首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A very severe cyclonic storm ‘Thane’ developed over the Bay of Bengal during 25–30 December 2011, crossed the Tamilnadu coast between Pondicherry and Cuddalore (southeast coast of India) in early hours of 30 December with a wind speed 120–140 km/h. The offshore tide record reveals that the surge started to generate around 1100 hours on 29 December 2011 with a height 0.4 m and later raised to 0.68 m at the time of land fall, that is, early hours (0000 hours) of 30 December 2011. Field reconnaissance survey on surge run-up and inundation distance at 15 selected locations of cyclone affected areas reveals that the vulnerability levels are highly variable along the coast. The inundation distance extended up to 30–230 m landward from the shoreline and run-up reached to 1.6–3.2 m above chart datum depending upon the cross-shore geometry of the location. In the areas (Verranampattinam, Chinamudaliyar kuppam and Silver beach) near cyclone landfall, the run-up was up to 2.5–3.2 m and the inundation distance extended up to a maximum of 230 m. However, in the areas located about 150 km north of cyclone landfall, the run-up limited from 1.6 to 1.7 m and the inundation distance extended up to only a maximum of 169 m. The inundation distance is mainly influenced by the slope of the beach. In the areas having beach slope between 1 in 135 and 1 in 220, the inundation distance was 210–230 m. However, in the areas having beach slope 1 in 17 to 1 in 34, the inundation distance is restricted between 35 and 50 m.  相似文献   

2.
Analysis of high-resolution multibeam bathymetry and seismic profiles in the Noggin Passage region, north-eastern Australia, has identified a small area (Noggin block) in the upper-slope offshore Cairns that may potentially collapse and generate a tsunami wave. The Noggin block extends from 340 to 470 m depth covering a roughly circular (2.4 km long and 3.7 km wide) area of about 5.3 km2. The well-defined margins of the block correspond to different bounding seabed features. These features include steep headscarps, small landslides and a group of aligned circular pockforms up to 500 m wide and 20 m deep. Slope stability simulations indicate that the Noggin block is stable under normal present-day gravitational conditions on the upper slope. However, block failure may result under external loads, such as those produced by earthquakes. Failure modelling shows that critical peak horizontal accelerations of 0.2–0.4 g could lead to the collapse of the Noggin block. In north-eastern Australia, these acceleration values would involve earthquakes generated at short hypocentral distances and short periods. The collapse of the potential sediment slide mass of about 0.86 km3 (162 m average thickness) may lead to the formation of a landslide-generated tsunami wave. Semi-empirical equations indicate the collapse of this mass would yield a 7–11-m high three-dimensional tsunami wave. These waves could reach an estimated run-up height at the coast of 5–7 m. Our first-order approach highlights the potential consequences for nearby coastal communities, the need for better sediment characterisation in the study area, and the systematic identification of other areas prone to slope failures along the Great Barrier Reef margin.  相似文献   

3.
Meteorological tsunamis are frequently observed in different tide stations at the southeastern coast of South America. They are associated with the occurrence of atmospheric gravity waves during the passages of cold fronts over the Buenos Aires Province continental shelf. On the other hand, storm surges are also frequent in the region, and they are associated with strong and persistent southerlies, which are also frequent during cold front passages. The impact of meteorological tsunamis in coastal erosion and in the statistics of storm surge trends is discussed in this paper. For this study, fifteen meteorological tsunamis (with maximum wave heights higher than 0.20 m), seven of them simultaneous to the occurrence of storm surge events (with extreme levels higher than |±0.60 m|), are selected from April 2010 to January 2013. The impact of meteorological tsunamis in the storm erosion potential index (SEPI) is evaluated. Not significant differences are obtained between SEPI calculated with and without filtering the meteorological tsunami signal from the storm surge data series. Moreover, several experiments are carried out computing SEPI from synthetic sea level data series, but very low changes (lower than 4 %) are also obtained. It is concluded that the presence of moderate meteorological tsunamis on sea level records would not enhance this index at the Buenos Aires Province coast. On the other hand, taking into account that meteorological tsunamis can reach up the 20–30 % of the storm surge height, it was concluded that the statistics of storm surge trends (and their uncertainties) should be revised for Mar del Plata data series.  相似文献   

