首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
经测定,沈阳市土壤铅含量范围为22~2910.600m g/kg,平均值是270.297m g/kg。铅污染比较严重且空间变化大,局地污染非常严重。利用地统计方法研究了沈阳市土壤铅的空间结构和分布特征。结果显示,沈阳市土壤铅具有较好的空间结构性,利用半方差函数的结果进行克里格插值得到土壤铅含量的分布图。沈阳市有 6个土壤铅污染中心,其中以铁西区和太原街的污染比较突出。工业排放、汽车尾气和污灌是沈阳市铅污染的三大污染源。风险评价结果表明,铁西区属于极高风险区,儿童铅中毒的潜在风险非常大。  相似文献   

2.
黄勇  高博  王健康  李强  郭太君 《岩矿测试》2013,32(4):632-637
城市道路尘土中重金属污染已成为当前重大的环境问题之一.本文对我国西部石河子市城区道路尘土的重金属污染进行评价,利用电感耦合等离子体质谱法测定铅的含量及铅同位素组成,采用地积累指数法评价铅的污染程度.结果显示,石河子市城区道路尘土中重金属铅的含量范围为19.36 ~ 84.63 mg/kg,平均含量为37.85 mg/kg,高于当地土壤背景值,但明显低于我国其他大中型城市,表明当前石河子市的环境质量已经受到人为活动的干扰;尘土中铅的地积累指数在-0.59~1.54之间,平均值为0.30,属于轻度污染水平.利用铅同位素示踪法识别铅污染的来源,206pb/207Pb比值的范围是1.159 ~ 1.182,208 pb/207 Pb比值的范围是2.391 ~2.457,均接近于煤炭和建筑材料的铅同位素比值,初步判断石河子道路尘土的铅污染主要受到煤炭燃烧和城市建设的影响.  相似文献   

3.
南方某工业区周边土壤和蔬菜中铅的健康风险评估   总被引:2,自引:0,他引:2  
在南方某城市工业区周边采集了蔬菜样品100个、土壤样品145个,分析了土壤和蔬菜中铅的含量水平,对其健康风险进行了评估;并通过计算富集系数筛选出抗铅污染能力较强的蔬菜品种。研究区土壤中铅累积明显,共有135个土壤样品中的铅含量超过了二级土壤环境质量标准。蔬菜样品中铅含量范围为1.41~303.10mg·kg-1,均超过食品中污染物限量标准,超标率达到100%。其中,叶类蔬菜的铅含量明显高于根茎类和瓜果类蔬菜;瓜果类蔬菜的铅富集系数最低,抗污染能力最强,而根茎类和叶类蔬菜对人群健康存在严重的健康风险。  相似文献   

4.
赣南离子型稀土矿的大肆开采,以及尾矿废渣不合理处置,造成矿区周边环境中重金属铅含量超标,破环矿区生态环境。本文利用不同剂量(质量分数分别为5%、10%和15%)的天然及改性凹凸棒作为钝化剂,利用扫描电镜和傅里叶红外光谱对两种钝化剂的表面特征和官能团进行分析,采用BCR重金属连续提取法对钝化能力和效果进行评价,并以此研究土壤中铅的形态变化,借鉴国外的重金属TCLP提取法评估重金属污染土壤的环境质量。结果表明:经过50d的培养,土壤pH值从4.76显著升高至接近7.0。改性后凹凸棒使铅的酸提取态含量从25.69mg/kg降低至7.42mg/kg,并促进其向残渣态转化,残渣态含量比对照组增加了1.38倍,TCLP提取态含量比对照组降低了65.70%,从而显著降低了铅的生物可利用度和生态风险。与天然凹凸棒相比,改性后凹凸棒对稀土尾矿土壤修复具有较为良好的效果。  相似文献   

