首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Southern Marginal Zone of the Limpopo Belt in South Africa is characterised by a granulite and retrograde hydrated granulite terrane. The Southern Marginal Zone is, therefore, perfectly suitable to study fluids during and after granulite facies metamorphism by means of fluid inclusions and equilibrium calculations. Isolated and clustered high-salinity aqueous and CO2(-CH4) fluid inclusions within quartz inclusions in garnet in metapelites demonstrate that these immiscible low H2O activity fluids were present under peak metamorphic conditions (800-850 °C, 7.5-8.5 kbar). The absence of widespread high-temperature metasomatic alteration indicates that the brine fluid was probably only locally present in small quantities. Thermocalc calculations demonstrate that the peak metamorphic mineral assemblage in mafic granulites was in equilibrium with a fluid with a low H2O activity (0.2-0.3). The absence of water in CO2-rich fluid inclusions is due to either observation difficulties or selective water leakage. The density of CO2 inclusions in trails suggests a retrograde P-T path dominated by decompression at T<600 °C. Re-evaluation of previously published data demonstrates that retrograde hydration of the granulites at 600 °C occurred in the presence of H2O and CO2-rich fluids under P-T conditions of 5-6 kbar and ~600 °C. The different compositions of the hydrating fluid suggest more than one fluid source.  相似文献   

2.
The proposed retrograde orthoamphibole isograd in the Southern Marginal Zone of the Limpopo Belt separates hydrated, amphibolite grade metapelites from their granulite grade precursors and provides an intriguing geological dilemma. Widespread rehydration of metapelitic granulites under conditions of 660–600 °C and ≥0.6 GPa, and CO2-dominated fluid-inclusion populations appear to suggest thorough flushing of the high-grade crust with an externally derived carbonic fluid. However, past studies of the carbon and oxygen isotope geochemistry of the hydrated rocks have not demonstrated the involvement of any voluminous out of equilibrium’ fluid in the evolution of the rocks. This contribution proposes a model wherein the hydrating fluids are derived from crystallizing anatectic leucosomes, generated by in situ fluid-absent biotite melting along the prograde path. Model equilibrium fluid compositions suggest that reaction between this melt-derived H2O and biogenic graphite produced CO2-rich fluid compositions and potentially high fluid:rock ratios at the wet granite solidus. Declining temperature resulted in fluid compositions shifting to higher XH2O, with the precipitation of graphite essentially at the sites of initial fluid generation, thereby preserving original (pre-metamorphic) isotopic heterogeneities. The hydration pattern of the Southern Marginal Zone appears to be a function of melt migration. In the hydrated zone, leucosomes generally approximate minimum melt compositions and in this zone H2O was effectively recycled between the prograde and retrograde assemblages. In contrast, leucosomes in the granulite grade portion of the terrane have lost a K2O- and H2O-rich melt fraction, and although some hydration has occurred in this zone, orthopyroxene is generally preserved in metapelites. In a general context, in situ crystallization of graphitic partially melted source rocks has the potential to produce high fluid-rock ratios at temperatures close to the wet granite solidus. This single process holds the potential for widespread retrogression of formerly high-grade assemblages, at a variety of aH2O values, without external fluid input.  相似文献   

3.
The high-pressure granulites of the Uluguru Mountains are part of the Pan-African belt of Tanzania, the metamorphic evolution of which is characterized by an anticlockwise P-T path. Mineral assemblages that represent distinct metamorphic stages are selected for fluid inclusion studies in order to deduce the fluid evolution in metapelites and pyroxene granulites from the prograde to the retrograde stage. Fluid inclusion data improve the petrologically derived P-T path and confirm the anticlockwise evolution. Fluid inclusions in quartz enclosed in garnet porphyroblasts in metapelites preserve prograde fluids of CO2–N2 composition and later-trapped pure CO2. During isochoric heating at temperatures near the peak of metamorphism, deformation and recrystallization led to fluid homogenization yielding N2-poor CO2 composition in the metapelites. Near-peak CO2–N2 fluid inclusions in quartz of metapelites and CO2 inclusions in garnet-pyroxene granulites are characterized by perfect negative crystal shape. Garnet formed in veins and as coronas around orthopyroxene represent the near-isochoric/isobaric cooling stage which is characterized by high-density CO2-rich fluid inclusions. Up to 15 mol% N2 in some primary CO2 inclusions in corona garnet indicate small-scale fluid heterogeneity during the static garnet growth. The fact that high-density fluid inclusions are preserved, suggests a shallow dP/dT slope of the uplift path. Nevertheless, some fluid inclusions decrepitated or re-equilibrated and low-density CO2 inclusions were trapped in the garnet-pyroxene granulite while N2–CH4 inclusions formed in the metapelites. Different fluid compositions in metapelite and metabasite argue for an internal control of the fluid composition by phase equilibria. In shear zones where the pyroxene granulite was transformed into scapolite-biotite schist, CO2–N2 and low-density N2–CH4 fluid inclusions indicate several stages of tectonic activity and suggest fluid influx from the nearby metapelites. High- and low-salinity aqueous inclusions observed beside CO2 inclusions in garnet-pyroxene granulites, in vein quartz and shear zones could be of high-grade origin but are mainly re-equilibrated or re-trapped along healed microfractures during lower-grade stages. Received: 21 May 1997 / Accepted: 6 October 1997  相似文献   

