首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin oxidation products and 13C/12C ratios were compared as indicators of land-derived organic matter in surface sediments from the western Gulf of Mexico. Whole sediments were reacted with cupric oxide to yield phenolic oxidation products that indicated the types and relative amounts of the lignins that were present.Measurements of lignin concentration and carbon isotope abundances both indicated a sharp offshore decrease of land-derived organic matter in most areas of the western Gulf. This decrease results primarily from mixing of terrestrial and marine organic matter. The terrestrially derived material in these sediments has a lignin content similar to that of grasses and tree leaves. Flowering plants contribute most of the sedimented lignin compounds. These lignins apparently occur in the form of well-mixed plant fragments that are transported to sea by rivers and deposited primarily on the inner continental shelf.  相似文献   

2.
《Applied Geochemistry》1987,2(3):297-304
Sediment extracts from 81 piston cores taken in water depths between 70 and 1200 m on the Gulf of Mexico continental shelf and slope were analyzed for dibenzothiophenes by capillary gas chromatography with flame photometric detection (FPD). The major aromatic sulfur compounds detected were dibenzothiophene; methyl, ethyl and propyl dibenzothiophenes; two unidentified sulfur compounds; and a series of benzothiophenes. In general, benzothiophenes (BTs) were detected at only trace levels though this may be due to loss during the analysis. Dibenzothiophenes (DBTs) concentrations ranged from <1 to 1725 ng/g, with an average of 139 ng/g. Vertical distributions generally showed significant increases in DBTs concentrations with depth. DBTs distributions in sediment extracts were similar to oils produced in the northern Gulf of Mexico. Variations from this composition may be due to microbial degradation in the near subsurface. The vertical and molecular distribution of DBTs suggests that the source of DBTs in the Gulf of Mexico sediments studied is upward migrating petroleum. Two unidentified compounds are speculated to be derivatives of DBTs, caused by indigenous microbial activity. This study suggests that DBTs may be useful for detecting seepage from deeper, more mature, source rocks and/or reservoired petroleum.  相似文献   

3.
Amino acids and the bacterial biomarkers muramic acid and d-amino acids were quantified in the ultrafiltered dissolved, particulate and sedimentary organic matter (UDOM, POM and SOM) of the St. Lawrence system (Canada). The main objectives were to better describe the fate of terrigenous and marine organic matter (OM) in coastal zones and to quantify the bacterial contributions to OM composition and diagenesis. Regardless of their origin, the carbon (C) content of the particles substantially decreased with depth, especially near the water-sediment interface. Major diagenetic transformations of organic nitrogen (N) were revealed and important differences were observed between terrigenous and marine OM. Amino acid contents of particles decreased by 66-93% with depth and accounted for 12-30% of the particulate C losses in marine locations. These percentages were respectively 18-56% and 7-11% in the Saguenay Fjord where terrigenous input is important. A preferential removal of particulate N and amino acids with depth or during transport was measured, but only in marine locations and for N-rich particles. This leads to very low amino acid yields in deep marine POM. However, these yields then increased to a level up to three times higher after deposition on sediments, where SOM showed lower C:N ratios than deep POM. The associated increase of bacterial biomarker yields suggests an active in situ resynthesis of amino acids by benthic bacteria. The N content of the substrate most likely determines whether a preferential degradation or an enrichment of N and amino acid are observed. For N-poor OM, such as terrigenous or deep marine POM, the incorporation of exogenous N by attached bacteria can be measured, while the organic N is preferentially used or degraded in N-rich OM. Compared to the POM from the same water samples, the extracted UDOM was poor in N and amino acids and appeared to be mostly made of altered plant and bacterial fragments. Signs of in situ marine production of UDOM were observed in the most marine location. The POM entering the St. Lawrence Upper Estuary and the Saguenay Fjord appeared made of relatively fresh vascular plant OM mixed with highly altered bacterial debris from soils. In contrast, the POM samples from the more marine sites appeared mostly made of fresh planktonic and bacterial OM, although they were rapidly degraded during sinking. Based on biomarker yields, bacterial OM represented on average ∼20% of bulk C and approximately 40-70% of bulk N in POM and SOM, with the exception of deep marine POM exhibiting approximately two times lower bacterial contributions.  相似文献   