5.
方金梅 《岩矿测试》2018,37(3):327-335
中国南方红壤区铅的分布特征、运移规律及生物效应尚不明确。本文以福建龙海市土壤和稻米为研究对象,系统分析了土壤铅的分布特征、形态组成、生物富集能力及影响机理,总结了铅在母岩-土壤-稻米迁移过程的富集分配规律。结果表明,龙海市中部区域表层土壤的铅含量高,其余区域较低,92.5%样点值在10~90 mg/kg,对应p H为4.0~7.5,强酸性和碱性土壤铅含量略低;稻米铅(0.018~0.398 mg/kg)超标率仅4.1%,对土壤铅的富集能力较弱(富集系数0.23%±0.16%),所以研究区土壤铅超标时稻米不一定超标。影响土壤铅的主要因素是成土母岩和土壤类型,不同成土母岩区的土壤铅含量规律为:第四纪海积物第四纪残坡积物花岗岩和酸性火山岩佛昙组基性玄武岩,不同土壤类型的铅含量规律为:潮土滨海盐土水稻土红壤赤红壤滨海风沙土。土壤铅有效态(离子交换态、水溶态)仅占铅全量的4.95%,强有机态和残渣态等其余形态合计占94.99%,说明土壤铅主要以稳定态存在,难于被植物吸收,进一步为合理解释"土壤铅超标而稻米不超标"这一现象提供了调查依据。研究还表明,稻米铅与表层土壤铅之间无明显相关性,保持土壤p H值在弱酸性至弱碱性范围可降低土壤铅活性。  相似文献   

6.
对荆州市郊的农田区、交通区和工业区土壤、汽车尾气、染料和煤等样品进行了铅含量和铅同位素组成研究.铅含量分析结果表明,工业区和交通区土壤均已受到一定的铅污染,其Pb含量平均值(32.80 μg/g和26.28 μg/g)均高于中国土壤平均值,但工业区受到的铅污染更严重.农田区土壤的Pb含量平均值(24.84μg/g)虽稍低,但也指示该区部分土壤已开始受到铅污染.土壤酸溶相Pb含量与全土Pb含量成显著正相关,指示土壤中的Pb主要分布在酸溶相中.铅同位素组成分析结果表明,工业区、交通区和农田区土壤以及土壤不同相(全土、土壤酸溶相和残渣相)具有不同的Pb同位素组成,且土壤的206Pb/204Pb和208Pb/204Pb比值大致具有如下规律:土壤残渣相>全土>士壤酸溶相.但是,全土的两组Pb同位素比值平均值更接近于酸溶相的.煤、汽车尾气和染料等环境样品具有比土壤变化范围更大的Pb同位素组成.208Pb/204Pb与206Pb/204Pb相关关系图显示,土壤酸溶相大致位于残渣相、汽车尾气和染料与煤组成的三角形内,表明土壤同时受到了汽车尾气、染料和煤的影响.综合对比分析所有样品的Pb含量和Pb同位素组成,结果表明自无Pb汽油的使用,交通区的Pb污染已大大降低,但工业区受到的Pb污染在加重.为防止土壤铅污染的进一步加重,今后需重点防范工业Pb的排放与污染.  相似文献   

7.
杭州市土壤铅污染的铅同位素示踪研究   总被引:27,自引:0,他引:27       下载免费PDF全文
根据杭州市40个土壤全铅和38个可溶相铅的统计分析,土壤中全铅平均含量为49.6×10-6,可溶相铅平均为21.4×10-6,城区表土的全铅高达76.1×10-6,显著高于全国土壤平均值。分析结果还显示,从农村→远郊→近郊→公路旁,土壤可溶相铅含量逐渐增加,且土壤的可溶相铅含量与深度具明显的负相关关系。表明杭州市土壤受到了不同程度的铅污染,污染程度由农村→远郊→近郊→公路旁→城区有明显的增高趋势。通过对茶园土壤中可溶相铅、残渣态铅及城区表土全铅的同位素组成对比分析发现,从土壤残渣态(代表土壤背景)→土壤可溶相→城区表层土壤全铅206Pb/207Pb比值有明显的降低。208Pb/(206Pb+207Pb)也有类似的变化趋势。将土壤与杭州市的汽车尾气、大气等环境样品进行对比发现,随着土壤受污染程度的增加,铅同位素组成逐渐向汽车尾气铅漂移,表明汽车尾气排放的铅为其主要污染源。  相似文献   

