共查询到20条相似文献,搜索用时 15 毫秒
1.
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis. 相似文献
2.
The IAPWS-95 formulation explicit in Helmholtz free energy proposed by Wagner and Proβ(2002) is the best equation of state of water,from which all thermodynamic properties can be obtained over a wide T—p range from 273.16 to 1273 K and from 0 to 1000 MPa with experimental accuracy.This paper reports the applications of the IAPWS-95 formulation in fluid inclusion and mineral-water phase equilibria. A reliable and highly efficient calculation method is presented for the saturated properties of water so that the formulation can be conveniently applied in the study of fluid inclusion,such as calculating homogenization pressures,homogenization densities(or molar volumes),volume fractions and isochores.Meanwhile,the univariant curves of some mineral-dehydration reactions are calculated based on the IAPWS-95 formulation.The computer code of the IAPWS-95 formulation can be obtained from the corresponding author. 相似文献
3.
The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey) 总被引:1,自引:0,他引:1
The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt.The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E-W and NE-SW trending fracture zones.The main ore minerals are galena, sphalerite,pyrite.chalcopyrite.tetrahedrite and gold.Homogenization temperatures of fluid inclusions are between 130 and 295℃ for quartz and between 90 and 133℃ for sphalerite.Sulphur isotope values obtained from pyrite,galena and sphalerite vary between 1.2‰ and 3‰.indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region.Oxygen isotope values are between 15.0‰ and 16.7‰ and hydrogen isotope values are between -87‰ and -91‰ The sulphur isotope thermometer yielded temperatures in the range of 244-291℃ for the ore formation.Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction- related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian. 相似文献
4.
The Donalda gold deposit in the southern part of the Archean Abitibi greenstone belt consists
mainly of a subhorizontal gold-quartz vein perpendicular to subvertical shear zones. The 0.3e0.5 m thick
vein is characterized by vein-parallel banding structures indicating multiple episodes of fracture opening
and mineral precipitation. Measurement of the c-axis of primary growth quartz indicates that quartz preferentially
grew perpendicular to the fracture, suggesting open space filling and/or extensional nature of the
fracture. Measurement of the orientations of microfractures, veinlets and fluideinclusion planes (FIPs)
crosscutting primary growth quartz indicates that the vein minerals were subject to a vertical maximum
principal stress (s1), which is inconsistent with the subhorizontal s1 inferred from the regional stress field
with NeS shortening. This apparent discrepancy is explained by invoking episodic fluid pressure fluctuation
between supralithostatic and hydrostatic regimes accompanied by episodic opening and closing of the subhorizontal
fracture. When fluid pressure was higher than the lithostatic value, the fracture was opened and
primary growth minerals were precipitated, whereas when fluid pressure decreased toward the hydrostatic
value, the hanging wall of the fracture collapsed, causing collision of protruding primary growth minerals from both sides of the fracture and resulting in formation of vein-parallel deformation bands. The columns
where the two facing sides of the fracture collided were subject to higher-than-lithostatic stress due to the
bridging effect and reduced support surface area, explaining the development of vertical s1. This hypothesis
is consistent the fault-valve model, and explains the flipping of s1 without having to change the regional
stress field. 相似文献
5.
Using a Diamond Anvil Cell combined with micro Raman spectroscopy,the quantitative relations among Raman shifts,pressure and temperature were obtained for the vibration of O-H in H2O-NaCl,C-O in CO32-,S-O in SO42- and C-H in n-heptane-cyclohexane.Based on the quantitative relationships obtained,it is possible to determine the inner pressure for single fluid inclusions and to further determine the isochore of the systems.It is not only helpful to obtain the forming temperatures and pressures of the enclosing minerals,but also to be able to provide information concerning the chemical compositions of the fluid inclusions. 相似文献
6.
