首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地幔岩中流体包裹体研究   总被引:5,自引:2,他引:3  
卢焕章 《岩石学报》2008,24(9):1954-1960
地幔岩石中的流体包裹体代表地幔流体的样品。地幔流体包裹体可以存在从地幔来的金刚石,地幔捕虏体和岩浆碳酸岩中。研究这些岩石和矿物中的流体包裹体可以得出其所代表的地幔流体的温度、压力、成分和同位素。我们目前见到的这三类地幔岩石的包裹体主要可在橄榄石、辉石、金刚石、方解石和磷灰石中见到。这些包裹体可以粗略地分为CO2包襄体和硅酸盐熔融体包裹体。又可细分为四类包裹体:(1)富碳酸盐的硅酸盐熔融包裹体。这种包裹体在金刚石、地幔岩捕虏体和岩浆碳酸盐岩中见到,它又可分为结晶质熔融包裹体和玻璃包裹体。(2)CO2包裹体。这种包裹体大多见于地幔捕虏体中,在金刚石和岩浆碳酸岩中也可见到。(3)含硫化物的包裹体。这种包裹体见于地幔捕虏体中,与纯CO2包裹体和含CO2的熔融包裹体共存。(4)高密度的流体包裹体。这种包裹体见于金刚石中,是一种高盐度、高密度的含K、Cl和H2O的流体包裹体,又可分为高卤水包裹体和含卤水的富硅的碳酸盐岩浆包裹体。从对金刚石、地幔捕虏体和岩浆碳酸盐岩中流体包裹体的研究表明,地幔流体存在不均匀性和不混溶性。  相似文献   

2.
Carbon dioxide-rich fluid and carbonate-rich aluminosilicate melt inclusions in tantalite-(Mn) from the Alto do Giz pegmatite in the Borborema Pegmatite Province, northeastern Brazil were investigated to constrain the formation of the host crystals. The results demonstrate that in the Alto do Giz pegmatite, water- and alkaline carbonate-rich fluids and melts are responsible for the transport and deposition of tantalite-(Mn) at temperatures around 600°C and about 4 kbar. Moreover, evidence is presented to show that during crystallization of the tantalite-(Mn), three different components coexisted, which are now trapped as separate inclusions: two immiscible silicate melts (types A and B melt inclusions) and a CO2-rich aqueous fluid. We hypothesize that immiscible fluid separation may have been a critical factor in producing the water- and alkaline carbonate-rich fluids and melts necessary for Ta and Nb transport. Since the tantalite-(Mn) crystallized during pegmatite formation, this mechanism must also have implications for pegmatite genesis in general.  相似文献   

3.
Lherzolite xenoliths containing fluid inclusions from the Ichinomegata volcano, located on the rear-arc side of the Northeast Japan arc, may be considered as samples of the uppermost mantle above the melting region in the mantle wedge. Thus, these fluid inclusions provide valuable information on the nature of fluids present in the sub-arc mantle. The inclusions in the Ichinomegata amphibole-bearing spinel–plagioclase lherzolite xenoliths were found to be composed mainly of CO2–H2O–Cl–S fluids. At equilibrium temperature of 920 °C, the fluid inclusions preserve pressures of 0.66–0.78 GPa, which correspond to depths of 23–28 km. The molar fraction of H2O and the salinity of fluid inclusions are 0.18–0.35 and 3.71 ± 0.78 wt% NaCl equivalent, respectively. These fluid inclusions are not believed to be fluids derived directly from the subducting slab, but rather fluids exsolved from sub-arc basaltic magmas that are formed through partial melting of mantle wedge triggered by slab-derived fluids.  相似文献   

