首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible, e.g., in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g., potential fields (current-free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.  相似文献   

2.
The topological structure of the toroidal magnetic field, which is affected by a dipole magnetic field, is studied. It is shown, that a dipole magnetic field is able to split the initial toroidal configuration into two toroids and, at a certain critical value of the magnetic dipole, can completely destroy the toroidal configuration. The dependence of the total mass excess on the dipole magnetic field is found.  相似文献   

3.
Catastrophe of coronal magnetic rope embedded in a partly open multipolar background magnetic field is studied by using a 2-dimensional, 3-component ideal MHD model in spherical coordinates. The background field is composed of three closed bipolar fields of a coronal streamer and an open field with an equatorial current sheet. The magnetic rope lies below the central bipolar field, and it is characterized by its annular and axial magnetic fluxes. For a given annual flux, there is a critical value of the axial flux, and for a given axial flux, there is a critical value of annual flux such that, below the critical value, the magnetic rope is attached to the solar surface and the system stays in equilibrium, but when the critical value is exceeded, the magnetic rope breaks free and erupts upward. This implies that catastrophe can occur in a coronal magnetic rope embedded in a partly open multipolar background magnetic field. Our computation gives a threshold value of magnetic energy that is about 15% greater than the energy of the partly open magnetic field (the central bipolar field open and the fields on either side closed). The excess energy may serve as source for solar explosions such as coronal mass ejections.  相似文献   

4.
The three-dimensional flow of a viscous incompressible electrically conducting fluid near an infinite plate (or wall) of non-conductor, which is oscillating harmonically in a uniform rotating medium, is studied in the presence of a uniform magnetic field. The impressed uniform magnetic field is perpendicular to the plate and the induced magnetic field is considered. Exact solution of this problem is obtained for the velocity and magnetic fields. Neglecting the induced magnetic field we readily obtain the results of all the previous investigations. The effects of the rotation and the magnetic field are comparable with one another and are discussed for the whole problem. Also, the drag and the lateral stress on the plate are discussed.  相似文献   

5.
The possible avenues for photoelectron transport were determined during southern hemisphere winter at Mars by using a mapping analysis of the theoretical magnetic field. Magnetic field line tracing was performed by superposing two magnetic field models: (1) magnetic field derived from a three-dimensional (3D) self-consistent quasi-neutral hybrid model which does not contain the Martian crustal magnetic anomalies and (2) a 3D map of the magnetic field associated with the magnetic anomalies based on Mars Global Surveyor magnetic field measurements. It was found that magnetic field lines connected to the nightside of the planet are mainly channeled within the optical shadow of the magnetotail whereas magnetic field lines connected to the dayside of the planet are observed to form the remainder of the magnetosphere. The simulation suggests that the crustal anomalies create “a magnetic shield” by decreasing the region near Mars which is magnetically connected to the Martian magnetosphere. The rotation of Mars causes periodic changes in magnetic connectivity, but not to qualitative changes in the overall magnetic field draping around Mars.  相似文献   

6.
Brown  D.S.  Priest  E.R. 《Solar physics》1999,190(1-2):25-33
It is important to understand the complex topology of the magnetic field in the solar corona in order to be able to comprehend the mechanisms which give rise to phenomena such as coronal loop structures and x-ray bright points. A key feature of the magnetic topology is a separator. A magnetic separator is a field line which connects two magnetic null points, places where the magnetic field becomes zero. A stable magnetic separator is important as it is the intersection of two separatrix surfaces. These surfaces divide the magnetic field lines into regions of different connectivity, so a separator usually borders four regions of field-line connectivity. This work examines the topological behaviour of separators that appear in a magnetic field produced by a system of magnetic sources lying in a plane (the photosphere). The questions of how separators arise and are destroyed, the topological conditions for which they exist, how they interact and their relevance to the coronal magnetic field are addressed.  相似文献   

7.
Magnetic Energy of Force-Free Fields with Detached Field Lines   总被引:2,自引:0,他引:2  
Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasma β (the ratio between gas pressure and magnetic pressure) is taken to be sosmall (β= 10^-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magneticenergy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magneticenergy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of thecorresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as towhether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energy larger than the corresponding open field energy if part of the field lines is allowed tobe detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.  相似文献   

