首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen isotope analyses of five olivines from the Darrington peridotite, Washington, yield δO18 values of +7.3 to +8.9%. which are consistent with derivation of these rocks from a serpentinite precursor. The isotopic data are compatible with mineralogical, textural and chemical evidence that most of the Darrington peridotites have formed by deserpentinization. Olivine from a single, petro-graphically distinct peridotite sample has a δO18-value of +5.2%. which is within the field of high-temperature olivines. The isotopic and textural evidence indicate that this is a partially recrystallized peridotite tectonite.Oxygen and carbon isotope analyses of dolomites from olivine-carbonate rocks indicate that they could have originated by introduction of atmospheric CO2 via meteoric waters during the formation of ophidolomites or ophicalcites. Subsequent metamorphism and reequilibration have modified the δO18-values.  相似文献   

2.
Stromatic and schlieren-type migmatites are a major lithology in the type section of the Skagit Gneiss complex in the North Cascades Range of Washington State, USA. Migmatite mesosomes are chiefly biotite schist, amphibolite, and orthogneiss, in decreasing order of abundance. Leucosomes are predominantly leucotrondhjemites with a very limited range of composition that is nearly independent of associated mesosome type. Melanosomes, consisting mainly of biotite and/or hornblende±garnet, are inconsistently developed and absent in places. The age of migmatization is not well established, but appears to be Late Cretaceous or early Tertiary. This is also the age of syntectonic tonalite to trondhjemite intrusives that are predominant in most parts of the Skagit complex. Although temperatures in excess of 700° C and pressures as high as 10 kb occurred, there is no evidence for widespread partial melting of the mesosomes with which the migmatites are closely associated. Mass balance calculations preclude an origin by injection of a silicate melt or hydrothermal fluid unless accompanied by metasomatic replacement reactions. Mass balance relationships also show that the Skagit migmatites could not have formed solely by closed system processes such as partial melting or metamorphic segregation, unless the mesosomes present were not the protolith from which the migmatites formed. Field, petrographic and geochemical data indicate that an origin by migmatization of a missing mesosome is quite unlikely. The most feasible process of migmatization appears to be infiltration of an aqueous fluid into a metamorphic protolith along fracture or foliation planes. This triggers a variable degree of metamorphic segregation or possibly minor partial melting. Unmixing of leucosomes and melanosomes from the mesosome protolith must be accompanied by metasomatic replacement, but the total mass transfer required is only a few wt%.  相似文献   

3.
Garnet Sm–Nd and zircon U–Pb ages, and pressure–temperature–time paths elucidate Late Cretaceous crustal thickening which occurred within magmatic arc rocks of the Insular Superterrane. Voluminous tonalitic magma of the Mount Stuart batholith intruded at <3 kbar into upper crustal sedimentary rocks between 96 and 91 Ma, with initial intrusion prior to garnet growth in the metasedimentary rocks. Arc plutonism then shifted northward as crustal thickening commenced. Initial garnet growth, locally with kyanite and staurolite replacing andalusite, at c. 91 Ma was directly associated with intrusion of granodiorite to tonalite sheets at 7 kbar, north of the Mount Stuart batholith, within the Nason Ridge Migmatitic Gneiss. Subsequent heating and garnet growth, which postdates emplacement of large plutons, occurred between 88 and 86 Ma. This late garnet growth occurred at pressures of 6–8 kbar. The history of garnet growth and intrusion indicates that initial garnet zone and higher temperature metamorphism was restricted to contact aureoles. However, later widespread garnet growth at higher pressure probably resulted from heating as the orogenic wedge approached thermal equilibrium after crustal thickening. We conclude that metasedimentary rocks outside narrow contact aureoles remained at temperatures significantly below those of garnet growth and that the growth of garnet lasted <6 Myr. Heating to temperatures that stabilized garnet after pluton emplacement is compatible with intrusion of arc plutons into an accretionary wedge (Chiwaukum Schist) which was tectonically thickened and/or overthrust causing loading and thermal relaxation.  相似文献   