4.
Fluid inclusions approximated by the system H2O-CO2-NaCl are common in many geologic environments. In order to apply microthermometric data from these inclusions to infer P-T (pressure-temperature) trapping conditions, the composition of the inclusions, including the salinity, must be known. Normally, salinities of aqueous inclusions are determined from ice-melting temperatures obtained during microthermometry. However, when CO2-bearing aqueous fluid inclusions are cooled they often form a hydrate that incorporates H2O into the structure, and salinities estimated from ice-melting temperatures are therefore higher than the actual salinity. A technique that combines data from Raman spectroscopic and microthermometric analyses of individual inclusions was developed to determine the salinity of CO2-bearing aqueous inclusions based on measured clathrate melting temperatures and CO2 pressures obtained from Raman analyses. In this study, the pressure within inclusions was determined using Raman spectroscopy based on the splitting of the Fermi diad of CO2, measured at the clathrate melting temperature. The CO2 densities (and pressures) predicted by the equation developed in this study are in relatively good agreement with previously published equations, except for very low densities and correspondingly low pressures. The combined Raman spectroscopy - microthermometry technique thus provides both the temperature and the pressure in the inclusion at clathrate melting. For inclusions in which the clathrate melts in the presence of CO2 liquid, the salinity can be determined with a precision of a few tenths of a wt% NaCl, whereas for inclusions in which clathrate melts in the presence of CO2 vapor the salinity error may be a few wt% NaCl. Applying the method to synthetic fluid inclusions with known salinity suggests that the technique is valid for determining salinity of H2O-CO2-NaCl fluid inclusions in which clathrate melts in the presence of liquid CO2 only or vapor CO2 only.  相似文献   

5.
Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O–NaHCO3–SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.  相似文献   

6.
The “unexpected” (the word is from H.G.F. Winkler, 1974) discovery of CO2-rich inclusions in granulites has initiated a debate which, after more than 35 years, is still an important issue in metamorphic petrology. Experimental and stable isotope data have led to the conception of a “fluid-absent” model, opposed to the “fluid-assisted” hypothesis, derived from fluid inclusion evidence. Besides CO2, other fluids have been found to be of importance in these rocks, notably concentrated aqueous solutions (brines), also able to coexist with granulite mineral assemblages at high P and T. Brines also occur in inclusions or, more impressively, have left their trace in large scale metasomatic effects, typical of a number of high-grade areas: e.g., intergranular K-feldspar veining and quartz exsolution (myrmekites), carbonate metasomatism along km-scale shear zones (Norway, India), “incipient charnockites” (India, Sri Lanka, Scandinavia), highly oxidized Archean granulites. All together, this impressive amount of evidence suggests that the amount of fluids in the lower crust, under peak metamorphic conditions, was very large indeed, far too important to be only locally derived. Then, except for remnants contained in inclusions, these fluids have left the rock system during postmetamorphic uplift.Fluid remnants identical to those occurring in deep crustal granulites are also found in mantle minerals, including diamonds. Major mantle fluid source is related to the final stages of melting processes: late magmatic emanations from alkalic basaltic melts, carbonate-metasomatizing aqueous fluids issued from igneous carbonatites. Even if a local derivation of some fluids by crustal melting cannot be excluded, most lower-crustal granulite fluids have the same origin. They are transferred from the mantle into the crust by synmetamorphic intrusives, also responsible for the high thermal gradient typical of granulites, notably HT- or UHT-types. These are mostly found in Precambrian times, generated during a small number of time intervals: e.g., around 500, 1000, 1800, 2500 Ma. HT-granulites forming events occur at world-scale in supercontinents or supercratons, either at the end of amalgamation, or shortly before breaking-off. They provide a mechanism for a vertical accretion of the continental slab, which complement the more classical way of lateral accretion above subduction zones at convergent boundaries.  相似文献   