4.
Geothermometric constraints on auriferous shear zones of the Renco mine in the Northern Marginal Zone of the late-Archaean, granulite-facies Limpopo Belt in southern Zimbabwe indicate that deformation and associated mineralization occurred at temperatures of at least 600 °C up to more likely 700 °C. Mid- to upper-amphibolite facies conditions during mineralization correspond to the regional-scale retrogression of granulite facies wall rocks during the late-Archaean thrusting of high-grade metamorphic rocks of the Northern Marginal Zone onto low- to medium-grade granite-greenstone terrains of the Zimbabwe craton. Mineral assemblages indicate that the ore fluid was moderately oxidized with log fO2 values between 10−17 and 10−18 bars with high H2S activities of 0.25–0.75. Elements enriched in the shear zones include Au, S, Fe, Cu, Mo, Bi, Te, Ni, Co, and H2O, Au and Cu being the most enriched. Geochemically, Au correlates with Cu but not with S, which, together with the fact that gold is only rarely intergrown or in direct contact with sulfides, possibly indicates a transport of gold as a chloride complex. The siting of gold along fractures or within implosion breccias suggests that gold was precipitated due to fluid immiscibility induced by catastrophic fluid pressure drops during seismic slip events. Fluid inclusions are predominantly CO2 (±CH4 ± N2)-rich, but petrographic work indicates that fluid inclusions have undergone extensive post-entrapment modifications due to the pervasive recrystallization of mineral textures in the high-temperature shear zones. The mineralized shear zones are enriched in 18O compared to wall-rock enderbites, which is interpreted to represent an influx of externally derived fluids of probably metamorphic origin. Based on temporal and spatial relationships between mineralization, late-Archaean overthrusting of the Northern Marginal Zone onto the Zimbabwe craton, and coeval amphibolite-facies hydration of granulites, we suggest that the Renco mineralization formed in a mid-crustal environment from metamorphic fluids that were generated from dehydration of subcreted greenstone terrains of the Zimbabwe craton. Received: 27 October 1998 / Accepted: 13 August 1999  相似文献   

5.
Calc-silicate granulites were examined to evaluate the fluid composition and retrograde metamorphic conditions in the Central Zone of the Limpopo Belt, southern Africa. Quartz deficient assemblages are characterized by minerals such as diopside, forsterite, spinel and/or magnesiohornblende and tremolite in the presence of calcite and dolomite. Although the granulites are Al-poor (Al2O3 is less than or equal to 1.0 wt.%) and dolomitic in composition, they include Al-bearing phases. Phase analyses for the assemblages in the two model systems CaO–MgO–SiO2–H2O–CO2 and CaO–MgO–SiO2–Al2O3–H2O–CO2 provide constraints on fluid compositions in the granulite facies and retrograde metamorphisms in the Limpopo Central Zone. In the presence of amphiboles, isobaric T–X(CO2) phase relations suggest that high X(CO2) conditions were established in the calc-silicate rocks of present study. The phase relations with tschermakitic amphiboles at 0.35 GPa restrict diopside-spinel occurrences in the presence of calcite, dolomite and forsterite within very-high X(CO2) with low a(H2O). The fluid compositions, X(CO2), were effectively buffered by the mineral assemblages during granulite facies metamorphism to subsequent decompression and cooling stages. The presence or absence of retrograde magnesiohornblende and tremolite appeared to be controlled not only by infiltration of H2O-rich fluid during retrograde metamorphism but also Al content in the local bulk rock compositions. The presence of the two-amphibole phases shows that the fluid compositions were locally buffered in the Al-bearing dolomitic granulites. Comparing the calculated X(CO2) values in the present study area and in the Alldays area, a difference of retrograde hydration effects is observed.  相似文献   

