首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a new hybrid multi-objective evolutionary algorithm (MOEA), the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), is proposed for the management of groundwater resources under variable density conditions. Relatively few MOEAs can possess global search ability contenting with intensified search in a local area. Moreover, the overall searching ability of tabu search (TS) based MOEAs is very sensitive to the neighborhood step size. The NPTSGA is developed on the thought of integrating the genetic algorithm (GA) with a TS based MOEA, the niched Pareto tabu search (NPTS), which helps to alleviate both of the above difficulties. Here, the global search ability of the NPTS is improved by the diversification of candidate solutions arising from the evolving genetic algorithm population. Furthermore, the proposed methodology coupled with a density-dependent groundwater flow and solute transport simulator, SEAWAT, is developed and its performance is evaluated through a synthetic seawater intrusion management problem. Optimization results indicate that the NPTSGA offers a tradeoff between the two conflicting objectives. A key conclusion of this study is that the NPTSGA keeps the balance between the intensification of nondomination and the diversification of near Pareto-optimal solutions along the tradeoff curves and is a stable and robust method for implementing the multi-objective design of variable-density groundwater resources.  相似文献   

2.
控制海水入侵的地下水多目标模拟优化管理模型   总被引:3,自引:0,他引:3       下载免费PDF全文
为实现滨海含水层地下水开采-回灌方案优化、控制海水入侵面积和降低海水入侵损失等多重管理目标,建立了海水入侵条件下地下水多目标模拟优化管理模型SWT-NPTSGA。模拟模型采用基于变密度流的数值模拟程序SEAWAT来模拟海水入侵过程。优化模型采用小生境Pareto禁忌遗传混合算法NPTSGA来求解,该算法在保证多目标权衡解的收敛性和计算效率的前提下,能维护整个进化群体的全局多样性。将SWT-NPTSGA程序应用于一个理想滨海含水层地下水开采方案和人工回灌控制海水入侵的优化设计中,结果表明该管理模型能够同时处理最大化总抽水流量、最小化人工回灌总量和最小化海水入侵范围等3个目标函数之间的权衡关系。通过采用人工回灌海水入侵区的减灾策略,既能增加滨海地区的供水量,又可减少海水入侵的范围,由此进一步验证了模型的有效性和可靠性。  相似文献   

3.
A new multi-objective optimization methodology is developed, whereby a multi-objective fast harmony search (MOFHS) is coupled with a groundwater flow and transport model to search for optimal design of groundwater remediation systems under general hydrogeological conditions. The MOFHS incorporates the niche technique into the previously improved fast harmony search and is enhanced by adding the Pareto solution set filter and an elite individual preservation strategy to guarantee uniformity and integrity of the Pareto front of multi-objective optimization problems. Also, the operation library of individual fitness is introduced to improve calculation speed. Moreover, the MOFHS is coupled with the commonly used flow and transport codes MODFLOW and MT3DMS, to search for optimal design of pump-and-treat systems, aiming at minimization of the remediation cost and minimization of the mass remaining in aquifers. Compared with three existing multi-objective optimization methods, including the improved niched Pareto genetic algorithm (INPGA), the non-dominated sorting genetic algorithm II (NSGAII), and the multi-objective harmony search (MOHS), the proposed methodology then demonstrated its applicability and efficiency through a two-dimensional hypothetical test problem and a three-dimensional field problem in Indiana (USA).  相似文献   

4.
简单算例研究表明改进的小生境Pareto遗传算法(INPGA)用于求解地下水系统的多目标优化管理模型时,求解过程简单,计算速度快,而且得到的Pareto解集跨度更为合理.本文以美国麻省军事保护区(Massachusetts Military Reservation,MMR)为实例,通过建立研究区复杂地下水污染治理的多目...  相似文献   

5.
NPGA-GW在地下水系统多目标优化管理中的应用   总被引:7,自引:0,他引:7  
在地下水系统管理问题中,涉及到多个相互冲突的目标函数常常被简化为不同形式的单一目标函数来求解,这种通过单一目标函数的优化方法只能给出一个解,由此确定的方案有时会违背决策者的意愿。而通过多目标优化方法可以得到一系列供决策者权衡选择的解集。将地下水流模拟程序MODFLOW 和溶质运移模拟程序MT3DMS 相耦合,采用基于小生境技术的Pareto 遗传算法进行求解,开发了一个用于地下水系统多目标管理的应用程序NPGA-GW。并将该程序应用于一个二维地下水污染修复问题的多目标优化求解,结果表明,该程序能够在较短的时间内得到一系列Pareto 最优解,解的跨度足够决策者进行适当的选择,具有很好的应用前景。  相似文献   