7.
Fluid inclusions in coesite‐bearing eclogites and jadeite quartzite at Shuanghe in Dabie Shan, East‐central China, have preserved remnants of early, prograde and/or peak metamorphic fluids, reset during post‐UHP (ultrahigh‐pressure) metamorphic uplift. Inclusions occur in several minerals (e.g. omphacite & epidote), notably as isolated, primary inclusions in quartz included in various host minerals. Two major fluid types have been identified: non‐polar fluid species (N2 or CO2) and aqueous, the latter is by far the most predominant. Aqueous fluids cover a wide range of salinity, from halite‐bearing brines to low salinity fluids. For non‐polar fluids, few N2 inclusions occur in undeformed eclogite, whereas a number of CO2‐rich inclusions have been found in microshear zones of eclogite or jadeite quartzite in close proximity to marble occurrences. The primary character of N2 and high‐salinity aqueous inclusions indicates that they are remnants from UHP metamorphic fluids and for some there is the distinct possibility that they are ultimately derived from pre‐metamorphic fluids. This conclusion is supported by the preservation, in some samples, of microdomains containing synchronous inclusions of variable salinities, which tend to relate to the chemical composition of the host crystal. Carbonic fluids may be derived from neighbouring rocks, notably marble and carbonate‐bearing metasediments, during post‐metamorphic uplift. During post‐UHP exhumation, a limited decrease of the fluid density has occurred, with formation of new sets of fluid inclusions. Fluid movements, however, remained exceedingly limited, at the scale of the enclosing crystal.  相似文献   

8.
Fluid infiltration into retrograde granulites of the Southern Marginal Zone(Limpopo high grade terrain)is exemplified by hydration reactions.shear zone hosted metasomatism,and lode gold mineralisation.Hydration reactions include the breakdown of cordierite and orthopyroxene to gedrite kyanite,and anthophyllite,respectively.Metamorphic petrology,fluid inclusions,and field data indicate that a low H_2O-activity carbon-saturated CO_2-rich and a saline aqueous fluid infiltrated the Southern Marginal Zone during exhumation.The formation of anthophyllite after orthopyroxene eslablished a regional retrograde anthophyllite-in isograd and occurred at P-T conditions of- 6 kbar and 610 C,which fixes the minimum mole fraction of II.0 in the CO_2-rich fluid phase at- 0.1.The maximum H_2O mole fraction is hxed by the lower temperature limit(~800℃) for partial melting at ~0.3.C-O-H fluid calculations show that the CO_2-rich fluid had an oxygen fugacity that was 0.6 log10 units higher than that of the fayalite-magnetitequartz buffer and that the CO_2/(CO_2+CH_4) mole ratio of this fluid was 1.The presence of dominantly relatively low density CO_2-rich fluid inclusions in the hydrated granulites indicates that the fluid pressure was less than the lithostatic pressure.This can be explained by strike slip faulting and/or an increase of the rock permeability caused by hydration reactions.  相似文献   

9.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

10.
Mantle peridotites from the Veneto Volcanic Province (VPP) have been investigated in order to constrain P-T conditions of mantle events, determine the style of the metasomatic reactions, and the compositions of the metasomatic agents. Studied rocks show dominant protogranular and transitional textures; only one sample shows effect of pyrometamorphism. Clinopyroxenes in protogranular lherzolites show depleted LREE patterns, while those of transitional rocks are characterised by spoon-shaped REE patterns (La up to 60 times chondrite), and variable enrichments in LILE. Two generations of fluid inclusions are recognised: 1) Type I (CO2 ± CO ± C fluid) found only in orthopyroxene of transitional xenoliths which may contain very small amphibole; 2) Type II (CO2-rich fluid) found in all minerals of all xenoliths. Most of inclusions homogenize to liquid, with ThL ranging between ?44 and 31°C. The densest CO2 fluid inclusions (d?=?1.13?g/cm3), indicates a trapping pressure of ~10?kbar at 800°C. We propose that the mantle beneath the VVP equilibrated at pressures of 10?kbar, at about 800°C. Traces of an aqueous fluid preserved as fluid inclusions in orthopyroxene suggest the existence of an older subduction related metasomatic event and the occurrence of two stages metasomatism in the lithosphere beneath the SE Alps.  相似文献   