6.
Fluid inclusions in quartz grains from five samples of high-grade rocks (two paragneisses, an amphibolite, a mafic gneiss and a tonalite dike) from the 2.7 Ga Kapuskasing structural zone (KSZ), Ontario, were examined with petrographic, microthermometric and laser Raman techniques. Three types of fluid inclusions were observed: CO2-rich, H2O-rich and mixed CO2-H2O. CO2-rich fluid inclusions are pseudosecondary or secondary in nature and are generally pure CO2; a few contain varying amounts of CH4·H2O-rich fluid inclusions are secondary in nature, contain variable amounts of dissolved salts, and generally contain daughter crystals. Mixed CO2-H2O fluid inclusions occur where trails of H2O-rich inclusions intersect trails of CO2-rich inclusions. Isochores for high density (p=1.03 g/cm3) pseudosecondary, pure CO2 inclusions intersect the lower pressure portion of the estimated P-T field for high-grade metamorphism, implying that pure CO2 was the peak metamorphic fluid. The variable CH4 content of CO2 inclusions within graphite-bearing samples suggests that CH4 was introduced locally after the formation of the CO2 inclusions; however the origin of the CH4 remains problematic. An aqueous fluid clearly penetrated the gneisses after the peak metamorphism (during uplift/erosion), forming secondary inclusions and contributing to the minor retrogressive hydration observed in these rocks. The presence of the pseudosecondary, high-density CO2 inclusions in quartz crystals in the KSZ rocks constrains the uplift/ erosion path for the KSZ to one of simultaneous decrease in pressure and temperature.  相似文献   

7.
Felsic to mafic granulite xenoliths from late Neogene basalt pyroclastics in four localities of the western Pannonian Basin (Beistein, Kapfenstein, Szigliget and Káptalantóti (Sabar-hegy) were studied to find out their metamorphic and fluid history. The characteristic mineral assemblage of the granulites consists of Pl + Opx + Qtz ± Cpx ± Bt ± Grt ± Kfs. Based on abundant magmatic relic microstructural domains occurring in these rocks, the potential precursors might have been predominantly felsic igneous or high to ultrahigh temperature rocks. Ternary feldspar thermometry provides a rough estimate of temperatures of about 920–1070 °C. The first fluid invasion event, which is linked with this early high to ultrahigh temperature stage is characterised by primary pure CO2 inclusions in apatite and zircon. The densest primary CO2 inclusions indicate 0.52–0.64 GPa pressure at the estimated temperature range of crystallization. According to mineral equilibria and geothermobarometry, the high to ultrahigh temperature rock cooled and crystallized to granulite of predominantly felsic composition at about 750–870 °C and 0.50–0.75 GPa in the middle crust, between 20 and 29 km depths. The second fluid invasion event is recorded by primary CO2-rich fluid inclusions hosted in the granulitic mineral assemblage (plagioclase, quartz and orthopyroxene). In addition to CO2, Raman spectroscopy revealed the presence of minor N2, H2S, CO and H2O in these inclusions. Partial melting of biotite-bearing assemblages could be connected to the next fluid invasion shown by secondary CO2-rich fluids recorded along with healed fractures in plagioclase, clinopyroxene and orthopyroxene. This event could have happened at depths similar to the previous ones. The final step in the granulite evolution was the sampling in the middle crust and transportation to the surface in form of xenoliths by mafic melt. This event generated temperature increase and pressure decrease and thus, limited melting of the xenoliths. The youngest fluid inclusion generation, observed mostly in healed fractures of felsic minerals, could be associated with this event.  相似文献   

8.
Non-aqueous CO2 and CO2-rich fluid inclusions are found in the vein quartz hosting mesothermal gold-sulphide mineralization at Bin Yauri, northwestern Nigeria. Although mineralizing fluids responsible for gold mineralization are thought to be CO2-rich, the occurrence of predominantly pure to nearly pure CO2 inclusions is nevertheless unusual for a hydrothermal fluid system. Many studies of similar CO2-rich fluid inclusions, mainly in metamorphic rocks, proposed preferential loss (leakage) of H2O from H2O-CO2 inclusions after entrapment. In this study however, it is proposed that phase separation (fluid immiscibility) of low salinity CO2-rich hydrothermal fluids during deposition of the gold mineralization led to the loss of the H2O phase and selective entrapment of the CO2. The loss of H2O to the wallrocks resulted in increasing oxidizing effects. There is evidence to suggest that the original CO2-rich fluid was intrinsically oxidized, or perhaps in equilibrium with oxidizing conditions in the source rocks. The source of the implicated fluid is thought to be subducted metasediments, subjected to dehydration and devolatilization reactions along a transcurrent Anka fault/shear system, which has been described as a Pan-African (450–750 Ma) crustal suture.  相似文献   