4.
5.
We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (<1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (<1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard.  相似文献   

6.
7.
The tsunami run-up, inundation and damage pattern observed along the coast of Tamilnadu (India) during the deadliest Indian Ocean tsunami of December 26, 2004 is documented in this paper. The tsunami caused severe damage and claimed many victims in the coastal areas of eleven countries, bordering the Indian Ocean. Along the coast of Indian mainland, the damage was caused by the tsunami only. Largest tsunami run-up and inundation was observed along the coast of Nagapattinam district and was about 10–12 m and 3.0 km, respectively. The measured inundation data were strongly scattered in direct relationship to the morphology of the seashore and the tsunami run-up. Lowest tsunami run-up and inundation was measured along the coast of Thanjavur, Puddukkotai and Ramnathpuram districts of Tamilnadu in the Palk Strait. The presence of shadow of Sri Lanka, the interferences of direct/receded waves with the reflected waves from Sri Lanka and Maldive Islands and variation in the width of continental shelf were the main cause of large variation in tsunami run-up along the coast of Tamilnadu.  相似文献   

8.
Submarine landslides can generate local tsunamis with high run-ups, posing a hazard to human lives and coastal facilities. Both ancient (giant Storegga slide off Norwegian coast, 8200 B. P.) and recent (Papua New Guinea, 1998) events show high potential danger of tsunamigenic landslides and the importance of mitigation efforts. This contribution presents newly discovered landslides 70 km off Padang (Western Sumatra, Indonesia) based on recent bathymetry measurements. This highly populated city with over 750,000 inhabitants exhibits high tsunami vulnerability due to its very low elevation. We model tsunamis that might have been induced by the detected landslide events. Estimations of run-up heights extrapolated from offshore tsunami amplitudes for Padang and other locations in the northern Mentawai fore-arc basin yield maximum values of about 3 m. We also provide a systematic parametric study of landslide-induced tsunamis, which allows us to distinguish potentially dangerous scenarios for Padang. Inside the fore-arc basin, scenarios involving volumes of 0.5–25 km³ could endanger Padang. Apart from slide volume, the hazard distribution mainly depends on three landslide parameters: distance to Padang, water depth in the generation region, and slide direction.  相似文献   

9.
Geological evidence of severe tsunami inundation has been discovered in northern Japan. In the dune fields of Shimokita, in northernmost Tohoku, we have found two distinctive sand layers that are tsunami deposits. The run-up height of >20 m and inland inundation of at least 1.4 km are notably larger than any known historical case in Japan. The tsunami-genic earthquake that resulted in these deposits is thought to have taken place in the Kuril Forearc-Trench system nearly 700 years ago. The recurrence interval of major tsunamis originating in the Kuril subduction zone is about 400 years. Given that the most recent unusually large earthquake took place in AD 1611 (corresponding to the Keicho earthquake tsunami), the findings presented here increase the potential and hazard for an outsized tsunami striking the Pacific coast of northern Japan.  相似文献   