4.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

5.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

6.
ABSTRACT A comprehensive approach using palaeontology, petrography, stable isotope geochemistry and biomarker analyses was applied to the study of seven small methane‐seep carbonate deposits. These deposits are in the Oligocene part of the Lincoln Creek Formation, exposed along the Canyon and Satsop Rivers in western Washington. Each deposit preserves invertebrate fossils, many representing typical seep biota. Authigenic carbonates with δ13C values as low as ?51‰ PDB reveal that the carbon is predominately methane derived. Carbonates contain the irregular isoprenoid hydrocarbons 2,6,11,15‐tetramethylhexadecane (crocetane) and 2,6,10,15,19‐pentamethylicosane (PMI), lipid biomarkers diagnostic for archaea. These lipids are strongly depleted in 13C (δ13C values as low as ?120‰ PDB), indicating that archaea were involved in the anaerobic oxidation of methane. Small filaments preserved in the carbonate may represent methanotrophic archaea. Archaeal methanogenesis induced the formation of a late diagenetic phase, brownish calcite, consisting of dumbbell‐shaped crystal aggregates that exhibit δ13C values as high as +7‰ PDB. Clotted microfabrics of primary origin point to microbial mediation of carbonate precipitation. Downward‐directed carbonate aggregation in the seeps produced inverted stromatactoid cavities. Large filaments, interpreted as green algae based on their size, shape, arrangement and biomarkers, imply that deposition occurred, in places, in water no deeper than 210 m.  相似文献   

7.
A mandible identified as noble marten (Martes americana nobilis) recovered from sediments dating to 11,800 cal yr BP and a humerus identified as M. a. cf. nobilis recovered from sediments dating from 13,100 to 12,500 cal yr BP at the Marmes Rockshelter archaeological site in southeastern Washington represent the first record of this taxon in the state. Mammalian taxa associated with the Marmes Rockshelter noble marten represent a diversity of open mesic habitats corroborating earlier analyses of other records of the noble marten in the western United States and exemplify how paleozoologists determine the ecology and environmental predilections of extinct taxa. The recovery site represents the topographically lowest record of this species in western North America and the farthest north record in the United States. Future research should examine known late-Quaternary Martes spp. remains from British Columbia and Alberta to fill in the 2200-km geographic gap in the known distribution of this taxon between a record in the northern Yukon and those in the western United States, and to refine our knowledge of noble marten paleoecology.  相似文献   

8.
Amphibole fractionation in the deep roots of subduction-related magmatic arcs is a fundamental process for the generation of the continental crust. Field relations and geochemical data of exposed lower crustal igneous rocks can be used to better constrain these processes. The Chelan Complex in the western U.S. forms the lowest level of a 40-km thick exposed crustal section of the North Cascades and is composed of olivine websterite, pyroxenite, hornblendite, and dominantly by hornblende gabbro and tonalite. Magmatic breccias, comb layers and intrusive contacts suggest that the Chelan Complex was build by igneous processes. Phase equilibria, textural observations and mineral chemistry yield emplacement pressures of ∼1.0 GPa followed by isobaric cooling to 700°C. The widespread occurrence of idiomorphic hornblende and interstitial plagioclase together with the lack of Eu anomalies in bulk rock compositions indicate that the differentiation is largely dominated by amphibole. Major and trace element modeling constrained by field observations and bulk chemistry demonstrate that peraluminous tonalite could be derived by removing successively 3% of olivine websterite, 12% of pyroxene hornblendite, 33% of pyroxene hornblendite, 19% of gabbros, 15% of diorite and 2% tonalite. Peraluminous tonalite with high Sr/Y that are worldwide associated with active margin settings can be derived from a parental basaltic melt by crystal fractionation at high pressure provided that amphibole dominates the fractionation process. Crustal assimilation during fractionation is thus not required to generate peraluminous tonalite.  相似文献   

9.
10.
The Colville Igneous Complex is located within the Eocene MagmaticBelt of the North American Cordilleran interior. It straddlesthe US–Canadian border in northeast Washington and southernBritish Columbia. The complex consists of three intrusive andtwo extrusive phases, the first extrusive phase being contemporaneouswith the latter two intrusive phases. As a consequence of sub-solidusre-equilibration in the plutonic rocks, this study concentrateson the two extrusive phases, the Sanpoil Volcanic Formationand the Klondike Mountain Formation. The Sanpoil Volcanic Formationconsists of andesites, dacites and rare trachyandesites (SiO2= 55–70 wt %) exhibiting a slight decrease in total alkalis(Na2O + K2O) with increasing silica. The Klondike Mountain Formationconsists of basalts, basaltic andesites, andesites, dacitesand rhyolites (SiO2 = 51–75 wt %) with total alkalis increasingwith increasing silica. The calc-alkaline affinity of the rocksof the Colville Igneous Complex, coupled with the presence ofa ‘subduction signature’ of enriched large ion lithophileelements (LILE) and depleted high field strength elements (HFSE),has traditionally been attributed to petrogenesis in a subduction-relatedmagmatic arc, the ‘Challis Arc’. New trace and rareearth element and isotopic data (87Sr/86Sri,  相似文献   