8.
Nonlinear force-free magnetic field(NLFFF) extrapolation based on the observed photospheric magnetic field is the most important method to obtain the coronal magnetic field nowadays.However, raw photospheric magnetograms contain magnetic forces and small-scale noises, and fail to be consistent with the force-free assumption of NLFFF models. The procedure for removing the forces and noises in observed data is called preprocessing. In this paper, we extend the preprocessing code of Jiang Feng to spherical coordinates for a full sphere. We first smooth the observed data with Gaussian smoothing, and then split the smoothed magnetic field into a potential field and a non-potential field.The potential part is computed by a numerical potential field model, and the non-potential part is preprocessed using an optimization method to minimize the magnetic forces and magnetic torques. Applying the code to synoptic charts of the vector magnetic field from SDO/HMI, we find it can effectively reduce the noises and forces, and improve the quality of data for a better input which will be used for NLFFF extrapolations applied to the global corona.  相似文献   

9.
We demonstrate a new way of studying interplanetary magnetic field—Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1 G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter’s Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.  相似文献   

10.
At Mercury's surface external magnetic field contributions caused by magnetospheric current systems play a much more important role than at Earth. They are subjected to temporal variations and therefore will induce currents in the large conductive iron core. These currents give rise to an additional magnetic field superposing the planetary field. We present a model to estimate the size of the induced fields using a magnetospheric magnetic field model with time-varying magnetopause position. For the Hermean interior we assume a two-layer conductivity distribution. We found out that about half of the surface magnetic field is due to magnetospheric or induced currents. The induced fields achieve 7-12% of the mean surface magnetic intensity of the internal planetary field, depending on the core size. The magnetic field was also modeled for a satellite moving along a polar orbit in the Hermean magnetosphere, showing the importance of a careful separation of the magnetic field measurements.  相似文献   

11.
Hu  Y.Q. 《Solar physics》2001,200(1-2):115-126
Using a 2.5-D, time-dependent ideal MHD model in Cartesian coordinates, a numerical study is carried out to find equilibrium solutions associated with a magnetic flux rope in the corona. The ambient magnetic field is partially open, consisting of a closed arcade in the center and an open field at the flank. The coronal magnetic flux rope is characterized by its magnetic properties, including the axial and annular magnetic fluxes and the magnetic helicity, and its geometrical features, including the height of the rope axis, the halfwidth of the rope and the length of the vertical current sheet below the rope. It is shown that for a given partially open ambient magnetic field, the dependence of the geometrical features on the magnetic properties displays a catastrophic behavior, namely, there exists a certain critical point, across which an infinitesimal enhancement of the magnetic parameters causes a finite jump of the geometrical parameters for the rope. The amplitude of the jump depends on the extent to which the ambient magnetic field in open, and approaches to zero when the ambient magnetic field becomes completely closed. The implication of such a catastrophe in solar active phenomena is briefly discussed.  相似文献   

12.
We consider the mean electromotive force and a dynamo-generated magnetic field, taking into account the stretching of turbulent magnetic field lines by a shear flow. Calculations are performed by making use of the second-order correlation approximation. In the presence of shear, the mirror symmetry of turbulence can be broken; thus turbulent motions become suitable for the generation of a large-scale magnetic field. Regardless of the shear law, turbulence can lead to a rapid amplification of the mean magnetic field. The growth rate of the mean magnetic field depends on the length-scale: it is faster for the fields with smaller length-scale. The mechanism considered is qualitatively different from the alpha dynamo, and can generate only a magnetic field that is inhomogeneous in the direction of flow. In contrast to the alpha dynamo, this mechanism also allows the generation of two-dimensional fields. The suggested mechanism may play an important role in the generation of magnetic fields in accretion discs, galaxies and jets.  相似文献   

13.
研究了磁场对奇异星模型中夸克直接Urca过程的中微子能量损失率的影响,首先改进了弱场条件下的近似计算方法,这一方法可以推广到其他弱作用过程.在甚强磁场下,严格地计算Urca过程的中微子能量损失率,结果显示辐射率强烈地依赖于磁场,与磁场的二次方成正比,更重要的是对温度的依赖关系不同于弱场及没有磁场时的情形.  相似文献   