11.
《Ore Geology Reviews》1999,14(3-4):203-225
The auriferous veins at Yirisen, Masumbiri, Sierra Leone, occurring mainly in the form of sericitic quartz-sulphide lodes and stringers, are hosted in metamorphosed volcano-sedimentary assemblages invaded by at least two generations of granitic intrusions. Detailed microthermometric studies of fluid inclusions from the veins coupled with laser Raman spectroscopic analysis show that the inclusions contain aqueous fluids of variable salinity (5 to 60 wt.% NaCl equivalent) and dense carbonic fluids (pure CO2: 1.08>d>0.88 g/cm3). Optical observations and analysis on opened inclusions by scanning electron microscopy (SEM) reveal that some of the aqueous inclusions contain a number of daughter minerals: halite, sylvite, Ca-, Fe-, Mg- and possibly Li-bearing chlorides, and anhydrite; nahcolite occurs also in some of the CO2 inclusions. The SEM runs also detected a small amount of electrum, suggesting that silver might be a bi-product of the mineralisation. The aqueous and carbonic fluids remained immiscible throughout the formation and evolution of the hydrothermal veins. A few mixed (H2O+CO2) inclusions apparently resulted from accidental trapping of both fluids in the same cavity. The wide range of salinities observed in the aqueous inclusions is attributed to the mixing of relatively hot, low-salinity aqueous fluids and colder, high-salinity brines. The CO2-rich and low-salinity H2O inclusions are considered to be derived from the metamorphic decarbonation/dehydration of the greenstone pile whilst the high-salinity brines are believed to be basinal in origin. Pressure–temperature (PT) conditions of entrapment, inferred from the intersection of representative isochores of the immiscible fluids, indicate that the formation of the veins started at T=400°C and P about 4 kbar, in the presence of the high-density CO2 and low-salinity H2O fluids. At about 200°C, pressure fluctuations (incremental opening of the vein) correspond to the trapping of the lower-density CO2 inclusions and high-salinity brines. It is proposed that the decarbonation/dehydration processes (possibly aided by later magmatic processes) expelled and mobilised the gold from the greenstone pile and concentrated it in the CO2-bearing hydrothermal fluid in the form of Au–chloride complexes. High thermal gradients are believed to have caused the upward migration of this fluid from the bottom of the greenstone pile through structurally controlled conduits. We contend that phase separation of the H2O–CO2 metamorphic fluid, aided possibly by some wall–rock alteration, most probably triggered a decrease in ligand activity and thus, precipitation of the gold into lodes. Percolation of the basinal brines is thought to have remobilised some of the gold together with some silver.  相似文献   

12.
Orthopyroxene, clinopyroxene, and olivine from a metasomatized mantle xenolith of garnet lherzolite in alkaline rocks at the Jetty Oasis, East Antarctica, contain numerous carbon dioxide-dominated composite melt-fluid and fluidized sulfide-silicate (±carbonate) inclusions. Although the maximum pressure under which the inclusions were captured by rock-forming minerals was evaluated at 13 kbar, its actual value should have been much higher, judging by the fact that the inclusions have lost part of their material (decrepitated) when the xenolith was brought to the surface. Two major fluid populations are distinguished. The fluids entrapped during the earlier episode have a more complicated composition. Dominated by CO2, these fluids contain much N2 (0.1–0.2 mole fractions), H2S, and perhaps, also H2O and are hosted by sulfide-silicate (±carbonate) inclusions produced by liquid immiscibility. As these inclusions evolved, they enriched in CO2 and depleted in H2S and N2. Although the concentrations of N2, H2S, and H2O were generally relatively low, these components played an important role in mantle metasomatism, as is reflected in the geochemistry of the derived magmas. The fluids of the younger episode (pressures lower than 7 kbar) are notably richer not only in CO2 but also in H2O (up to the appearance of inclusions with a liquid aqueous phase and the formation of CO2 gas hydrate when cooled in a cryometric stage by liquid N2). The effect of fluids on the mantle source in two discrete episodes is also confirmed by isotopic-geochemical data. Isotopic data on gases obtained immediately from fluid inclusions in minerals by the stepwise crushing technique provide evidence of the evolution of elemental and isotopic ratios of the gases in the course of the metasomatic processes. The high-pressure fluid inclusions of the earlier episode have low C/N2, C/Ar, and N2/Ar ratios, isotopically heavy N2, and somewhat elevated (to 530) 40Ar/36Ar ratios. The younger fluids typically have higher (by two to three orders of magnitude) C/N2 and C/Ar ratios, lower δ13C of CO2, and N2/Ar and 40Ar/36Ar ratios close to the atmospheric values. The nitrogen and argon isotopic compositions and elemental ratios suggest that the younger fluids could have been produced by two-component mixing in the mantle-atmosphere system. Comprehensive analysis of the data and in particular the 40Ar/36Ar ratios, which are atypical of the mantle, and an increase in the H2O concentration, suggests a subduction-related nature of the fluids.  相似文献   