9.
Eclogite-facies rocks and high-pressure granulites provide windows to the deeper parts of subduction zones and the root of mountain chains, carrying potential records of fluids associated with subduction-accretion-collision tectonics. Here, we report petrological and fluid inclusion data on retrogressed eclogite and high-pressure granulite samples from Sittampundi, Kanji Malai and Perundarai in southern India. These rocks occur within the trace of the Cambrian collisional suture which marks the final phase of amalgamation of the Gondwana supercontinent. The garnet–clinopyroxene assemblage in the eclogites preserves relict omphacite, whereas the high-pressure granulites are characterized by an assemblage of garnet and clinopyroxene in the absence of omphacite and with minor plagioclase, orthopyroxene, and quartz. Phase relations computed for the eclogite assemblage yield peak PT conditions of 19 kbar and 1,010°C. The mafic granulites also preserve the memory of high to ultrahigh-temperature metamorphism followed by an isothermal decompression. Systematic fluid inclusion optical, microthermometric and laser Raman spectroscopic studies were conducted in garnet and plagioclase from the eclogite–high pressure granulite suite. The results suggest that the early fluids were a mixture of CO2, CH4 and N2 probably derived from decarbonation and devolatilization reactions in a subduction setting during the prograde stage. The later generation inclusions, which constitute the dominant category in all the samples studied, are characterized by a near-pure CO2 composition with moderate to high densities (up to 1.154 g/cm3). The highest density fluid inclusions recorded in this study occur within the mafic granulites from Sittampundi (0.968–1.154 g/cm3) and Kanji Malai (1.092–1.116 g/cm3). In some cases, carbonate minerals such as dolomite and calcite are associated with the CO2-rich fluid inclusions. The composition and densities of the later generation fluids closely match with those of the CO2-bearing fluid inclusions reported from ultrahigh-temperature granulites occurring proximal to the eclogite–high pressure granulite suite within this suture zone, and suggest a common tectonic link for the fluid regime. We evaluate the fluid characteristics associated with convergent plate margin processes and propose that the early aqueous fluids probably associated with the eclogites were consumed during the formation of the retrograde hydrous mineral assemblages, whereas the fluid regime of the high-pressure and ultrahigh-temperature granulites was mostly CO2-dominated. The tectonic setting of the rocks along a collisional suture marking the trace along which crustal blocks were welded through subduction–collision process is in favor of a model involving the derivation of CO2 from sub-lithospheric sources such as a carbonated tectosphere invaded by hot asthenosphere, or underplated mafic magmas.  相似文献   

10.
We present a study of carbonate-bearing polyphase inclusions in garnets from leucocratic granitoids intruding metapelitic granulites of the Southern Marginal Zone (SMZ) of the Neoarchean Limpopo high-grade complex, South Africa, during the post-peak stage (2710–2650 Ma; U-Pb ages for zircons and monazites). Ternary feldspar thermometry suggests that the granitoid magma cooled from temperatures 800–900 °C at a pressure of ca. 6.5 kbar. Abundant CO2 fluid inclusions in quartz and T-XCO2 phase equilibria modeling via PERPLE_X imply action of an essentially carbonic fluid in the granitoids. Cores of almandine-rich garnet grains from the granitoids contain polyphase carbonate-bearing inclusions with a distinct negative crystal shape. The major carbonate in the inclusions is a strongly zoned magnesite-siderite variety, whereas pyrophyllite is the predominant silicate phase. Raman spectra of unexposed inclusions revealed a presence of CO2, as well as CH4 and H2O. The carbonate-bearing inclusions coexist with larger polyphase inclusions composed of biotite, quartz, K-feldspar, plagioclase, sillimanite, which are interpreted as relics of granitic melts. Modeling the mineral assemblage preserved within the carbonate-bearing inclusions shows that their present mineral and chemical compositions are a product of interaction of the trapped aqueous‑carbonic fluid with host garnet during cooling below 400 °C. Despite strong modifications, the inclusions bear evidence for initial saturation of the fluid with Mg‑carbonate. This is taken as an evidence for an origin of the fluids by devolatilization of the Mg-rich carbonate-bearing ultrabasic greenstone rocks of the Kaapvaal Craton that were buried under the SMZ. Being generated at temperatures between 650 and 700 °C, the fluid subsequently participated in anatexis and coexisted with the granite magma during exhumation and interaction of the SMZ granulites with cratonic rocks.  相似文献   

11.
Local fluid migration through a serpentine melange caused successive carbonation of a metabasite block (about 80 meter in diameter) during the uplift stage of the glaucophanitic metamorphic rocks, the Nishisonogi metamorphics, southwest Japan. The block shows a zonal sequence as follows. Zone 1: original greenschist (Am+Ep+ Chl+Ab+Sph+Qtz). Zone 2: epidote disappears by the reaction Ep+Am+CO2+H2O=Chl+Cc+Qtz. Zone 3: balc appears by the reaction Am+CO2+H2O=Ta+Cc+ Qtz. Zone 4:sphene breakdowns by the reaction Sph+ CO2=Rt+Cc+Qtz. Zone 5: amphibole disappears by the two simultaneous reactions, Am+CO2=Do+Ta+Qtz and Ta+Cc+CO2=Do+Qtz+H2O. Zone 7: albite is replaced by chlorite, calcite, dolomite and quartz, and the assemblage of Do+Cc+Chl+Rt+Qtz is stable. Analyses of phase relations indicate an introduction of CO2-rich fluid into the greenschist body during regional metamorphism. The CO2-rich fluid may have formed by devolatilization reactions between serpentinite and graphite-bearing metasediments. The fluid migrated within the melange through a channelized pathway and into the greenschist body from a deeper part of the melange.  相似文献   