4.
The organic content of a number of sediments from the Carboniferous of northern England have been examined as a function of their depositional environment. Extraction of the sediments yielded the soluble organic matter whilst microscopic examination of polished blocks of shales enabled the detection of particles of organic detritus. A relationship between the amount of extract and the quantity of terrestrial plant material in the sediments has been established. However, the yield of extract (mg/g org. C) is higher in the more marine environment than the nonmarine environment. The proportion of saturated hydrocarbons in the extract appears to be related to the amount of identifiable organic matter (coal macerals) in the sediment. The n-alkane distribution patterns have been compared with these obtained from coal macerals. The suggestion that the pristane to phytane ratios may reflect the source material of the organic matter has been examined.  相似文献   

5.
To investigate controls on phytoplankton production along the Louisiana coastal shelf, we mapped salinity, nutrient concentrations (dissolved inorganic nitrogen (DIN) and phosphorus (Pi), silicate (Si)), nutrient ratios (DIN/Pi), alkaline phosphatase activity, chlorophyll and 14C primary productivity on fine spatial scales during cruises in March, May, and July 2004. Additionally, resource limitation assays were undertaken in a range of salinity and nutrient regimes reflecting gradients typical of this region. Of these, seven showed Pi limitation, five revealed nitrogen (N) limitation, three exhibited light (L) limitation, and one bioassay had no growth. We found the phytoplankton community to shift from being predominately N limited in the early spring (March) to P limited in late spring and summer (May and July). Light limitation of phytoplankton production was recorded in several bioassays in July in water samples collected after peak annual flows from both the Mississippi and Atchafalaya Rivers. We also found that organic phosphorus, as glucose-6-phosphate, alleviated P limitation while phosphono-acetic acid had no effect. Whereas DIN/Pi and DIN/Si ratios in the initial water samples were good predictors of the outcome of phytoplankton production in response to inorganic nutrients, alkaline phosphatase activity was the best predictor when examining organic forms of phosphorus. We measured the rates of integrated primary production (0.33?C7.01 g C m?2 d?1), finding the highest rates within the Mississippi River delta and across Atchafalaya Bay at intermediate salinities. The lowest rates were measured along the outer shelf at the highest salinities and lowest nutrient concentrations (<0.1 ??M DIN and Pi). The results of this study indicate that Pi limitation of phytoplankton delays the assimilation of riverine DIN in the summer as the plume spreads across the shelf, pushing primary production over a larger region. Findings from water samples, taken adjacent the Atchafalaya River discharge, highlighted the importance of this riverine system to the overall production along the Louisiana coast.  相似文献   

6.
The distribution and source of organic matter in reservoir sediments   总被引:2,自引:0,他引:2  
The bottom sediments of two reservoirs, one with significant river sediment input and one without, were analyzed for organic matter content. Lake Texoma sediments average 1.0% organic carbon, of which 0.26% organic carbon is deposited by the river sediments of the Red and Washita River deltas. In Fort Gibson reservoir, where there is minimal river sediment input, the organic carbon averages 1.2% and is deposited with a strong correlation to water depth (+0.9). There is a significant difference between the C/N ratio of Lake Texoma sediments (11.5) and Fort Gibson sediments (9.6). The higher C/N ratio is suggested to be a result of the larger input of terrestrial plant debris (with a high original C/N ratio) by the rivers draining into Lake Texoma and the relatively high resistance of the lignin material in the plant debris to decomposition in the reservoir sediments.  相似文献   

7.
This study was designed to determine the amount of particulate organic carbon (POC) introduced to the Gulf of Mexico by the Mississippi River and assess the influence of POC inputs on the development of hypoxia and burial of organic carbon on the Louisiana continental shelf. Samples of suspended sediment and supporting hydrographic data were collected from the river and >50 sites on the adjacent shelf. Suspended particles collected in the river averaged 1.8±0.3% organic carbon. Because of this uniformity, POC values (in μmol l?1) correlated well with concentrations of total suspended matter. Net transport of total organic carbon by the Mississippi-Atchafalaya River system averaged 0.48×1012 moles y?1 with 66% of the total organic carbon carried as POC. Concentrations of POC decreased from as high as 600 μmol l?1 in the river to <0.8 μmol l?1 in offshore waters. In contrast, the organic carbon fraction of the suspended matter increased from <2% of the total mass in the river to >35% along the shelf at ≥10 km from the river mouth. River flow was a dominant factor in controlling particle and POC distributions; however, time-series data showed that tides and weather fronts can influence particle movement and POC concentrations. Values for apparent oxygen utilization (AOU) increased from ~60 μmol l?1 to >200 μmol l?1 along the shelf on approach to the region of chronic hypoxia. Short-term increases in AOU were related to transport of more particle-rich waters. Sediments buried on the shelf contained less organic carbon than incoming river particles. Orgamic carbon and δ13C values for shelf sediments indicated 3 that large amounts of both terrigenous and marine organic carbon are being decomposed in shelf waters and sediments to fuel observed hypoxia.  相似文献   