8.
长春市城市土壤铅同位素组成特征及其来源解析   总被引:3,自引:0,他引:3  
为查明长春市土壤铅的污染来源,采集了长春市表层(0~20 cm)土壤及城市环境污染端元(燃煤尘、汽车尾气尘,建筑尘)样品,采用X荧光光谱法(XRF)测定土壤Pb含量,用质谱仪测定各样品的铅同位素组成.分析结果表明,长春市表层土壤Pb平均质量分数44.72×10-6,是长春市土壤背景值(19.06×10-6)的2.35倍,已受到一定程度铅污染;长春市土壤铅同位素208Pb/207Pb和206Pb/207Pb比值变化较大,分别为2.249~2.473和1.158~1.213;各污染端元物质铅同位素组成差异较大,能很好区别各端元物质.运用铅同位素示踪技术追踪土壤铅的污染来源结果表明,长春市中心城区土壤铅污染主要来源于以热电二厂为代表的工业燃煤排放和历史汽车尾气残留,而与当前汽车尾气排放关系不大;建筑尘也一定程度上对城市土壤产生了影响.  相似文献   

9.
垃圾填埋场渗滤液中的重金属与土体发生物理化学反应,可能导致土体微观结构的改变,重金属等有毒物质得以扩散、运移,威胁人体健康和周边环境。为探究重金属污染对黄土宏观持水性及微观结构的影响,采用轴平移技术测得铅污染黄土的土-水特征曲线。通过扫描电子显微镜(SEM)、压汞(MIP)、X射线衍射(XRD)和Zeta电位试验,阐明细观结构变化特征。结果表明:铅污染黄土的进气值随铅离子浓度的增加而减小,当铅污染浓度由0 mg/kg增加至2 000 mg/kg时,进气值从19.18 kPa下降至12.12 kPa;铅污染导致持水性能降低,渗透系数随铅离子浓度的增加而增加,饱和渗透系数从7.92×10–8 m/s增加到3.73×10–7 m/s;铅污染引起的物理化学反应及Zeta电位的降低导致絮凝结构形成,小孔隙占比减小,中孔隙占比增加;铅污染引起的微观结构演化与宏观持水性和渗透性具有良好的对应关系。该研究结果可为重金属污染场地非饱和渗流及溶质运移等问题的研究提供重要参数。  相似文献   

10.
成都市近地表大气尘铅分布特征及源解析   总被引:7,自引:1,他引:7  
分析了成都市近地表大气尘样品铅及其同位素含量比的测定数据,铅含量变化范围为(119.76~1327.42)×10-6,均值为374.51×10-6,统计标准偏差为273.36,变异系数为0.73,说明成都市近地表大气尘铅含量变化大。燃煤飞灰的放射性成因铅明显高于汽油和柴油,可作为鉴别大气尘铅来源的证据。铅同位素含量数据表明成都市近地表大气尘的铅污染是复合污染源所致,其中,相对清洁区污染以建筑扬尘为主,中度污染区是汽车尾气和扬尘的叠加作用,重污染区是燃煤飞灰汽车尾气和工业污染源的综合表征。  相似文献   

11.
对沈阳煤田采空区地面沉陷、地下水污染和土壤重金属污染问题展开了深入的调查分析研究.结果表明:沈南煤田矿区各沉陷区面积为3.85~17.19km2,沈北煤田矿区各沉陷区面积为0.21~4.89km2.研究区地下水污染从山前地带到平原地区逐渐加重.东部山前地带工业不发达,污染较少;北部和南部地区地下水埋藏较深,污染源较少,不易造成污染,整体污染较轻;西部工业发达,污染源较多,地下水污染较重.沈阳市区土壤重金属污染较为普遍,以铁西区原工厂区为中心形成面积性污染,中心城区及于洪工业区存在Se、Zn、Pb、Hg高浓度区.  相似文献   