13.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

14.
To understand the influence of fluid CO2 on ultramafic rock-hosted seafloor hydrothermal systems on the early Earth, we monitored the reaction between San Carlos olivine and a CO2-rich NaCl fluid at 300 °C and 500 bars. During the experiments, the total carbonic acid concentration (ΣCO2) in the fluid decreased from approximately 65 to 9 mmol/kg. Carbonate minerals, magnesite, and subordinate amount of dolomite were formed via the water-rock interaction. The H2 concentration in the fluid reached approximately 39 mmol/kg within 2736 h, which is relatively lower than the concentration generated by the reaction between olivine and a CO2-free NaCl solution at the same temperature. As seen in previous hydrothermal experiments using komatiite, ferrous iron incorporation into Mg-bearing carbonate minerals likely limited iron oxidation in the fluids and the resulting H2 generation during the olivine alteration. Considering carbonate mineralogy over the temperature range of natural hydrothermal fields, H2 generation is likely suppressed at temperatures below approximately 300 °C due to the formation of the Mg-bearing carbonates. Nevertheless, H2 concentration in fluid at 300 °C could be still high due to the temperature dependency of magnetite stability in ultramafic systems. Moreover, the Mg-bearing carbonates may play a key role in the ocean-atmosphere system on the early Earth. Recent studies suggest that the subduction of carbonated ultramafic rocks may transport surface CO2 species into the deep mantle. This process may have reduced the huge initial amount of CO2 on the surface of the early Earth. Our approximate calculations demonstrate that the subduction of the Mg-bearing carbonates formed in komatiite likely played a crucial role as one of the CO2 carriers from the surface to the deep mantle, even in hot subduction zones.  相似文献   

15.
江西大吉山钨多金属矿床流体包裹体研究   总被引:8,自引:3,他引:5  
大吉山钨矿床是赣南地区的一个大型钨多金属矿床,由石英脉型钨矿体和花岗岩浸染型钨、钽、铌、铍矿体构成.在详细的岩相学观察的基础上,文章采用“流体包裹体组合”法,对石英脉型矿体和花岗岩浸染型矿体石英中的流体包裹体进行了显微测温和拉曼探针分析.研究表明,与石英脉型矿体成矿相关的流体为中-高温、中-低盐度的NaCl-H2O-CO2-CH4±N2体系,与花岗岩浸染型矿体成矿相关的流体为高温、中-低盐度的NaCl-H2O±CO2±CH4体系,两者流体的性质不同.笔者认为,在流体体系冷却过程中,所发生的以CO2逸失为特征的流体不混溶作用是石英脉型矿体的主要形成机制,而花岗岩浸染型矿体中金属元素的沉淀则主要由流体体系的冷却作用所致,这两类矿体的成矿流体的来源可能不同.  相似文献   