Four different varieties of charnockitic rocks,with different modes of formation,from the Mesoproterozoic Natal belt are described and new C isotope data presented.Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships.Whereas there has been much debate on genesis of charnockites and the use of the term charnockite.it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O(±high CO2),high temperature,and composition (especially Fe/(Fe +Mg)).From the Natal belt exposures,it is evident that syn-emplacement.magmatic crystallization of chamockite can arise from mantle-derived differentiated melts that are inherently hot and dry(as in the Oribi Gorge granites and Munster enderbite),as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons(as in the Portobello Granite).Two varieties of post-emplacement sub-solidus chamockites are also evident.These include charnockitic aureoles developed in leucocratic,biotite.garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes(as in the Nicholson’s Point granite,a part of the Margate Granite Suite),as well as nebulous,patchy charnockitic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aHO fluid conditions during a metamorphic event.These varieties of chamockite show that the required physical conditions of their genesis can be achieved through a number of geological processes,providing some important implications for the classification of charnockites,and for the interpretation of charnockite genesis in areas where poor exposure obscures field relationships. 相似文献
7.
Mantle convection modeling of the supercontinent cycle: Introversion,extroversion, or a combination?
The periodic assembly and dispersal of continental fragments,referred to as the supercontinent cycle,bear close relation to the evolution of mantle convection and plate tectonics.Supercontinent formation involves complex processes of"introversion"(closure of interior oceans),"extroversion"(closure of exterior oceans),or a combination of these processes in uniting dispersed continental fragments.Recent developments in numerical modeling and advancements in computation techniques enable us to simulate Earth’s mantle convection with drifting continents under realistic convection vigor and rheology in Earth-like geometry(i.e.,3D spherical-shell).We report a numerical simulation of 3D mantle convection,incorporating drifting deformable continents,to evaluate supercontinent processes in a realistic mantle convection regime.Our results show that supercontinents are assembled by a combination of introversion and extroversion processes.Small-scale thermal heterogeneity dominates deep mantle convection during the supercontinent cycle,although large-scale upwelling plumes intermittently originate under the drifting continents and/or the supercontinent. 相似文献
8.
Grant M.Young 《地学前缘(英文版)》2015,6(3):419-435
Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario,Canada is present in the Animikie Basin on the south shore of Lake Superior.These rocks,beginning with the glaciogenic Gowganda Formation,are interpreted as passive margin deposits.The absence of the lower Huronian(rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin(Chocolay Group)to deposition on the upper plate of a north-dipping detachment fault,which lacks sediments of the rift phase.Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province,renewed uplift(plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga.Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus- the Great Stratigraphic Gap- which lasted for about 350 Ma.This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean.These events caused regional uplift(the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode,including the Penokean orogeny,belatedly flooded the southern margin of the Superior province with foreland basin deposits,established the limits of the Superior structural province and played an important role in constructing Laurentia. 相似文献
9.
At peak granulite-facies metamorphic conditions, lower continental crust is arguably fluxed by large amounts of two key low water activity fluids: (i) high-density CO2 and/or (ii) concentrated saline so- lutions. These fluids are either internally-derived, generated by mineral reactions or dehydration melting or, notably for CO2, externally-derived, issued from the underlying mantle. Postmetamorphic evolution results in complete disappearance of these fluids, except for minute remnants preserved in minerals as fluid inclusions. Two major processes are involved: (i) at peak conditions, granitoid magmas form, migrate upward, and crystallize as shallow intrusions in the upper crust (mineralized porphyry types or reduced intrusions); (ii) during the rapid decompression which almost systematically follows a period of post-peak isobaric cooling, especially for ultrahigh-temperature granulites (anticlockwise P-T paths), quartz-carbonate megashear zones are formed by repeated periods of seismic activity. Seismic activity may continue until all free fluids have disappeared, resulting in the ultramylonites and pseudotachylites that are found in many granulite domes. A great majority of vein-type Au deposits worldwide occur in the above-mentioned settings or nearby. We suggest that the Au has been scavenged by the granulite fluids, then redistributed and concentrated during the formation of veins and related phenomena. 相似文献
10.