8.
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.  相似文献   

9.
We determined biomarker concentrations and distributions for surface sediments from 54 sites in the Pearl River Estuary, China. We focus on a suite of four biomarker-based indicators for relative terrestrial to marine organic matter (OM) source: the branched-isoprenoid tetraether (BIT) index, the ratio of high/low molecular weight n-alcohols [(ΣC26–34/(ΣC16+18 + ΣC26–34)], an analogous ratio for n-fatty acids and the ΣC29-steroids/(ΣC29-steroids + brassicasterol) ratio. All four exhibit the same terrestrial to marine transition seen in previous bulk δ13C studies, but with an abrupt decrease in the relative terrestrial contribution across the delta front to pro-delta transition. Concentrations of terrestrially-derived biomarkers show no systematic decrease across the transition. Instead, the decrease in the proportion of terrestrial OM is due to a decrease in the sedimentation rate and associated terrestrial OM burial across the delta toe. This suggests that diagenetic controls on the fate of terrestrial OM, such as increased biodegradation where sedimentation rate is low, are subordinate to sedimentological processes. Biomarker-derived temperature values are cooler than expected for the lower Pearl River catchment, suggesting that the dominant component of the terrestrial OM is derived from the cooler upland regions of the catchment. The dominance of input from more distal terrain with greater topographic relief is evidence for the importance of geomorphological control on terrigenous OM transport. Collectively, the results demonstrate the importance of sedimentological processes in the supply, deposition and transport of terrestrial OM.  相似文献   

10.
Surface sediment samples at 89 locations and 300-cm cores from 43 sites in the Mississippi Sound were examined for evidence of pollutant impact upon this coastal environment. Chemical variables determined were total organic carbon, Kjeldahl nitrogen, phenols, and hydrocarbons. Values of these pollutant indicators were about the same or lower in Gulf of Mexico samples compared to Missippi Sound sediments and considerably lower than those from rivers and bays emptying into the sound, indicating limited impact from sites of pollutant sources into the sound. Concentrations of sedimentary pollutants peaked in the Pascagoula River where levels of total organic carbon (TOC), Kjeldahl nitrogen (TKN), phenols, and hydrocarbons exceeded sound values by one to three orders of magnitude. Analysis of cores shows pollutant intrusion to sediment strata predating industrial development. The level of pollution varies from site to site but fortunately is only serious at localized sites within the sound.  相似文献   

11.
The St. Lawrence River discharges a substantial volume of water (405 km3/a) containing suspended (SPM; 3.42 × 106t) and dissolved (68.0 × 106t) materials to the Gulf of St. Lawrence. The total load contains organic carbon in paniculate (POC; 3–14% of SPM), and dissolved (DOC; 3.76 ± 0.63 mg/l) form. The concentration of POC (and particulate organic nitrogen) is positively correlated with discharge (increased during the spring flood and the fall enhancement of flow), but concentration of DOC is not so simply related to discharge. In consequence, the total organic carbon (POC + DOC) load is relatively invariant, and increased annually by only 2–3% despite a progressive increase of 8% in discharge over the years of this study. Seasonal differences in the composition of the particulate organic matter (POM) are interpreted as reflecting dominant contributions from within-river production in summer and from terrestrial sources in spring and fall. In years when the annual discharge was greater than average, a higher proportion of the POM was terrigenous. The organic matter in surface sediments of the estuary to which the river discharges is predominantly of terrestrial provenance.  相似文献   