6.
将改进后的遗传算法GA(添加了小生境、Pareto解集过滤器等模块)与变密度地下水流及溶质运移模拟程序SEAWAT-2000相耦合,新开发了变密度地下水多目标模拟优化程序MOSWTGA。将MOSWTGA应用于求解大连周水子地区以控制抽水井所在含水层不发生海水入侵为约束的地下水开采多目标优化管理模型,得到地下水最大开采量与海水入侵面积之间一系列Pareto近似最优解。研究成果不仅为实行合理的地下水资源配置提供了科学的实用模型,同时也为解决多个优化目标下的变密度地下水优化管理问题提供高效可靠的模拟优化工具,具有重要的潜在环境经济效益。  相似文献   

7.
Zhao  Jie  Lin  Jin  Wu  Jianfeng  Wu  Jichun 《Hydrogeology Journal》2021,29(7):2329-2346

Combined simulation-optimization modeling is an essential tool for coastal groundwater management. However, determining the appropriate simulation-optimization approach for specific seawater intrusion problems remains a significant challenge, especially for the real-world conditions associated with management of complex groundwater systems, competing management objectives, and global concerns of future climate change. In this study, a linked multi-objective simulation-optimization framework, the MOSWTGA (multi-objective optimal code, coupling SEAWAT and an improved genetic algorithm), was applied to a coastal groundwater system in Zhoushuizi district of Dalian City in northern China. The system has fractured karst aquifers and is modelled for the next 20 years (from 2010) under the moderate greenhouse gas concentration scenario RCP4.5 (representative concentration pathways) in the CNRM (Centre National de Recherches Météorologiques) and MIROC (Model for Interdisciplinary Research on Climate) climate modes derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The MOSWTGA was developed by integrating the density-dependent groundwater flow and solute transport code SEAWAT with a genetic algorithm improved by adding the Pareto-dominated ranking module, Pareto solution set filter, and fitness sharing procedure. A set of near Pareto-optimal solutions of the trade-off between the maximum of the total pumping rate and the minimum of the extent of seawater intrusion was obtained. The study tried to provide a theoretical basis for real-world groundwater management under the given conditions.

  相似文献   

8.
基于小生境技术的Pareto遗传算法(NPGA)是一种求解多目标问题的智能搜索方法,适用于优化多种非线性、不连续等复杂多目标问题.但该算法存在局部早熟收敛和收敛速度慢两个不足,在求解Pareto前沿上效果不佳.本文在NPGA的基础上,提出了改进NPGA方法(INPGA),通过Pareto解集过滤器、精英个体保留策略、邻...  相似文献   

9.
针对概念性水文模型参数众多、相互制约,且多目标参数优化率定最优参数求解困难、易受决策者主观因素影响的问题,采用多目标优化算法对水文模型参数进行率定,得到模型参数最优非劣解集,在此基础上,引入最小最大后悔值决策理论,并结合Pareto支配基本理论,提出了一种多目标最优非劣解选取准则。以柘溪流域为研究对象,采用三目标MOSCDE优化率定新安江模型的参数,并与单目标SCE-UA优化结果进行对比分析。结果表明,提出的非劣解选取方法可以有效从大规模非劣解集中筛选出最优非劣解,大大缩短参数率定耗时。  相似文献   

10.
基于Pareto强度进化算法的供水库群多目标优化调度   总被引:3,自引:1,他引:2       下载免费PDF全文
提出用Pareto强度进化算法解决供水库群的多目标优化调度问题,算法利用种群的进化过程模拟寻找非劣解集的过程,将供水库群多目标优化调度问题的解当作进化种群中的个体,按照解的Pareto强度值与密度进行适应度计算,利用种群中个体的进化操作获得非劣解,最终整个种群进化为非劣解集。实例分析结果表明,算法能实现多峰搜索,最终非劣解集的分布均匀,且收敛速度快,为解决供水库群多目标优化调度问题提供了一种有效的方法。  相似文献   