11.
The Big Jim complex is a concentrically zoned ultramafic to felsic plutonic complex which intruded the pelitic Chiwaukum schist. Most of the major plutonic rock types (from websterite through hornblendite, gabbronorite, hornblende gabbro and diorite, to granodiorite) enclose harzburgite and metaperidotite xenoliths similar to foliated metaperidotite lenses included in the Chiwaukum schist. The larger xenoliths preserve tectonite fabrics. All have Mg#'s (mole fraction MgO/(MgO+FeO*)) from 0.90 to 0.89, the same as those of Chiwaukum metaperidotites, and distinctly different from undeformed Big Jim dunite (Mg#'s 0.84 to 0.82) and websterite (0.82 to 0.78). Contact relations indicate widespread, stepwise replacement of harzburgite by pyroxenite, hornblendite, gabbro and diorite. Thermodynamic modelling using an expanded regular solution model for silicate liquids (Ghiorso 1985; Ghiorso and Carmichael 1985) predicts that reaction between olivine (Fo90) and a liquid with the composition of Big Jim diorite +1.5 wt% H2O, at 1,100° C and 3 kb, would produce websterite (Mg#'s 0.75 to 0.81) and dunite (0.79 to 0.82). This process is exothermic and results in a negative change in volume, since it increases total solid mass. Under conditions of decreasing temperature, modelled crystal fractionation with assimilation of olivine reproduces important features of the chemical variation observed in the Big Jim complex where crystal fractionation alone fails. The Big Jim complex has affinities with other ultramafic to felsic plutonic complexes such as the Bear Mountain complex (Snoke et al. 1981, 1982) and the Emigrant Gap complex (James 1971). The latter have wehrlite and clinopyroxenite, rather than websterite, but both have concentric zoning, with olivine-bearing rock types surrounded by successively more felsic pyroxenite, gabbro and diorite. In general, concentrically zoned complexes of this type may form where magma reacts with mantle-derived wall rock or ultramafic cumulates. Assimilation of peridotite in fractionating magma may be important in subduction-related magmatic arcs.  相似文献   

12.
Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.  相似文献   

13.
东昆仑祁漫塔格花岗片麻岩记录的岩浆和变质事件   总被引:8,自引:6,他引:8  
东昆仑青海祁漫塔格尕林格一带原定为金水口群的眼球状花岗片麻岩,实际为新元古代早期形成的花岗岩.采用SHRIMP和LA-MC-ICP-MS两种方法对其中的锆石进行了测试,获得的年龄分别为938±5Ma和938±2Ma,代表了花岗岩的形成时代.花岗岩地球化学特征显示为S-型,属于钙碱性系列的弱过铝-过铝质花岗岩,εNd(0)为-9.4~-11.7,εNd(t=938Ma)为-0.6~-3.2,显示低的负值,tDM为1.6 ~2.1Ga,推测其源岩与白沙河岩组类似.东昆仑东段、柴北缘以及阿尔金均有1000~900Ma的花岗岩形成,表明这次岩浆活动比较广泛,可能与我国西部不同陆块间的汇聚有关,是我国西部新元古代克拉通基底形成的反映,同时也响应于全球Rodinia超大陆的形成.花岗片麻岩中1粒锆石边部获得了416±11Ma的年龄,与区域上志留-泥盆纪花岗岩形成时代一致,代表了新元古代花岗岩发生变质作用的时代,其中白云母40Ar/39Ar的坪年龄和等时线年龄为406±2Ma,代表了变质花岗岩的冷却年龄,这些年龄表明新元古代花岗岩卷入了古生代中期与祁漫塔格洋/海盆关闭有关的造山事件.  相似文献   