12.
http://www.sciencedirect.com/science/article/pii/S1674987112000643   总被引:2,自引:1,他引:1  
Incipient charnockites represent granulite formation on a mesoscopic scale and have received considerable attention in understanding fluid processes in the deep crust.Here we report new petrological data from an incipient charnockite locality at Rajapalaiyam in the Madurai Block,southern India,and discuss the petrogenesis based on mineral phase equilibrium modeling and pseudosection analysis. Rajapalaiyam is a key locality in southern India from where diagnostic mineral assemblages for ultrahigh-temperature(UHT) metamorphism have been reported.Proximal to the UHT rocks are patches and lenses of charnockite(Kfs + Qtz + Pl + Bt + Opx + Grt + Ilm) occurring within Opx-free Grt-Bt gneiss(Kfs + Pl + Qtz + Bt + Grt + Ilm + Mt) which we report in this study.The application of mineral equilibrium modeling on the charnockitic assemblage in NCKFMASHTO system yields a p-T range of~820℃and~9 kbar.Modeling of the charnockite assemblage in the MnNCKFMASHTO system indicates a slight shift of the equilibrium condition toward lower p and T(~760℃and~7.5 kbar). which is consistent with the results obtained from geothermobarometry(710—760℃,6.7—7.5 kbar). but significantly lower than the peak temperatures(>1000℃) recorded from the UHT rocks in this locality,suggesting that charnockitization is a post-peak event.The modeling of T versus molar H2O content in the rock(M(H2O)) demonstrates that the Opx-bearing assemblage in charnockite and Opxfree assemblage in Grt-Bt gneiss are both stable at M(H2O) = 0.3 mol%-0.6 mol%.and there is no significant difference in water activity between the two domains.Our finding is in contrast to the previous petrogenetic model of incipient charnockite formation which envisages lowering of water activity and stabilization of orthopyroxene through breakdown of biotite by dehydration caused by the infiltration of CO2-rich fluid.T-XFe3+(= Fe2O3/(FeO + Fe2O3) in mole) pseudosections suggest that the oxidation condition of the rocks played a major role on the stability of orthopyroxene:Opx is stable at XFe3+ <0.03 in charnockite.while Opx-free assemblage in Grt-Bt gneiss is stabilized at XFe3+ >0.12.Such low oxygen fugacity conditions of XFe3+ <0.03 in the charnockite compared to Grt-Bt gneiss might be related to the infiltration of a reduced fluid(e.g.,H2O + CH4) during the retrograde stage.  相似文献   

