pick-up ions in the bow shock front in terms of which the ion acceleration mechanism in the front can be explained. We ascertain the physical conditions under which the accelerated ions lie upstream of the shock front and determine the direction of motion of the energetic ions. We conclude that it is this population of energetic ions (longitudinal beams) that plays a major role in forming the ion foreshock boundary.  相似文献   

16.
The theory of velocity dependent inertial induction, based upon extended Mach’s principle, has been able to generate many interesting results related to celestial mechanics and cosmological problems. Because of the extremely minute magnitude of the effect its presence can be detected through the motion of accurately observed bodies like Earth satellites. LAGEOS I and II are medium altitude satellites with nearly circular orbits. The motions of these satellites are accurately recorded and the past data of a few decades help to test many theories including the general theory of relativity. Therefore, it is hoped that the effect of the Earth’s inertial induction can have any detectable effect on the motion of these satellites. It is established that the semi-major axis of LAGEOS I is decreasing at the rate of 1.3 mm/d. As the atmospheric drag is negligible at that altitude, a proper explanation of the secular change has been wanting, and, therefore, this paper examines the effect of the Earth’s inertial induction effect on LAGEOS I. Past researches have established that Yarkovsky thermal drag, charged and neutral particle drag might be the possible mechanisms for this orbital decay. Inertial induction is found to generate a perturbing force that results in 0.33 mm/d decay of the semi major axis. Some other changes are also predicted and the phenomenon also helps to explain the observed changes in the orbits of a few other satellites. The results indicate the feasibility of the theory of inertial induction i.e. the dynamic gravitation phenomenon of the Earth on its satellites as a possible partial cause for orbital decay.  相似文献   

17.
Based on the astronomical ephemerides DE-406, theoretical calculations have been performed of the interannual variability of the Earth’s insolation related to celestial-mechanical processes for 365 points of a tropical year in the time period from 1900 to 2050. It has been determined that the average amplitude of variations of the interannual insolation is 0.310 W/m2 (0.023% of the solar constant). The calculated variations are characterized by strict periodicity that corresponds with the length of a synodic month. Connection between the extreme values of the calculated insolation variability and syzygies has been defined. The average amplitude of the calculated variability exceeds by 1.7 times (0.01% of the solar constant) the amplitude of the interannual variability in the 11-year variation of the total Earth’s insolation.  相似文献   

18.
Long-wave energy emitted by the Earth-atmosphere into space is characterized by changes in power over time that always lag behind the changes in power of the absorbed solar radiation due to slow variation in enthalpy of the Earth-atmosphere system. Long-term variation of the solar energy radiation absorbed by the Earth remains uncompensated by the energy radiated into space over the interval of time that is determined by the thermal inertia. The basic state of the climate system is when the debit and credit sides in the Earth’s global annual mean energy budget (including the air and water envelopes) are almost always unbalanced. The annual mean balance of the heat budget of the Earth-atmosphere over a long time period will reliably define the behavior and magnitude of the energy excess accumulated by the Earth or energy deficit to allow us to determine adequately and to predict beforehand the trend and amplitude of the forthcoming climate change using the prognosis of variations in the total solar irradiance (solar constant). The decrease in solar constant has been observed since the early 1990s. The Earth as a planet will have a negative balance in the energy budget in the future as well, because the Sun is entering the decline phase of the bicentennial luminosity changes. This will lead to a drop in temperature in approximately 2014. The increase in albedo and decrease in greenhouse gas concentration in the atmosphere will result in the additional decrease in absorbed portion of the solar energy and reduced greenhouse effect. The additional drop in temperature exceeding the effect of decreased solar constant can occur as a result of successive feedback effects. A deep bicentennial minimum in solar constant is to be anticipated in 2042 ± 11 and the 19th Little Ice Age (for the last 7500 years) may occur in 2055 ± 11.  相似文献   

19.
In this paper, we have considered that the Moon motion around the Earth is a source of a perturbation for the infinitesimal body motion in the Sun–Earth system. The perturbation effect is analyzed by using the Sun–Earth–Moon bi–circular model (BCM). We have determined the effect of this perturbation on the Lagrangian points and zero velocity curves. We have obtained the motion of infinitesimal body in the neighborhood of the equivalent equilibria of the triangular equilibrium points. Moreover, to know the nature of the trajectory, we have estimated the first order Lyapunov characteristic exponents of the trajectory emanating from the vicinity of the triangular equilibrium point in the proposed system. It is noticed that due to the generated perturbation by the Moon motion, the results are affected significantly, and the Jacobian constant is fluctuated periodically as the Moon is moving around the Earth. Finally, we emphasize that this model could be applicable to send either satellite or telescope for deep space exploration.  相似文献   

20.
This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the \(L_1\) point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the \(L_1\) or \(L_2\) points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号