16.
Fluid inclusions were studied in samples from the Ashanti, Konongo-Southern Cross, Prestea, Abosso/Damang and Ayanfuri gold deposits in the Ashanti Belt, Ghana. Primary fluid inclusions in quartz from mineralised veins of the Ashanti, Prestea, Konongo-Southern Cross, and Abosso/Damang deposits contain almost exclusively volatile species. The primary setting of the gaseous (i.e. the fluid components CO2, CH4 and N2) fluid inclusions in clusters and intragranular trails suggests that they represent the mineralising fluids. Microthermometric and Raman spectroscopic analyses of the inclusions revealed a CO2 dominated fluid with variable contents of N2 and traces of CH4. Water content of most inclusions is below the detection limits of the respective methods used. Aqueous inclusions are rare in all samples with the exception of those from the granite-hosted Ayanfuri mineralisation. Here inclusions associated with the gold mineralisation contain a low salinity (<6 eq.wt.% NaCl) aqueous solution with variable quantities of CO2. Microthermometric investigations revealed densities of the gaseous inclusions of 0.65 to 1.06 g/cm3 at Ashanti, 0.85 to 0.98 g/cm3 at Prestea, up to 1.02 g/cm3 at Konongo-Southern Cross, and 0.8 to 1.0 g/cm3 at Abosso/Damang. The fluid inclusion data are used to outline the PT ranges of gold mineralisation of the respective gold deposits. The high density gaseous inclusions found in the auriferous quartz at Ashanti and Prestea imply rather high pressure trapping conditions of up to 5.4 kbar. In contrast, mineralisation at Ayanfuri and Abosso/Damang is inferred to have occurred at lower pressures of only up to 2.2 kbar. Mesothermal gold mineralisation is generally regarded to have formed from fluids characterized by H2O > CO2 and low salinity ( ±  6 eq.wt.%NaCl). However, fluid inclusions in quartz from the gold mineralisations in the Ashanti belt point to distinctly different fluid compositions. Specifically, the predominance of CO2 and CO2 >> H2O have to be emphasized. Fluid systems with this unique bulk composition were apparently active over more than 200␣km along strike of the Ashanti belt. Fluids rich in CO2 may present a hitherto unrecognised new category of ore-forming fluids. Received: 30 May 1996 / Accepted: 8 October 1996  相似文献   

17.
Fluid inclusions were studied in quartz samples from early (stage I) gold-poor quartz veins and later (stage II) gold- and sulphide-rich quartz veins from the Wenyu, Dongchuang, Qiangma, and Guijiayu mesothermal gold deposits in the Xiaoqinling district, China. Fluid inclusion petrography, microthermometry, and bulk gas analyses show remarkably consistent fluid composition in all studied deposits. Primary inclusions in quartz samples are dominated by mixed CO2-H2O inclusions, which have a wide range in CO2 content and coexist with lesser primary CO2-rich and aqueous inclusions. In addition, a few secondary aqueous inclusions are found along late-healed fractures. Microthermometry and bulk gas analyses suggest hydrothermal fluids with typically 15–30 mol% CO2 in stage I inclusions and 10–20 mol% CO2 in stage II inclusions. Estimates of fluid salinity decrease from 7.4–9.2 equivalent wt.% NaCl to 5.7–7.4 equivalent wt.% NaCl between stage I and II. Primary aqueous inclusions in both stages show consistent salinity with, but slightly lower Th total than, their coexistent CO2-H2O inclusions. The coexisting CO2-rich, CO2-H2O, and primary aqueous inclusions in both stage I and II quartz are interpreted to have been trapped during unmixing of a homogeneous CO2-H2O parent fluid. The homogenisation temperatures of the primary aqueous inclusions give an estimate of trapping temperature of the fluids. Trapping conditions are typically 300–370 °C and 2.2 kbar for stage I fluids and 250–320 °C and 1.6 kbar for stage II fluids. The CO2-H2O stage I and II fluids are probably from a magmatic source, most likely devolatilizing Cretaceous Yanshanian granitoids. The study demonstrates that gold is largely deposited as pressures and temperatures fall accompanying fluid immiscibility in stage II veins. Received: 15 May 1997 / Accepted: 10 June 1998  相似文献   