12.
Heavy metal pollution of soils has become a major concern in China as a consequence of rapid urbanization and industrialization in recent years. However, the evaluation on soil heavy metal pollution in Shenyang, the largest heavy industrial base city in China, has not yet been conducted. In this study, accumulation, chemical speciation, and vertical distribution Cu, Zn, Pb and Cd in soils were studied and pollution condition was assessed in Tiexi Industrial District of Shenyang, the largest and oldest industrial zone in Northeastern China. The results showed that in topsoil, the average concentration of total Cu, Zn, Pb, and Cd was 209.06, 599.92, 470.19 and 8.59 mg kg−1, respectively, much higher than the national threshold limit. The values of pollution index and integrated pollution index showed that the pollution level was Cd > Cu > Zn > Pb, and Cd, Cu and Zn belong to heavy pollution level. The residual, Fe and Mn oxide-bound, and organic-bound species accounted for about 90%, while carbonate-bound and exchangeable species accounted for about 10%. This study indicates that the soils in the industrial zone were widely and extremely polluted by multi-heavy metals as a result of long-term industrial activities.  相似文献   

13.
A total of 540 topsoil samples (0–15 cm), 188 subsoil samples (20–40 cm), and four individual soil profiles were collected in this study for mapping the Cu- and Pb-contaminated areas in soils of Zhangjiagang city, an industrialized city in the Yangtze River Delta region of China. Robust geostatistical methods were applied for identifying possible spatial outliers of Cu and Pb data, and then a sequential Gaussian simulation was employed for delineating the potential areas where Cu or Pb concentration was affected by diffuse pollution. The results showed that the spatial outliers of Cu and Pb were strongly associated with various types of factories. The anthropogenic input of Cu to soils at local hotspots was closely related to emissions of printing and dyeing, metallurgical, and chemical factories, whereas a lead oxide factory and a chemical factory resulted in a considerable increase of Pb in the topsoil of the study area. Approximately 30% of the total land area of the study was at potential risk from the Cu or Pb diffuse pollution resulting from rapid industrialization of the area over the past 20 years.  相似文献   

14.
An investigation on spatial distribution, possible pollution sources, and affecting factors of heavy metals in the urban–suburban soils of Lishui city (China) was conducted using geographic information system (GIS) technique and multivariate statistics. The results indicated that the topsoils in urban and suburban areas were enriched with metals, such as Cd, Cu, Pb, and Zn. Spatial distribution maps of heavy metal contents, based on geostatistical analysis and GIS mapping, indicated that Cd, Cr, Cu, Mn, Ni, Pb, and Zn had similar patterns of spatial distribution. Their hot-spot areas were mainly concentrated in the densely populated old urban area of the city. Multivariate statistical analysis (correlation analysis, principal component analysis, and clustering analysis) showed distinctly different associations among the studied metals, suggesting that Cr, Cu, Ni, Pb, Cd, and Zn had anthropogenic sources, whereas Co and V were associated with parent materials and therefore had natural sources. The Cd, Cr, Ni, Pb, and Zn contents were positively correlated with soil organic matter, pH, and sand content (p < 0.01). It is concluded that GIS and multivariate statistical methods can be used to identify hot-spot areas and potential sources of heavy metals, and assess soil environment quality in urban–suburban areas.  相似文献   

15.
The urban environment is of growing concern as its continued population increase in China. Due to the urbanization and industrialization, heavy metals have been continuously discharged into the soil recently, and creating the anthropogenic contamination. This study investigated heavy metals contamination in urban and suburban soils in Zhangzhou City, Fujian, China. Multivariate analysis and geographical information system technology were employed in source identification and contamination assessment of heavy metals in the city soils. The survey results indicated that the urban soils were contaminated by heavy metals, especially by Hg, Cd and Pb. The multivariate analysis demonstrated that the distribution of Cu, Zn, Cr and Ni was controlled by pedogenesis, Cd and Pb had been disturbed by industrialization in some urban locations, and Hg was mainly influenced by the hot-spring in some urban park sites. The distribution of heavy metals and soil pollution index suggested the soils of Zhangzhou City have been affected by human activities.  相似文献   