10.
Catastrophic tsunami events like those occurred in Papua New Guinea in 1998, Sumatra in 2004 and Japan in 2011, attracted the attention of the scientific community and promoted the development of different tools for assessing tsunami hazard. A preliminary step towards this goal is the knowledge of the events which might affect a specific coastal zone. In this context, we propose a method to identify the tsunami events possibly occurring in areas characterized by scarce data and a non-conservative environment. Accordingly, we propose different indices to summarize the knowledge on tsunami triggering mechanisms (earthquakes, landslides, volcanic eruptions), the characteristics of those mechanisms (magnitude of earthquakes, volume of landslide, Volcanic Explosivity Index) and tsunami features (water height, run-up, wave amplitude, propagation time). This knowledge, considered over a wider area than that of interest, allows for a paramount vision of possible hazardous events that could affect a particular coastal zone. Moreover, the tsunami simulation data and the analysis of potentially tsunamigenic slides which occurred on the Campania continental margins were also considered in the analysis. We focused our attention on Napoli megacity, because the high population density (about 1 million of people live on a territory of 117 km2), together with the presence of active volcanic areas (Ischia, Somma-Vesuvio and Campi Flegrei), make this city potentially exposed to tsunami risk. The main outcome of such an approach shows that in the near field a tsunami amplitude varying from a few centimetres (30–40 cm) to some metres (1–4 m) might be expected at the coastline if the tsunami event was triggered by volcanic activity, whereas no relevant tsunami event should be expected given the peculiar seismicity of the Neapolitan volcanic areas, with earthquakes rarely exceeding 4 Mw, if any possible cascade effects are overlooked. A morphometric analysis of high-resolution bathymetry collected between Ventotene Island and the Gulf of Salerno has shown that the submarine southern sectors of the Ischia Island and the Sorrento Peninsula are characterized by a high density of landslide scars, being thus a potential source area of landslide-generated tsunamis. However, despite the susceptibility of these areas to recurrent slope failures, only four submarine landslide scars were found to be potentially tsunamigenic with estimated tsunami amplitude of few metres at the coastline as predicted by coupling slide morphometry with tsunami amplitude equations. Concerning the tsunamis generated by earthquakes in the Western Mediterranean, only those triggered by high magnitude events (value ≥ 6–7 Mw) might affect the city of Napoli with an amplitude not exceeding 0.5 m, in about 30′.  相似文献   

11.
The December 26, 2004 Sumatra tsunami caused severe damage at the coasts of the Indian ocean. We report results of a sedimentological study of tsunami run-up parameters and the sediments laid down by the tsunami at the coast of Tamil Nadu, India, and between Malindi and Lamu, Kenya. In India, evidence of three tsunami waves is preserved on the beaches in the form of characteristic debris accumulations. We measured the maximum run-up distance at 580 m and the maximum run-up height at 4.85 m. Flow depth over land was at least 3.5 m. The tsunami deposited an up to 30 cm thick blanket of moderately well to well-sorted coarse and medium sand that overlies older beach deposits or soil with an erosional unconformity. The sand sheet thins inland without a decrease of grain-size. The deposits consist frequently of three layers. The lower one may be cross-bedded with foresets dipping landward and indicating deposition during run-up. The overlying two sand layers are graded or parallel-laminated without indicators of current directions. Thus, it remains undecided whether they formed during run-up or return flow. Thin dark laminae rich in heavy minerals frequently mark the contacts between successive layers. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth. On the Indian shelf these depths are present at distances of up to 5 km from the coast. In Kenya only one wave is recorded, which attained a run-up height of 3 m at a run-up distance of ca. 35 m from the tidal water line at the time of the tsunami impact. Only one layer of fine sand was deposited by the tsunami. It consists predominantly of heavy minerals supplied to the sea by a nearby river. The sand layer thins landward with a minor decrease in grain-size. Benthic foraminifera indicate an entrainment of sediment by the tsunami from water depths less than ca. 30 m water depth, reaching down potentially to ca. 80 m. The presence of only one tsunami-related sediment layer in Kenya, but three in India, reflects the impact of only one wave at the coast of Kenya, as opposed to several in India. Grain-size distributions in the Indian and Kenyan deposits are mostly normal to slightly positively skewed and indicate that the detritus was entrained by the tsunami from well sorted pre-tsunami deposits in nearshore, swash zone and beach environments.  相似文献   

12.
Different models are used to evaluate the seashore effects of the tsunami generated by an asteroid impacting the shallow-water plateau in the northwest basin of the Black Sea. The shortest distance between the impact location and the coast is about 185 km. The tsunami’s effects on the coastal regions depend on many factors among which the most important is asteroid size. The tsunami generated by a 250-m asteroid reaches the nearest dry land location in 35 min and needs about 2 h to arrive all over the Black Sea coast. The run-up value is about 2 m high on Turkish and Crimean coasts. In the western Black Sea regions, the wave height is about 3 m. The run-up values strongly depend on bathymetry and topography peculiarities. The run-up values in case of the tsunami generated by a 1,000-m-sized asteroid are up to five to six times larger than in case of the 250-m impactor, depending on location. Differences between the tsunami’s dynamics on coastal regions situated in the proximity of deep water and shallow water, respectively, are outlined. Aspects concerning accidental or deliberate nuclear explosions are briefly referred. Possible social consequences and prevention are shortly discussed.  相似文献   