14.
Metamorphic temperatures of 330°–400° C are inferred for rocks from the Shuksan blueschist terrane in the North Cascades, Washington. The temperatures are calculated from 18O fractionations between coexisting quartz and magnetite using the equations of Bottinga and Javoy (1973). Pressures of approximately 7 kilobars are indicated by the Jadeite content of clinopyroxene coexisting with quartz+albite. Published experimental and theoretical studies of the stability of lawsonite and pumpellyite are consistent with the oxygen isotope temperatures and occurrence of these minerals in the Shuksan Suite.  相似文献   

15.
The Marmes Rockshelter archaeological site in southeastern Washington state contains a > 11 kyr stratigraphic record that was excavated in the 1960s but only recently analyzed in detail. We present the results of physical, chemical, and isotopic analyses of archived Marmes sediments from rockshelter, hillslope, and floodplain locations. Multiple lines of evidence including éboulis production, soil chemistry, and δ13C and δ18O signatures in soil organic matter and calcium carbonate suggest that relatively cool, moist conditions 10,600 to 9700 14C yr BP were followed by relatively warm and dry conditions as early as 9000 14C yr BP. Warm and dry conditions extended to the late Holocene, followed by a return to cooler and moister climate. The limited range of δ13C and δ18O values in Marmes paleosols suggests that the magnitude of moisture and temperature shifts was locally buffered in the lower Snake River Canyon but adequate to generate significant changes in sedimentation and soil formation, possibly due to nonlinear geological and pedological processes. These buffered canyon environments were well suited for establishing residential bases associated with foraging and logistical collecting strategies and may have minimized the influence of climate changes in food resource abundance.  相似文献   

16.
The ostracod fauna from the Floian (Lower Ordovician) strata of the Cordillera Oriental, Argentina (Acoite Formation) are documented. One new genus Acoitella and four species are recognized, two of which are new (Nanopsis victoria sp. nov. and Conchoprimitia frequens sp. nov.). The diversity of the Early Ordovician ostracod faunas of the Central Andean Basin is evaluated. Compared with other regions, the ostracod diversity, at generic and specific level, of the Cordillera Oriental was comparatively high during the Tremadocian (nine species recorded) and comparatively low during the Floian (four species recorded). The taxonomic composition of the fauna is similar during the entire Early Ordovician of the Cordillera Oriental, where it displays a high percentage of soanellids. The Floian assemblages are characterized by the dominance of the eridostracan C. frequens sp. nov. with a high percentage of nondimorphic palaeocopids: Nanopsis and two genera of the Soanellidae family (Saltite and Acoitella gen nov.). An ostracod shell bed is described and interpreted to be a parautochthonous assemblage, as a result of transport within the same habitat. The composition of the fauna, with the presence of Saltite and Nanopsis, shows significant affinities with East Gondwana. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Basaltic lavas from the Three Sisters and Dalles Lakes were erupted from two isolated vents in the central Washington Cascades at 370–400 ka and 2.2 Ma, respectively, and have distinct trace element compositions that exemplify an important and poorly understood feature of arc basalts. The Three Sisters lavas are calc-alkaline basalts (CAB) with trace element compositions typical of most arc magmas: high ratios of large-ion-lithophile to high-field-strength elements (LILE/HFSE), and strong negative Nb and Ta anomalies. In contrast, the Dalles Lakes lavas have relatively low LILE/HFSE and no Nb or Ta anomalies, similar to ocean-island basalts (OIB). Nearly all Washington Cascade basalts with high to moderate incompatible element concentrations show this CAB or OIB-like compositional distinction, and there is pronounced divergence between the two magma types with a large compositional gap between them. We show that this trace element distinction can be easily explained by a simple model of flux-melting of the mantle wedge by a fluid-rich subduction component (SC), in which the degree of melting (F) of the peridotite source is correlated with the amount of SC added to it. Distinctive CAB and OIB-like trace element compositions are best explained by a flux-melting model in which dF/dSC decreases with increasing F, consistent with isenthalpic (heat-balanced) melting. In the context of this model, CAB trace element signatures simply reflect large degrees of melting of strongly SC-fluxed peridotite along relatively low dF/dSC melting trends, consistent with derivation from relatively cold mantle. Under other conditions (i.e., small degrees of melting or large degrees of melting of weakly SC-fluxed peridotite [high dF/dSC]), either OIB- or MORB (mid-ocean ridge basalt)-like compositions are produced. Trace element and isotopic compositions of Washington Cascade basalts are easily modeled by a correlation between SC and F across a range of mantle temperatures. This implies that the dominant cause of arc magmatism in this region is flux melting of the mantle wedge. Received: 2 March 1999 / Accepted: 18 August 1999  相似文献   