13.
The ultrahigh-temperature (UHT) metamorphism of the Napier Complex is characterized by the presence of dry mineral assemblages, the stability of which requires anhydrous conditions. Typically, the presence of the index mineral orthopyroxene in more than one lithology indicates that H2O activities were substantially low. In this study, we investigate a suite of UHT rocks comprising quartzo-feldspathic garnet gneiss, sapphirine granulite, garnet-orthopyroxene gneiss, and magnetite-quartz gneiss from Tonagh Island. High Al contents in orthopyroxene from sapphirine granulite, the presence of an equilibrium sapphirine-quartz assemblage, mesoperthite in quartzo-feldspathic garnet gneiss, and an inverted pigeonite-augite assemblage in magnetite-quartz gneiss indicate that the peak temperature conditions were higher than 1,000 °C. Petrology, mineral phase equilibria, and pressure-temperature computations presented in this study indicate that the Tonagh Island granulites experienced maximum P-T conditions of up to 9 kbar and 1,100 °C, which are comparable with previous P-T estimates for Tonagh and East Tonagh Islands. The textures and mineral reactions preserved by these UHT rocks are consistent with an isobaric cooling (IBC) history probably following an counterclockwise P-T path. We document the occurrence of very high-density CO2-rich fluid inclusions in the UHT rocks from Tonagh Island and characterize their nature, composition, and density from systematic petrographic and microthermometric studies. Our study shows the common presence of carbonic fluid inclusions entrapped within sapphirine, quartz, garnet and orthopyroxene. Analysed fluid inclusions in sapphirine, and some in garnet and quartz, were trapped during mineral growth at UHT conditions as 'primary' inclusions. The melting temperatures of fluids in most cases lie in the range of -56.3 to -57.2 °C, close to the triple point for pure CO2 (-56.6 °C). The only exceptions are fluid inclusions in magnetite-quartz gneiss, which show slight depression in their melting temperatures (-56.7 to -57.8 °C) suggesting traces of additional fluid species such as N2 in the dominantly CO2-rich fluid. Homogenization of pure CO2 inclusions in the quartzo-feldspathic garnet gneiss, sapphirine granulite, and garnet-orthopyroxene gneiss occurs into the liquid phase at temperatures in the range of -34.9 to +4.2 °C. This translates into very high CO2 densities in the range of 0.95-1.07 g/cm3. In the garnet-orthopyroxene gneiss, the composition and density of inclusions in the different minerals show systematic variation, with highest homogenization temperatures (lowest density) yielded by inclusions in garnet, as against inclusions with lowest homogenization (high density) in quartz. This could be a reflection of continued recrystallization of quartz with entrapment of late fluids along the IBC path. Very high-density CO2 inclusions in sapphirine associated with quartz in the Tonagh Island rocks provide potential evidence for the involvement of CO2-rich fluids during extreme crustal temperatures associated with UHT metamorphism. The estimated CO2 isochores for sapphirine granulite intersect the counterclockwise P-T trajectory of Tonagh Island rocks at around 6-9 kbar at 1,100 °C, which corresponds to the peak metamorphic conditions of this terrane derived from mineral phase equilibria, and the stability field of sapphirine + quartz. Therefore, we infer that CO2 was the dominant fluid species present during the peak metamorphism in Tonagh Island, and interpret that the fluid inclusions preserve traces of the synmetamorphic fluid from the UHT event. The stability of anhydrous minerals, such as orthopyroxene, in the study area might have been achieved by the lowering of H2O activity through the influx of CO2 at peak metamorphic conditions (>1,100 °C). Our microthermometric data support a counterclockwise P-T path for the Napier Complex.  相似文献   

14.
Investigations of fluid inclusions in granulitefacies metapelites of southern Calabria enable characterization of the fluid composition of these lower crustal rocks, and constrain the petrologically deduced retrograde P-T path characterized by isothermal uplift prior to isobaric cooling in middle crustal levels. Fluid inclusions in cordierite, garnet and sillimanite have a CO2-rich composition. Inclusions in cordierite rarely contain minor amounts of N2 and H2O, and in garnets some CO2–CH4–N2 inclusions have been analyzed by Raman microprobe. Quartz reveals the most complex fluid melusion compositions (1) CO2-rich, (2) CO2–CH4–N2, (3) CH4–N2, (4) H2O–MgCl2–CaCl2–NaCl, (5) H2O–NaCl and (6) H2O–CO2. The earliest fluid inclusions after peak metamorphism are rich in CO2 with minor amounts of N2 and H2O. An early CO2–(H2O–N2) fluid composition has been confirmed by detection of CO2, H2O and N2 in the channels of the cordierite structure. Most of the early CO2-rich fluid inclusions were modified during the uplift from the lower to the middle crustal level, resulting in a density decrease with CO2 still dominant. The subsequent isobaric cooling led to further modifications of the fluid inclusions. High-density inclusions around implosion textures or scattered amongst lower-density ones must have formed during this cooling episode. Aqueous inclusions in quartz are mostly formed late and are consistent with trapping during retrograde rehydration.This project has been supported by the DFG as contribution to the special program Continental Lower Crust  相似文献   

15.
Graphite deposits result from the metamorphism of sedimentary rocks rich in carbonaceous matter or from precipitation from carbon-bearing fluids (or melts). The latter process forms vein deposits which are structurally controlled and usually occur in granulites or igneous rocks. The origin of carbon, the mechanisms of transport, and the factors controlling graphite deposition are discussed in relation to their geological settings. Carbon in granulite-hosted graphite veins derives from sublithospheric sources or from decarbonation reactions of carbonate-bearing lithologies, and it is transported mainly in CO2-rich fluids from which it can precipitate. Graphite precipitation can occur by cooling, water removal by retrograde hydration reactions, or reduction when the CO2-rich fluid passes through relatively low-fO2 rocks. In igneous settings, carbon is derived from assimilation of crustal materials rich in organic matter, which causes immiscibility and the formation of carbon-rich fluids or melts. Carbon in these igneous-hosted deposits is transported as CO2 and/or CH4 and eventually precipitates as graphite by cooling and/or by hydration reactions affecting the host rock. Independently of the geological setting, vein graphite is characterized by its high purity and crystallinity, which are required for applications in advanced technologies. In addition, recent discovery of highly crystalline graphite precipitation from carbon-bearing fluids at moderate temperatures in vein deposits might provide an alternative method for the manufacture of synthetic graphite suitable for these new applications.  相似文献   