18.
The Horní Slavkov–Krásno Sn–W ore district is hosted by strongly altered Variscan topaz–albite granite (Krudum granite body) on the northwestern margin of the Bohemian Massif. We studied the fluid inclusions on greisens, ore pockets, and ore veins from the Hub Stock, an apical expression of the Krudum granite. Fluid inclusions record almost continuously the post-magmatic cooling history of the granite body from ~500 to <50°C. Rarely observed highest-temperature (~500°C) highest-salinity (~30?wt.% NaCl eq.) fluid inclusions are probably the result of secondary boiling of fluids exsolved from the crystallizing magma during pressure release which followed hydraulic brecciation of the gneissic mantle above the granite cupola. The greisenization was related to near-critical low-salinity (0–7?wt.% NaCl eq.) aqueous fluids with low amount of CO2, CH4, and N2 (≤10?mol% in total) at temperatures of ~350–400°C and pressures of 300–530 bar. Crush-leach data display highly variable and negatively correlated I/Cl and Br/Cl values which are incompatible with both orthomagmatic and/or metamorphic origin of the fluid phase, but can be explained by infiltration of surficial and/or sedimentary fluids. Low fluid salinity indicates a substantial portion of meteoric waters in the fluid mixture that is in accordance with previous stable isotope data. The post-greisenization fluid activity associated with vein formation and argillitization is characterized by decreasing temperature (<350 to <50°C), decreasing pressure (down to ~50–100 bar), and mostly also decreasing salinity.  相似文献   

19.
Fluid activity ratios calculated between millimeter- to centimeter-scale layers in banded mafic eclogites from the Tauern Window, Austria, indicate that variations in a H 2 O existed between layers during equilibration at P approximately equal to 2GPa and T approximately equal to 625°C, whereas a CO 2 was nearly constant between the same layers. Model calculations in the system H2O–CO2–NaCl show that these results are consistent with the existence of different saturated saline brines, carbonic fluids, or immiscible pairs of both in different layers. The data cannot be explained by the exisience of water-rich fluids in all layers. The model fluid compositions agree with fluid inclusion compositions from eclogite-stage veins and segregations that contain (1) saline brines (up to 39 equivalent wt. % NaCl) with up to six silicate, oxide, and carbonate daughter phases, and (2) carbonic fluids. The formation of crystalline segregations from fluid-filled pockets or hydrofractures indicates high fluid pressures at 2 GPa; the record of fluid variability in the banded eclogite host rocks, however, implies that fluid transport was limited to local flow along individual layers and that there was no large-scale mixing of fluids during devolatilization at depths of 60–70 km. The lack of evidence for fluid mixing may, in part, reflect variations in wetting behavior of fluids of different composition; nonwetting fluids (water-rich or carbonic) would be confined to intergranular pore spaces and would be essentially immobile, whereas wetting fluids (saline brines) could migrate more easily along an interconnected fluid network. The heterogeneous distribution of chemically distinct fluids may influence chemical transport processes during subduction by affecting mineral-fluid element partitioning and by altering the migration properties of the fluid phase(s) in the downgoing slab.  相似文献   

20.
Fluid inclusions have been studied in three pegmatite fields in Galicia, NW Iberian Peninsula. Based on microthermometry and Raman spectroscopy, eight fluid systems have been recognized. The first fluid may be considered to be a pegmatitic fluid which is represented by daughter mineral (silicates)-rich aqueous inclusions. These inclusions are primary and formed above 500 °C (dissolution of daughter minerals). During pegmatite crystallization, this fluid evolved to a low-density, volatile-rich aqueous fluid with low salinity (93% H2O; 5% CO2; 0.5% CH4; 0.2% N2; 1.3% NaCl) at minimum P–T conditions around 3 ± 0.5 kbar and 420 °C. This fluid is related to rare-metal mineralization. The volatile enrichment may be due to mixing of magmatic fluids and fluids equilibrated with the host rock. A drop in pressure from 3 ± 0.5 to 1 kbar at a temperature above 420 °C, which may be due to the transition from predominantly lithostatic to hydrostatic pressure, is recorded by two-phase, water-rich inclusions with a low-density vapour phase (CO2, CH4 and N2). Another inclusion type is represented by two-phase, vapour-rich inclusions with a low-density vapour phase (CO2, CH4 and N2), indicating a last stage of decreasing temperature (360 °C) and pressure (around 0.5 kbar), probably due to progressive exhumation. Finally, volatile (CO2)-rich aqueous inclusions, aqueous inclusions (H2O-NaCl) and mixed-salt aqueous inclusions with low Th, are secondary in charac- ter and represent independent episodes of hydrothermal fluid circulation below 310 °C and 0.5 kbar. Received: 14 October 1999 / Accepted: 5 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号