14.
DÉmoulin  P.  HÉnoux  J. C.  Mandrini  C. H.  Priest  E. R. 《Solar physics》1997,174(1-2):73-89
In order to understand various solar phenomena controlled by the magnetic field, such as X-ray bright points, flares and prominence eruptions, the structure of the coronal magnetic field must be known. This requires a precise extrapolation of the photospheric magnetic field. Presently, only potential or linear force-free field approximations can be used easily. A more realistic modelling of the field is still an active research area because of well-known difficulties related to the nonlinear mixed elliptic-hyperbolic nature of the equations. An additional difficulty arises due to the complexity of the magnetic field structure which is caused by a discrete partition of the photospheric magnetic field. This complexity is not limited to magnetic regions having magnetic nulls (and so separatrices) but also occurs in those containing thin elongated volumes (called Quasi-Separatrix Layers) where the photospheric field-line linkage changes rapidly. There is a wide range for the thickness of such layers, which is determined by the character (bipolar or quadrupolar) of the magnetic region, by the sizes of the photospheric field concentrations and by the intensity of the electric currents. The aim of this paper is to analyse the recent nonlinear force-free field extrapolation techniques for complex coronal magnetic fields.  相似文献   

15.
We consider the expulsion of the magnetic field from the super-conducting core of a neutron star and its subsequent decay in the crust. Particular attention is paid to a strong feedback of the distortion of magnetic field lines in the crust on the expulsion of the flux from the core. This causes a considerable delay in the core flux expulsion if the initial field strength is larger than 1011 G. It is shown that the hypothesis on the magnetic field expulsion induced by the neutron-star spin-down is adequate only for a relatively weak initial magnetic field B ≈1011 G. The expulsion time-scale depends not only on the conductivity of the crust, but also on the initial magnetic field strength itself. Our model of the field evolution naturally explains the existence of the residual magnetic field of neutron stars. Its strength is correlated with the impurity concentration in neutron-star crusts and anticorrelated with the initial field strengths.  相似文献   

16.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this article, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical-field regions of similar strength. This is consistent with the behavior of fast MHD waves.  相似文献   

17.
The phenomenon of magnetic field generation in an astrophysical plasma in the frame of developed magnetohydrodynamic (MHD) turbulence is considered. The functional quantum field renormalization group approach is applied to helical anisotropic MHD developed turbulence which is stabilized by the self-generated homogeneous magnetic field. The purpose of the study is to calculate the value as well as direction of the magnetic field in the stochastic dynamo model. The generated magnetic field is determined by ignoring divergent rotor part of Green function of the magnetic field. It is shown that the magnetic field direction is connected with unique existing vector n describing the anisotropic turbulence forcing.  相似文献   

18.
C. Jacobs  S. Poedts 《Solar physics》2012,280(2):389-405
Large-scale solar eruptions, known as coronal mass ejections (CMEs), are regarded as the main drivers of space weather. The exact trigger mechanism of these violent events is still not completely clear; however, the solar magnetic field indisputably plays a crucial role in the onset of CMEs. The strength and morphology of the solar magnetic field are expected to have a decisive effect on CME properties, such as size and speed. This study aims to investigate the evolution of a magnetic configuration when driven by the emergence of new magnetic flux in order to get a better insight into the onset of CMEs and their magnetic structure. The three-dimensional, time-dependent equations for ideal magnetohydrodynamics are numerically solved on a spherical mesh. New flux emergence in a bipolar active region causes destabilisation of the initial stationary structure, finally resulting in an eruption. The initial magnetic topology is suitable for the ??breakout?? CME scenario to work. Although no magnetic flux rope structure is present in the initial condition, highly twisted magnetic field lines are formed during the evolution of the system as a result of internal reconnection due to the interaction of the active region magnetic field with the ambient field. The magnetic energy built up in the system and the final speed of the CME depend on the strength of the overlying magnetic field, the flux emergence rate, and the total amount of emerged flux. The interaction with the global coronal field makes the eruption a large-scale event, involving distant parts of the solar surface.  相似文献   

19.
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (∼10,000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane.  相似文献   

20.
强磁场对非零温中子星壳层电子俘获反应的影响   总被引:6,自引:0,他引:6  
罗志全  彭秋和 《天文学报》1996,37(4):430-436
本文讨论了强磁场作用下非零温电子气体的化学势,分析了磁场作用下电子气体屏蔽势的变化;以核素33S为例,讨论了不同温度下,磁场对电子俘获率的影响,结果表明:在足够低的温度和密度下,足够强的磁场使电子俘获率显著降低,而就中子星表面存在的磁场强度(109-1013G)而言,磁场对其电子俘获率几乎没有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号