16.
Synorogenic veins from the Proterozoic Eastern Mount Isa Fold Belt contain three different types of fluid inclusions: CO2-rich, aqueous two-phase and rare multiphase. Inclusions of CO2 without a visible H2O phase are particularly common. The close association of CO2-rich inclusions with aqueous two-phase, and possibly multiphase inclusions suggests that phase separation of low- to -moderate salinity CO2-rich hydrothermal fluids led to the selective entrapment of the CO2. Microthermometric results indicate that CO2-rich inclusions homogenize between –15.5 and +29.9 °C which corresponds to densities of 0.99 to 0.60 g.cm−3. The homogenization temperatures of the associated aqueous two-phase inclusions are 127–397 °C, with salinities of 0.5 to 18.1 wt.% NaCl equivalent. The rarely observed multiphase inclusions homogenize between 250 and 350 °C, and have salinities ranging from 34.6 to 41.5 wt.% NaCl equivalent. Evidence used to support the presence of fluid immiscibility in this study is mainly derived from observations of coexisting H2O-rich and CO2-rich inclusions in groups and along the same trail. In addition, these two presumably unmixed fluids are also found on adjacent fractures where monophase CO2-rich inclusions are closely related to H2O-rich inclusions. Similar CO2-rich inclusions are widespread in mineral deposits in this region, which are simply metal-enriched synorogenic veins. Therefore, we argue that fluid immiscibility caused volatile species such as CO2 and H2S to be lost from liquid, thus triggering ore deposition by increasing the fluid pH and decreasing the availability of complexing ligands. Received: 28 April 1997 / Accepted: 4 January 1999  相似文献   

17.
Arrested charnockite formation in southern India and Sri Lanka   总被引:7,自引:3,他引:7  
Arrested prograde charnockite formation in quartzofeldspathic gneisses is widespread in the high-grade terrains of southern India and Sri Lanka. Two major kinds of orthopyroxene-producing reactions are recognized. Breakdown of calcic amphibole by reaction with biotite and quartz in tonalitic/granitic gray gneiss produced the regional orthopyroxene isograd, manifest in charnockitic mottling and veining of mixed-facies exposures, as at Kabbal, Karnataka, and in the Kurunegala District of the Sri Lanka Central Highlands. Chemical and modal analyses of carefully chosen immediately-adjacent amphibole gneiss and charnockite pairs show that the orthopyroxene is produced by an open system reaction involving slight losses of CaO, MgO and FeO and gains of SiO2 and Na2O. Rb and Y are depleted in the charnockite. Another kind of charnockitization is found in paragneisses throughout the southern high-grade area, and involves the reaction of biotite and quartz±garnet to produce orthopyroxene and K-feldspar. Although charnockite formation along shears and other deformation zones at such localities as Ponmudi, Kerala is highly reminiscent of Kabbal, close pair analyses are not as suggestive of open-system behavior. This type of charnockite formation is found in granulite facies areas where no prograde amphibole-bearing gneisses exist and connotes a higher-grade reaction than that of the orthopyroxene isograd. Metamorphic conditions of both Kabbaltype and Ponmudi-type localities were 700°–800° C and 5–6 kbar. Lower P(H2O) in the Ponmudi-type metamorphism was probably the definitive factor.CO2-rich fluid inclusions in quartz from the Kabbaltype localities support the concept that this type of charnockite formation was driven by influx of CO2 from some deep-seated source. The open-system behavior and high oxidation states of the metamorphism are in accord with the CO2-streaming hypothesis. CO2-rich inclusions in graphitebearing charnockites of the Ponmudi type, however, commonly have low densities and compositions not predictable by vapor-mineral equilibrium calculations. These inclusions may have suffered post-metamorphic H2 leakage or some systematic contamination.Neither the close-pair analyses nor the fluid inclusions strongly suggest an influx of CO2 drove charnockite formation of the Ponmudi type. The possibility remains that orthopyroxene and CO2-rich fluids were produced by reaction of biotite with graphite without intervention of fluids of external origin. Further evidence, such as oxygen isotopes, is necessary to test the CO2-streaming hypothesis for the Ponmudi-type localities.  相似文献   