Daniel E.Harlov 《地学前缘(英文版)》2012,3(6):813-827
High-grade dehydration of amphibolite-facies rocks to granulite-facies is a process that can involve partial melting,fluid-aided solid-state dehydration,or varying degrees of both.On the localized meter scale,solid-state dehydration,due to CO2-rich fluids traveling along some fissure or crack and subsequently outwards along the mineral grain boundaries of the surrounding rock,normally is the means by which the breakdown of biotite and amphibole to orthopyroxene and clinopyroxene occur.Various mineral textures and changes in mineral chemistry seen in these rocks are also seen in more regional orthopyroxene-clinopyroxene-bearing rocks which,along with accompanying amphibolite-facies rocks, form traverses of lower crust.This suggests that solid-state dehydration during high-grade metamorphism could occur on a more regional scale.The more prominent of these fluid-induced textures in the granulitefacies portion of the traverse take the form of micro-veins of K-feldspar along quartz grain boundaries and the formation of monazite inclusions in fluorapatite.The fluids believed responsible take the form of concentrated NaCl- and KC1- brines from a basement ultramafic magma heat source traveling upwards along grain boundaries.Additional experimental work involving CaSO4 dissolution in NaCl-brines. coupled with natural observation of oxide and sulfide mineral associations in granulite-facies rocks,have demonstrated the possibility that NaCl-brines,with a CaSO4 component,could impose the oxygen fugacity on these rocks as opposed to the oxygen fugacity being inherent in their protoliths.These results, taken together,lend credence to the idea that regional chemical modification of the lower crust is an evolutionary process controlled by fluids migrating upwards from the lithospheric mantle along grain boundaries into and through the lower crust where they both modify the rock and are modified by it. Their presence allows for rapid mass and heat transport and subsequent mineral genesis and mineral reequilibration in the rocks through which they pass. 相似文献
11.
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC). 相似文献
12.
Carlo Doglioni Eugenio Carminati Mattia Crespi Marco Cuffaro Mattia Penati Federica Riguzzi 《地学前缘(英文版)》2015,6(3):401-418
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames,which are arbitrary.We review the geological and geophysical signatures of plate boundaries,and show that they are markedly asymmetric worldwide.Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data.Different assumptions about the depths of hotspot sources(below or within the asthenosphere,which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle.The widely used no-net-rotation(NNR) reference frame,and low(0.2°-0.4° /Ma) net rotation rates(deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle(e.g.,Nazca).With fast(1° /Ma) net rotation(shallow hotspots source),all plates,albeit at different velocity,move westerly along a curved trajectory,with a tectonic equator tilted about 30° relative to the geographic equator.This is consistent with the observed global tectonic asymmetries. 相似文献
13.
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil,gas and coal in China.The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies,but it has not been well understood in terms of the hydrodynamics of basin fluid flow.We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing,reducing fluid and a downward flowing,oxidizing fluid.This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow,and topographic relief,which drove the downward flow.In this study,we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure,in addition to sediment compaction and heating.Our results indicate that when hydrocarbon generation is taken into account,fluid overpressure during the Cretaceous was more than doubled in comparison with the simulation when hydrocarbon generation was not considered.Furthermore,fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case.These results suggest that hydrocarbon generation may have played an important role in uranium mineralization,not only in providing reducing agents required for the mineralization,but also in contributing to the driving force to maintain the upward flow. 相似文献
14.
This study investigates the mechanism of formation of convection plumes of mushroom shape in sub-solidus mantle and their prediction.The seismic-tomographic images of columnar structures of several hundreds kilometers in diameter have been reported by several researchers,while the much cherished mushroom-shaped plume heads could only be found in computational geodynamics(CGD) models and simple small-scale laboratory analogue simulations.Our theory of transient instability shows that the formation of conv... 相似文献
15.
J.GregoryShellnutt 《地学前缘(英文版)》2014,5(3):369-394
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian. 相似文献
16.
It has been thought that granitic crust,having been formed on the surface,must have survived through the Earth’s evolution because of its buoyancy.At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction,subduction erosion, and continental subduction.Granitic rocks,the major constituent of the continental crust,are lighter than the mantle at depths shallower than 270 km,but we show here,based on first principles calculations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone,and thus can be subducted in the depth range of 270-660 km.This suggests that there can be two reservoirs of granitic material in the Earth,one on the surface and the other at the base of the mantle transition zone(MTZ).The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust.Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle.This could explain the anomalous seismic-wave velocities observed around 660 km depth.The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation,chemical discontinuities between granitic material and the surrounding mantle,or a combination thereof. 相似文献
17.