13.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   

14.
Subaerial landslides falling into confined water bodies often generate impulsive waves. Damaging landslide tsunamis in Three Gorges Reservoir, China, have struck several times in the last 15 years. On June 24, 2015, a 23?×?104 m3 slope failure occurred on the east bank of the Daning River opposite Wushan Town. The sliding mass intruded into the Three Gorges Reservoir and initiated a reservoir tsunami that resulted in two deaths and significant damage to shipping facilities. A post-event survey revealed the landslide geometry and wave run-up distribution, while an eyewitness video captured most of the landslide motion. Employing these firm constraints, we applied the Tsunami Squares method to simulate the 2015 Hongyanzi landslide and tsunami. The simulation revealed that the landslide experienced a progressive failure in the first few seconds and impacted the water with a maximum velocity of ~?16 m/s. The initial wave propagated to the opposite shore in an arch shape, and the water surface reached a maximum amplitude of ~?11 m near the landslide. Wave amplitude-time curves at four points on the river cross section show that the initial wave reached Wushan town in about 50 s with an average wave velocity of ~?30 m/s. The maximum wave run-ups on the shoreline opposite the landslide are around 6 m and attenuate to less than 1 m beyond 2-km distance. The landslide simulation matches the observed geological profile and the eyewitness video, and the numerical results coincide with the observed wave run-up heights. Nearly 80% of landslide energy is lost due to frictional resistances, but the remaining fraction imparted to the tsunami carried catastrophic consequences to a large region. The numerical results emphasize the efficiency and accuracy of Tsunami Squares method for a “Quick Look” simulation of a potential landslide.  相似文献   

15.
Instability of bank slopes and their failures in reservoirs have become an increasing concern in evaluating potential hazards of hydraulic projects in China as larger hydropower engineering projects have been in operation in the past decade. To provide a quantitative evaluation of such hazards, an evaluation framework has been presented to analyze bank slope stability, identify potential slope failure bed surfaces, and evaluate wave impacts of landslide-induced surges in reservoirs. In this joint analysis framework, reservoir bank slope instability and potential failure surfaces are determined with TFINE model, a nonlinear Finite Element Method (FEM) program using Deformation Reinforcement Theory; the motion of slope failures and resulting surge waves in reservoirs and potential flooding are simulated with COMCOT tsunami simulation package. The work flow and feasibility of this analysis framework are demonstrated through a case study of Guopu slope in Laxiwa reservoir in Southwest China. Three potential failures of Guopu slope are identified through stability analysis and the modeling results of indicate that the potential landslide failures would generate waves with maximum amplitude of 20.9 m in the reservoir, but unlikely causing significant damage to the dam.  相似文献   

16.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

17.
In the present study, laboratory experiments were conducted to validate the applicability of a numerical model based on one-dimensional nonlinear long-wave equations. The model includes drag and inertia resistance of trees to tsunami flow and porosity between trees and a simplified forest in a wave channel. It was confirmed that the water surface elevation and flow velocity by the numerical simulations agree well with the experimental results for various forest conditions of width and tree density. Further, the numerical model was applied to prototype conditions of a coastal forest of Pandanus odoratissimus to investigate the effects of forest conditions (width and tree density) and incident tsunami conditions (period and height) on run-up height and potential tsunami force. The modeling results were represented in curve-fit equations with the aim of providing simplified formulae for designing coastal forest against tsunamis. The run-up height and potential tsunami forces calculated by the curve-fit formulae and the numerical model agreed within ± 10% error.  相似文献   