18.
Abstract Fluid evolution paths in the COHN system can be calculated for metamorphic rocks if there are relevant data regarding the mineral assemblages present, and regarding the oxidation and nitrodation states throughout the entire P-T loop. The compositions of fluid inclusions observed in granulitic rocks from Rogaland (south-west Norway) are compared with theoretical fluid compositions and molar volumes. The fluid parameters are calculated using a P-T path based on mineral assemblages, which are represented by rocks within the pigeonite-in isograd and by rocks near the orthopyroxene-in isograd surrounding an intrusive anorthosite massif. The oxygen and nitrogen fugacities are assumed to be buffered by the coexisting Fe-Ti oxides and Cr-carlsbergite, respectively. Many features of the natural fluid inclusions, including (1) the occurrence of CO2-N2-rich graphite-absent fluid inclusions near peak M2 metamorphic conditions (927° C and 400 MPa), (2) the non-existence of intermediate ternary CO2-CH4-N2 compositions and (3) the low-molar-volume CO2-rich fluid inclusions (36–42 cm3 mol?1), are reproduced in the calculated fluid system. The observed CO2-CH4-rich inclusions with minor N2 (5 mol%) should also include a large proportion of H2O according to the calculations. The absence of H2O from these natural high-molar-volume CO2-CH4-rich inclusions and the occurrence of natural CH4-N2-rich inclusions are both assumed to result from preferential leakage of H2O. This has been previously experimentally demonstrated for H2O-CO2-rich fluid inclusions, and has also been theoretically predicted. Fluid-deficient conditions may explain the relatively high molar volumes, but cannot be used to explain the occurrence of CH4-N2-rich inclusions and the absence of H2O.  相似文献   

19.
Investigation of fluid inclusions in granitic and cale-silicate gneisses from the Adirondack Mountains, New York, has revealed the presence of various types, including: (1) CO2-rich, (2) mixed H2O–CO2±salt and (3) aqueous inclusions with no visible CO2. Many, if not all, of these inclusions were trapped or modified after the peak of granulite facies metamorphism, as shown by textural relations or by the lack of agreement between the composition of the fluids found in some inclusions and the composition of the peak-metamorphic fluid as estimated from mineral equilibria. Many fluid inclusions record conditions attained during retrograde cooling and uplift, with minimum pressures and temperatures of 2 to 3 kbar and 200 to 300°C. The temperatures and pressures derived from the investigation of these inclusions constrain the retrograde P-T path, and the results indicate that a period of cooling with little or no decompression.  相似文献   

20.
Thermodynamic and phase equilibrium data for scapolite have been used to calculate CO2 activities (aCO2) and to evaluate the presence or absence of a fluid phase in high-grade scapolite bearing meta-anorthosite, granulites, calc-silicates, and mafix xenoliths. The assemblage scapolite-plagioclase-garnet±quartz may be used to calculate or limit aCO2 by the reaction Meionite+Quartz = Grossular+Anorthite+CO2. Granulites from four high-grade terranes (Grenville Province, Canada; Sargut Belt, India; Furua Complex, Tanzania; Bergen Arcs, Norway) yield aCO2=0.4-1, with most >0.7. For scapolite-bearing granulites from the Furua Complex, in which aCO2≥0.9, calculated H2O activities (aH2O) based on phlogopite dehydration equilibria are uniformly low (0.1–0.2). The aCO2 calculated for meta-anorthosite from the Grenville Province, Ontario, ranges from 0.2 to 0.8. For Grenville meta-anorthosite also containing epidote, the aH2O calculated from clinozoisite dehydration ranges from 0.2 to 0.6. Calc-silicates from the Grenville, Sargur, and Furua terranes mostly yield aCO2< 0.5. The presence of calcite and/or wollastonite provides additional evidence for the low aCO2 in calc-silicates. Samples from six xenolith localities (Lashaine, Tanzania; Eifel, W. Germany; Lesotho; Delegate, Gloucester, and Hill 32, Australia) yield a wide range of aCO2 (0.1 to >1). The calculated fluid activities are consistent with metamorphism (1) in the presence of a mixed CO2−H2O fluid phase in which CO2 is the dominant fluid species but other C−O−H−S species are minor, (2) in the absence of a bulk fluid phase (“fluid-absent metamorphism”), or (3) in the presence of a fluid-bearing melt phase. The results for many granulites and Grenville meta-anorthosite are consistent with the presence of a CO2-rich, mixed CO2−H2O fluid phase. In contrast the relatively restricted and low values of aCO2 for calc-silicates require an H2O-rich fluid or absence of a fluid phase during metamorphism. The range of values for xenoliths are most consistent with absence of a fluid phase. The primary implication of these results is that a CO2-rich fluid accounts for the reduced aH2O in scapolite-bearing granulites. However, scapolite may be stable with a wide range of fluid compositions or in the absence of a fluid phase, and the presence of scapolite is not a priori evidence of a CO2-rich fluid phase. In addition, close association of scapolite-free mafic granulites with scapolite-bearing granulites having identical mineral compositions in the Furua Complex, and the absence of scapolite from most granulite terranes implies that a CO2-rich fluid phase is not pervasive on an outcrop scale or common to all granulite terranes. Contribution No. 474 from the Mineralogical Laboratory, University of Michigan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号