16.
西安地裂缝作为一种特殊的城市地质灾害,已经对基础设施造成很大的危害。长安路立交的破坏最为严重和典型,文章结合西安地裂缝的分布及活动特点,详细分析了地裂缝活动引起的长安路立交的破坏形式和特点。并对引起长安路立交破坏的原因做了进一步分析,得出了由于长安立交没有很好的排水措施导致地裂缝的异常活动从而引起桥梁破坏的结论。同时,文章还结合长安路立交的结构措施给出了在地裂缝带修建立交的结构措施建议。并最终得出了在地裂缝带修建城市立交等基础设施,应从采取措施减少地裂缝活动和采取合理的结构措施以适应地裂缝活动两方面进行综合考虑的结论。  相似文献   

17.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

18.
中国北方某城市近郊土壤中重金属污染现状及潜在危害   总被引:4,自引:0,他引:4  
通过中国北方某城市近郊土壤环境质量的系统调查发现,本区土壤中重金属污染物的化学组成主要为Hg、Cu、Pb、Zn、Se、Cd等;该城近郊土壤的重金属污染是一种典型的大面积、低含量的散漫型污染,局部存在着一些高含量的热点污染。污染物存在形式的研究显示,本区土壤中很有可能存在着潜在的重金属"化学定时炸弹"。  相似文献   

19.
In a reconnaissance study, trace amounts of Cd, Cu, Pb, and Zn were determined in “A-zone” soil from 22 locations in the Dayton, Ohio, area. Soil samples were collected at high-volume air monitoring sites in urban, suburban, and rural areas. Measurable amounts of the elements were found in all of the samples. Positive correlations occur between each metal and particulate matter, with correlation coefficients of aboutr=0.70, at the 99% confidence level. Natural background values for the elements were measured in soil from rural areas. Theoretical background values, which are very close to those measured, were calculated from the individual regression equations. Natural background levels do not exceed 1.00 ppm Cd, 15 ppm Cu, 25 ppm Pb, and 55 ppm Zn. The heavy metal contents of most soils in the area exceed background by factors of up to 3.0 for Cd, up to 4.5 for Cu, up to 11 for Pb, and up to 4.5 for Zn. Significant positive correlations among the metals suggest a common source (or sources) for at least some, if not most, of the heavy metals. For the most part, the highest metal values are found in soils near coal-burning plants. Fly ash from a local plant contains substantial amounts of the elements. The high lead values are largely due to vehicular exhaust. However, there is evidence that the metals can also come from the normal deterioration of vehicles. It appears that airborne pollution is an important source of heavy metals in Dayton area soils.  相似文献   

20.
High-precision Pb isotopic measurements on teeth and possible sources in a given area can provide important insights for the lead (Pb) sources and pathways in the human body. Pb isotopic analyses on soils from the area of Sofia, Bulgaria show that Pb is contributed by three end-members represented by two natural sources and leaded gasoline. Sequential leaching experiments reveal that the alumosilicate fraction of the soils is mainly controlled by natural Pb derived from two mountain massifs bordering the city. Around 1/3 to a half of the Pb in the soil leachates, however, can be explained by contamination from leaded gasoline. Contemporary teeth from Sofia residents show very similar Pb isotopic compositions to the soil leachates, also indicating that around 1/3 to a half of the Pb can be explained by derivation from leaded gasoline. The remarkable isotopic similarities between the teeth and the most labile fractions of the local soils suggest that the lead can be derived from the latter. Pb incorporation in the human body via soil-plant–human or soil–plant–animal–human chains is unlikely due to the fact that no significant farming occurs in the city area. The isotopic compositions of the local soil labile fractions can be used as approximation of the bioaccessible lead for humans. Considering all possible scenarios it appears that soil and/or soil-born dust inhalation and/or ingestion is the most probable pathway for incorporation of local soil lead in the local population. The high-precision Pb isotope data presented in this work indicate that apparently the local soil is what plays major role in the human Pb exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号