12.
Microbial and photochemical decomposition are two major processes regulating organic matter (OM) transformation in the global carbon cycle. However, photo-oxidation is not as well understood as biodegradation in terms of its impact on OM alteration in terrigenous environments. We examined microbial and photochemical transformation of OM and lignin derived phenols in two plant litters (corn leaves and pine needles). Plant litter was incubated in the laboratory over 3 months and compositional changes to OM were measured using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry. We also examined the susceptibility of soil organic matter (SOM) to ultraviolet (UV) radiation. Solid-state 13C NMR spectra showed that O-alkyl type structures (mainly from carbohydrates) decreased during biodegradation and the loss of small carbohydrates and aliphatic molecules was observed by solution-state 1H NMR spectra of water extractable OM from biodegraded litters. Photochemical products were detected in the aliphatic regions of NaOH extracts from both litter samples by solution-state 1H NMR. Photo-oxidation also increased the solubility of SOM, which was attributed to the enhanced oxidation of lignin derived phenols and photochemical degradation of macromolecular SOM species (as observed by diffusion edited 1H NMR). Overall, our data collectively suggests that while biodegradation predominates in litter decomposition, photo-oxidation alters litter OM chemistry and plays a role in destabilizing SOM in soils exposed to UV radiation.  相似文献   

13.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   

14.
15.
The particulate organic matter in < 63 µm surface sediments from the Mackenzie River and its main tributaries was studied using Rock-Eval pyrolysis and organic petrology. The organic matter in the sediments is dominated by refractory residual organic carbon (RC) of mainly terrigenous nature, as indicated by abundant inertinite, vitrinite, and type III kerogen. Sediments from the tributaries contained significantly more algal-derived organic matter than from the main channel of the river, highlighting the importance of low-energy system dynamics in the tributaries, which allows modest algal production, more accumulation, and better preservation of autochthonous organic matter. This is particularly true for tributaries fed by lacustrine systems, which showed the highest S1 and S2 fractions, and consequently higher total particulate organic carbon (POC) in the basin. Organic petrology of the sediment samples confirms abundant liptinitic materials (i.e., fat-rich structured algae, spores and pollen, cuticles, and resins). Forest fire and coal deposits are also confirmed to contribute to the basin. Assuming that suspended and fine surfacial sediments have a similar OC composition, the Mackenzie River is estimated to deliver a total POC flux of 1.1 Mt C/yr to its delta, of which 85% is residual carbon with liptinitic OC (S1 + S2) and S3 accounting for another 9% and 6%, respectively.  相似文献   

16.
Coastal margins, especially the river-influenced coastal areas, are considered as active interfaces between the continental and oceanic environments, which have huge dispersal of detrital materials and heavy metal input. It is well determined that the fine-grained sediments are important reservoir for the accumulation of heavy metals. In this study, we analyzed the radiocarbon age, texture, organic matter, carbonate content, and geochemical compositions of two sediment cores (GM42 and GM44) retrieved in front of the Coatzacoalcos River mouth basin, southwestern Gulf of Mexico (~864 and 845 m water depth, respectively). Our objective was to infer the sedimentation rate, intensity of weathering, provenance, and influence of anthropogenic activities on heavy metal contamination in sediments. The radiocarbon-age measurements of mixed planktonic foraminifera for core GM44 reveals an age of 21,289 ± 136 cal. years B.P., which fall within the Late Glacial Maximum (LGM; 21000 ± 2000 years B.P). The calculated sedimentation rate for core GM42 (~0.013 cm/year) is lower than in core GM44 (0.022 cm/year), which is probably due to the variations in detrital sediment input and/or seafloor topography. The weathering indices such as chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) suggested that the source area experienced low to moderate intensity of chemical weathering under warm to humid climatic conditions. The SiO2/Al2O3, Al2O3/Na2O, and K2O/Al2O3 ratio values indicated moderate to high compositional maturity. The major and trace element concentrations suggested that the sediments were likely derived from intermediate source rocks. The heavy metal contents indicated that the sediments were not contaminated by the industrial waste disposals supplied by the Coatzacoalcos River. The redox proxy sensitive elements such as V, Cr, Cu, and Zn indicated an oxic depositional environment for the deep-sea sediment cores. The application of discrimination diagrams for the geochemistry data revealed a passive margin setting for the sediment cores. The compositional variations observed at the upper sections (<30 cm) between the two sediment cores revealed that the type of detrital sediments supplied by the Coatzacoalcos River to the deep sea area is not uniform, which is also revealed by the variation in sedimentation rate.  相似文献   