11.
Hydrological models are necessary tools for simulating the water cycle and for understanding changes in water resources. To achieve realistic model simulation results, real-world observations are used to determine model parameters within a “calibration” procedure. Optimization techniques are usually applied in the model calibration step, which assures a maximum similarity between model outputs and observations. Practical experiences of hydrological model calibration have shown that single-objective approaches might not be adequate to tune different aspects of model simulations. These limitations can be as a result of (i) using observations that do not sufficiently represent the dynamics of the water cycle, and/or (ii) due to restricted efficiency of the applied calibration techniques. To address (i), we assess how adding daily Total Water Storage (dTWS) changes derived from the Gravity Recovery And Climate Experiment (GRACE) as an extra observations, besides the traditionally used runoff data, improves calibration of a simple 4-parameter conceptual hydrological model (GR4J, in French: modèle du Génie Rural à 4 paramètres Journalier) within the Danube River Basin. As selecting a proper calibration approach (in ii) is a challenging task and might have significant influence on the quality of model simulations, for the first time, four evolutionary optimization techniques, including the Non-dominated Sorting Genetic Algorithm II (NSGA-II), the Multi-objective Particle Swarm Optimization (MPSO), the Pareto Envelope-Based Selection Algorithm II (PESA-II), and the Strength Pareto Evolutionary Algorithm II (SPEA-II) along with the Combined objective function and Genetic Algorithm (CGA) are tested to calibrate the model in (i). A number of quality measures are applied to assess cardinality, accuracy, and diversity of solutions, which include the Number of Pareto Solutions (NPS), Generation Distance (GD), Spacing (SP), and Maximum Spread (MS). Our results indicate that according to MS and SP, NSGA-II performs better than other techniques for calibrating GR4J using GRACE dTWS and in situ runoff data. Considering GD as a measure of efficiency, MPSO is found to be the best technique. CGA is found to be an efficient method, while considering the statistics of the GR4J’s 4 calibrated parameters to rank the optimization techniques. The Nash-Sutcliffe model efficiency coefficient is also used to assess the predictive power of the calibrated hydrological models, for which our results indicate satisfactory performance of the assessed calibration experiments.  相似文献   

12.
This study presents the recognition of an elastic–plastic constitutive law by a multiobjective evolutionary algorithm (MOEA). This idea is illustrated by the identification of ellipse aspect ratio and plastic modulus of a reported bounding surface model. Based on the multi-goals of well predicting all available drained or undrained stress–strain behaviors simultaneously, the compromising solutions of these two parameters are found by a strength Pareto evolutionary algorithm 2 (SPEA2). Their fittest values are then determined by additionally introducing the Akaike information criterion. Experimental data for the Ottawa sand are used to test such processes. The results show that an MOEA is an efficient and automatic tool to identify the fittest form of an elastic–plastic constitutive law from a large amount of experimental data. However, sufficient data are required to determine the correct searching range of parameters to be identified.  相似文献   

13.
Flood events have the highest damage costs and losses among natural hazards. There are different types of measures to mitigate flood damage costs and their negative consequences. Application of flood-control reservoirs or detention dams, as one of the main measures, may decrease devastating flood effects or even may cause to intensify flood damages in the watershed by a poor design with tremendous construction costs. Optimal design of a flood-control multi-reservoir system can simultaneously minimize investment costs of constructions and potential flood damage costs. This study proposes a simulation-based optimization approach to optimize the design of multi-reservoirs for flood control in the watershed by coupling the MIKE-11 hydrodynamic model and the NSGA-II multi-objective optimization model. The present approach provides the Pareto optimal solutions between two conflict objectives of minimizing total investment costs and the expected flood damage costs in the watershed. Application of the proposed model for a small watershed in central part of Iran as a case study shows that optimal designs of multi-reservoir systems can efficiently reduce construction costs, flood peaks and their corresponding damage costs at the downstream reaches of the basin.  相似文献   

14.
The elitist non-dominated sorting genetic algorithm with the modified jumping gene operator (NSGA-II-mJG) is used to optimize the performance of froth flotation circuits. Four example optimization problems (Mehrotra and Kapur, 1974; Green, 1984; Dey et al., 1989) [Mehrotra, S.P., Kapur, P.C., 1974. Optimal–sub-optimal synthesis and design of flotation circuits. Sep. Sci. 9, 167–184; Green, J.C.A., 1984. The optimization of flotation networks. Int. J. Miner. Process. 13, 83–103; Dey, A.K., Kapur, P.C., Mehrotra, S.P., 1989. A search strategy for optimization of flotation circuits. Int. J. Miner. Process. 26, 73-93.] of varying complexity are solved using single-objective functions. In one example, the overall recovery of the concentrate stream is maximized for a desired grade of the concentrate and a fixed total cell volume. The interconnecting cell linkage parameters (fraction flow rates) and the mean cell residence times are the decision variables. In all these cases, the optimal solutions obtained using NSGA-II-mJG are superior to those obtained by earlier techniques (which converged to local optimal solutions). Thereafter, a few two-objective optimization problems are solved. In these, the performance of the circuit is optimized, and simultaneously, the number of connecting streams is minimized so as to give simple circuits. Pareto optimal sets of equally good (non-dominating) solutions are obtained. This is probably the first study involving the multi-objective optimization of flotation circuits with one aim being to simplify them.  相似文献   