18.
Serial sectioning and imaging with a flatbed scanner yielded the three-dimensional size and spatial distribution of garnet porphyroblasts in two garnet schists and one staurolite-bearing schist from the Everett Formation, north-west Connecticut. The dominant garnet-producing reaction in all samples was chlorite+quartz=garnet+H2O. The appearance of staurolite, and additional garnet growth in the staurolite-bearing sample, was due to the reaction chloritoid=garnet+staurolite+chlorite. Statistical measures of garnet spatial distributions, using the pair correlation function (PCF), indicate that garnet crystals are weakly to strongly clustered at length scales between 2 and 10 mm. Such clustered nucleation may reflect minor bulk compositional variations. Covariance measures between garnet size and nearest-neighbour distance, using the mark covariance function (MCF), suggest a very weak correlation between crystal size and nearest-neighbour distance for length scales of 2 mm or less. These statistical data suggest that if diffusional gradients were present around growing garnet crystals, they did not influence nucleation and growth patterns at length scales greater than c. 2 mm. Compositional maps, through the garnet centres, show that the smaller crystals have lower Mn core compositions relative to larger crystals, consistent with progressive nucleation during pro-grade metamorphism. Radius-rate plots calculated from compositional X-ray maps show similar growth rates for garnet crystals of different size, consistent with an interface-controlled growth model for garnet. The presence of minor diffusional gradients around growing garnet cannot be entirely dismissed, but the lack of observable reaction rims, the clustered spatial distribution and the radius-rate data are most consistent with an interface-controlled garnet growth model.  相似文献   

19.
Metamorphic basement rocks, that are exposed beneath the very low-grade to unmetamorphosed Upper Jurassic-Eocene formations north of the Torud fault zone within the Great Kavir Block, were investigated to elucidate the origin of their protoliths and the pressure and temperature conditions of metamorphism. The basement, previously assumed as a pre-Cambrian metamorphic complex, is mostly formed by amphibolite-facies orthogneisses (tonalite, granodiorite, and granite) with amphibolites and small amounts of metasediment-micaschists. Major- and trace-element geochemistry in combination with U–Pb age dating of zircon showed that the protoliths formed during Late Neoproterozoic continental arc magmatism that has also been identified in other tectonic blocks of Central Iran. In addition to quartz, feldspar(s), micas in orthogneisses, and amphibole + plagioclase in amphibolite, all rocks may contain garnet that shows prograde zoning. Kyanite was found only in some Al-rich amphibolite together with gedrite. The PT conditions of the rocks, based on conventional geothermobarometry and the pseudosection method, show a medium-pressure amphibolite-facies metamorphism. Ar–Ar age dating of muscovite reveals that this metamorphism occurred in the Middle Jurassic (166 Ma) and related to the closure of the Neotethyan basin.  相似文献   

20.
New structural and tectono‐metamorphic data are presented from a geological transect along the Mugu Karnali valley, in Western Nepal (Central Himalaya), where an almost continuous cross‐section from the Lesser Himalaya Sequence to the Everest Series through the medium‐high‐grade Greater Himalayan Sequence (GHS) is exposed. Detailed meso‐ and micro‐structural analyses were carried out along the transect. Pressure (P)–temperature (T) conditions and P–T–deformation paths for samples from different structural units were derived by calculating pseudosections in the MnNKCFMASHT system. Systematic increase of P–T conditions, from ~0.75 GPa to 560 °C up to ≥1.0 GPa–750 °C, has been detected starting from the garnet zone up to the K‐feldspar + aluminosilicate zone. Our investigation reveals how these units are characterized by different P–T evolutions and well‐developed tectonic boundaries. Integrating our meso‐ and micro‐structural data with those of metamorphism and geochronology, a diachronism in deformation and metamorphism can be highlighted along the transect, where different crustal slices were underthrust, metamorphosed and exhumed at different times. The GHS is not a single tectonic unit, but it is composed of (at least) three different crustal slices, in agreement with a model of in‐sequence shearing by accretion of material from the Indian plate, where coeval activity of basal thrusting at the bottom with normal shearing at the top of the GHS is not strictly required for its exhumation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号