17.
报道了采自墨西哥湾富含水合物和油气渗漏区6个海底表层沉积物样品中有机质的丰度、组成和分布特征.研究发现,所分析的6个沉积物样品中有机质的丰度和组成变化很大,其中S-1、S-7和S-9样品中饱和烃的组成分布主要反映了现代海洋沉积有机质及其受细菌微生物改造作用的特征,而S-8、S-10和S-11样品中饱和烃组成以特征的石油污染成因的不可分辨的混合物(UCM)为主,相关甾萜类参数也表明沉积物受到原油渗漏或泄露污染;另一方面,S-8和S-11样品中正构烷烃不同程度的缺失表明有机质遭受了较为强烈的的生物降解作用.仅在S-1沉积物中鉴定出了与甲烷古细菌厌氧氧化有关的特征标志物--2,6,10,15,19-五甲基二十烯烃系列化合物(PMI△)并且具有极负的碳同位素组成,这表明S-1样品所在海底可能有天然气水合物的产出.  相似文献   

18.
Analyses of Gulf of Mexico water samples indicate that methane arises from both biologic and thermal sources. Thermal generation of methane and other light hydrocarbons found in the water is demonstrated by: (1) the ratio of methane to ethane of less than 500 is below that expected for bacterial gases; (2) vertical profiles of hydrocarbon concentrations indicate multiple sources for methane, but not for ethane or propane; (3) the correlation between ethane, propane and butane is high indicating a common source, whereas methane correlates in only some areas suggesting multiple sources assumed to be bacterial and thermal; and (4) carbon isotope ratios. Hydrocarbons in the water result from seepage from the sea floor, and a relationship between hydrocarbons and fault systems can be observed. Petroleum production activities did not increase the hydrocarbon content of the non-surface water beyond that often found above petroliferous structures. To avoid surface contamination, analyses were made on water samples taken from near the sea floor. Special equipment for analyses was designed for the survey in the Gulf of Mexico offshore from Galveston, Texas, to Grand Isle, Louisiana, at water depths to 120 m.  相似文献   

19.
Existing data on the distribution of organic carbon and nitrogen in marine sediments have been analyzed in order to better understand the physical and chemical processes involved in this aspect of the global carbon cycle. Maps of the global distribution of organic carbon and nitrogen in the sediments of world oceans and seas are presented.Correlation analyses of the available information dealing with the distribution of marine sedimentary organic matter has revealed that in terms of bulk parameters (%COrg and %N Kjeldahl), there is an apparent accumulation of organic matter on the continental slope (water column depth 200–2000 m). Specific interactions between clays and organic matter, although indicated in laboratory experiments, have not been detected by these analyses.  相似文献   

20.
Major and trace elements, organic matter, carbonates, loss of ignition, grain size, gravel, sand, silt, clay, and qualitative mineralogical composition were determined on surficial marine sediments sampled during the stormy (February), dry (May), and rainy (September) seasons in the coastal area adjacent to Panuco River discharges into the Gulf of Mexico. The sediments supplied by the river move in a north-east direction, and are deposited in the north-east extreme of the studied area. Terrigenous sediments show a strong association of Al2O3 with Fe2O3, Na2O, K2O, P2O5, Rb, Cu, Zn, organic matter, clay, and grain size (Mz). Mineralogical analysis shows that they are formed by quartz, kaolinite, montmorillonite, illite-montmorillonite and biotite. The highest metal concentration of Cu (25 mg/kg), Zn (155 mg/kg), Pb (50 mg/kg) and organic matter (1.26%) was observed in the sampling points located very close to the river mouth. A statistical analysis was done with the information contained in the variables. Five significant factors explain 77% of the total variance: factor 1 is due to sediments from a terrigenous source, factor 2 corresponds to sediments from a biogenous source, factor 3 is associated to sediments with heavy minerals, factor 4 is due to Co concentration, and factor 5 is due to Ni concentration. The sediments supplied from the river had a short-term local impact on the sediment distribution, as observed by the carbonate and heavy mineral concentration of the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号