Oleg G. Safonov Elizaveta I. Kovaleva Svetlana A. Kosova H.M. Rajesh Georgy A. Belyanin Maria A. Golunova Dirk D. Van Reenen 《地学前缘(英文版)》2012,3(6):829-841
Reaction textures and fluid inclusions in the~2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses(Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750—800℃and 5.5—6.2 kbar.partial melting,and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650—700℃.These processes caused local variations of water and alkali activity in the fluids,resulting in various mineral assemblages within the dehydration zone.The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO-2-(K,Na)Cl fluids at 750 and 800℃and 5.5 kbar.It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K.Na)Cl fluids is accompanied by partial melting at 750—800℃.Orthopyroxene-bearing assemblages are characteristic for temperature 800℃and are stable in equilibrium with fluids with low salt concentrations,while salt-rich fluids produce clinopyroxene-bearing assemblages.These observations arc in good agreement with the petrological data on the dehydration zones within the Sand River orthoeneisses. 相似文献
18.
<正>We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China.Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge,whereas the intraplate magmatism in China has different origins.The active volcanoes in Northeast China(such as the Changbai and Wuda-lianchi) are caused by hot upwelling in the big mantle wedge(BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well.The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate(or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle.The stagnant slab finally collapses down to the bottom of the mantle,which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab—plume interactions. 相似文献
19.
Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth’s history. Their flood basalts and associated intrusions can cause significant release of SO4 and CO2 and consequently, cause major environmental disruptions. Here, we reconstruct the long-term periodic pattern of LIP emplacement and its impact on ocean chemistry and biodiversity from δ34Ssulfate of the last 520 Ma under particular consideration of the preservation limits of LIP records. A combination of cross-wavelet and other time-series analysis methods has been applied to quantify a potential chain of linkage between LIP emplacement periodicity, geochemical changes and the Phanerozoic marine genera record. We suggest a mantle plume cyclicity represented by LIP volumes (V) of V = ?(350–770) × 103 km3 sin(2πt/170 Ma) + (300–650) × 103 km3 sin(2πt/64.5 Ma + 2.3) for t = time in Ma. A shift from the 64.5 Ma to a weaker ~28–35 Ma LIP cyclicity during the Jurassic contributes together with probably independent changes in the marine sulfur cycle to less ocean anoxia, and a general stabilization of ocean chemistry and increasing marine biodiversity throughout the last ~135 Ma. The LIP cycle pattern is coherent with marine biodiversity fluctuations corresponding to a reduction of marine biodiversity of ~120 genera/Ma at ~600 × 103 km3 LIP eruption volume. The 62–65 Ma LIP cycle pattern as well as excursion in δ34Ssulfate and marine genera reduction suggest a not-yet identified found LIP event at ~440–450 Ma. 相似文献
20.
Fluid infiltration into retrograde granulites of the Southern Marginal Zone(Limpopo high grade terrain)is exemplified by hydration reactions.shear zone hosted metasomatism,and lode gold mineralisation.Hydration reactions include the breakdown of cordierite and orthopyroxene to gedrite kyanite,and anthophyllite,respectively.Metamorphic petrology,fluid inclusions,and field data indicate that a low H_2O-activity carbon-saturated CO_2-rich and a saline aqueous fluid infiltrated the Southern Marginal Zone during exhumation.The formation of anthophyllite after orthopyroxene eslablished a regional retrograde anthophyllite-in isograd and occurred at P-T conditions of- 6 kbar and 610 C,which fixes the minimum mole fraction of II.0 in the CO_2-rich fluid phase at- 0.1.The maximum H_2O mole fraction is hxed by the lower temperature limit(~800℃) for partial melting at ~0.3.C-O-H fluid calculations show that the CO_2-rich fluid had an oxygen fugacity that was 0.6 log10 units higher than that of the fayalite-magnetitequartz buffer and that the CO_2/(CO_2+CH_4) mole ratio of this fluid was 1.The presence of dominantly relatively low density CO_2-rich fluid inclusions in the hydrated granulites indicates that the fluid pressure was less than the lithostatic pressure.This can be explained by strike slip faulting and/or an increase of the rock permeability caused by hydration reactions. 相似文献