18.
The Storegga tsunami, dated in Norway to 8150±30 cal. years BP, hit many countries bordering the North Sea. Run-ups of >30 m occurred and 1000s of kilometres of coast were impacted. Whilst recent modelling successfully generated a tsunami wave train, the wave heights and velocities, it under-estimated wave run-ups. Work presented here used luminescence to directly date the Storegga tsunami deposits at the type site of Maryton, Aberdeenshire in Scotland. It also undertook sedimentological characterization to establish provenance, and number and relative power of the tsunami waves. Tsunami model refinement used this to better understand coastal inundation. Luminescence ages successfully date Scottish Storegga tsunami deposits to 8100±250 years. Sedimentology showed that at Montrose, three tsunami waves came from the northeast or east, over-ran pre-existing marine sands and weathered igneous bedrock on the coastal plain. Incorporation of an inundation model predicts well a tsunami impacting on the Montrose Basin in terms of replicate direction and sediment size. However, under-estimation of run-up persisted requiring further consideration of palaeotopography and palaeo-near-shore bathymetry for it to agree with sedimentary evidence. Future model evolution incorporating this will be better able to inform on the hazard risk and potential impacts for future high-magnitude submarine generated tsunami events.  相似文献   

19.
The Sultanate of Oman is among the Indian Ocean countries that were subjected to at least two confirmed tsunamis during the twentieth and twenty-first centuries: the 1945 tsunami due to an earthquake in the Makran subduction zone in the Sea of Oman (near-regional field tsunami) and the Indian Ocean tsunami in 2004, caused by an earthquake from the Andaman Sumatra subduction zone (far - field tsunami). In this paper, we present a probabilistic tsunami hazard assessment for the entire coast of Oman from tectonic sources generated along the Makran subduction zone. The tsunami hazard is assessed taking into account the contribution of small- and large-event magnitudes. Results of the earthquake recurrence rate studies and the tsunami numerical modeling for different magnitudes were used through a logic-tree to estimate the tsunami hazard probabilities. We derive probability hazard exceedance maps for the Omani coast considering the exposure times of 100, 250, 500, and 1000 years. The hazard maps consist of computing the likelihood that tsunami waves exceed a specific amplitude. We find that the probability that a maximum wave amplitude exceeds 1 m somewhere along the coast of Oman reaches, respectively, 0.7 and 0.85 for 100 and 250 exposure times, and it is up to 1 for 500 and 1000 years of exposure times. These probability values decrease significantly toward the southern coast of Oman where the tsunami impact, from the earthquakes generated at Makran subduction zone, is low.  相似文献   

20.
The M w = 9.1 mega-thrust Sumatra–Andaman earthquake that occurred on December 26, 2004, was followed by a devastating tsunami that killed hundreds of thousands of people and caused catastrophic effects on human settlements and environments along many coasts of the Indian Ocean, where even countries very far from the source were affected. One of these cases is represented by the Republic of Seychelles, where the tsunami reached the region about 7 h after the earthquake and produced relevant damages, despite the country was more than 4,500 km far from the seismic source. In the present work, we present and discuss a study of the 2004 Sumatra tsunami by means of numerical simulations with the attention focused on the effects observed at the Seychelles Archipelago, a region never previously investigated with this approach. The case is interesting since these islands lay on a very shallow oceanic platform with steep slopes so as the ocean depth changes from thousands to few tens of meters over short distances, with significant effects on the tsunami propagation features: the waves are strongly refracted by the oceanic platform and the tsunami signal is modified by the introduction of additional frequencies. The study is used also to validate the UBO-TSUFD numerical code on a real tsunami event in the far field, and the results are compared with the available observations, i.e., the sea level time series recorded at the Pointe La Rue station, Mahé Island, and run-up measurements and inundation lines surveyed few weeks after the tsunami at Praslin Island, where the tsunami hit during low tide. Synthetic results are found in good agreement with observations, even though some of the observations remain not fully solved. Moreover, simulations have been run in high-tide condition since the 2004 Sumatra tsunami hitting at high tide can be taken as the worst-case scenario for the Seychelles islands and used for tsunami hazard and risk assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号