15.
Selection of effective groundwater remediation scenarios is a complex issue that requires understanding of contaminants’ transport processes. The effectiveness of cleanup measures may be verified by fate and transport numerical modeling. The goal of this work was to present the usefulness of fate and transport modeling for planning, verification and fulfillment of effective groundwater remediation methods. Selection methodology was developed, which is based on results of numerical flow and transport modeling. A field site located in south-east Poland was selected as a case study, in which groundwater contamination of trichloroethene and tetrachloroethene was detected. The results indicated that “pump and treat” was the most effective among the studied remediation methods, followed by permeable reactive barrier and in situ chemical oxidation. Natural attenuation-based remediation was demonstrated to be the least suitable, as it requires the longest time to reach predefined remediation goals, principally due to low sorption capacity and unfavorable hydrogeochemical conditions for biodegradation. Fate and transport numerical modeling allowed simulating different remediation strategies, and thus the decision-making process was facilitated.  相似文献   

16.
针对传统基于单一目标的水文模型参数优化率定方法不能充分挖掘水文系统不同动态行为特征的缺陷,提出一种多目标文化混合复形差分进化算法(Multi-objective Culture Shuffled Complex Differential Evolution,MOCSCDE)用于求解水文模型参数多目标优化问题。MOCSCDE算法将混合复形进化算法(Shuffled Complex Evolution,SCE-UA)置于文化算法(Cultural Algorithms,CA)进化的框架中,利用种群进化过程中提取的各种知识指导算法的运行,提高算法的运行效率,同时考虑到SCE-UA中单纯形算子不能充分利用种群个体信息的不足,采用全局搜索能力强的差分进化算法(Differential Evolution,DE)替代单纯形算子,可以更加充分利用种群个体信息进行演化计算,进一步提高算法的计算效率。将MOCSCDE算法应用于概念性水文模型——新安江模型的参数多目标优化率定,并与NSGA-Ⅱ和SPEA2算法进行对比分析,结果表明MOCSCDE算法的收敛性和分布性均优于NSGA-Ⅱ和SPEA2,可为水文预报提供更为全面可靠的参数组合决策依据。  相似文献   

17.
两种智能算法在求解地下水管理模型中的对比   总被引:5,自引:0,他引:5  
分别将禁忌搜索和遗传算法与地下水流模型MODFLOW和地下水溶质运移模型MT3DMS相耦合,并将其应用于求解地下水资源优化管理模型。在概述两种智能算法基本原理和地下水管理模型组成的基础上,结合两个理想的应用实例,从优化结果和计算效率两个方面对禁忌搜索和遗传算法进行了对比分析。在两个实例中,禁忌搜索分别以高于遗传算法10倍和27倍的计算效率得到了减少抽水流量约160 m3/d和节约治理成本约47万元的治理方案。结果表明,禁忌搜索在求解地下水管理模型中具有较好的应用前景。  相似文献   

18.
地下水管理模型求解方法综述   总被引:1,自引:1,他引:0       下载免费PDF全文
地下水管理模型求解方法的研究是目前地下水管理领域的热点问题。本文从地下水管理模型传统优化算法和现代智能优化算法等方面进行了评述,着重讨论了目前应用较广泛的求解非线性地下水系统的优化算法,如遗传算法、模拟退火算法、人工神经网络算法等;阐述了地下水监测网优化设计研究以及多目标地下水管理模型的求解方法。最后指出应加强地下水动态规划管理模型和地下水系统随机管理模型的求解技术的研究。  相似文献   

19.
地下水污染场地风险管理与修复技术筛选   总被引:4,自引:0,他引:4  
国际上对于地下水污染场地的控制与修复研究已经取得了许多成果,已有成功的修复实例。我国虽然起步晚,但非常重视地下水污染的防治,开展了全国范围的地下水污染调查,并进行了地下水污染的防治规划。地下水污染的控制与修复已经逐渐进入示范性研究阶段。面对地下水污染场地风险管理的不同方法,以及众多的污染修复技术,如何制定风险管理策略,如何在各种各样的修复技术中筛选合适的技术或技术组合,对于地下水污染场地的防治具有非常重要的意义。笔者分析了发达国家地下水污染风险管理策略,结合在地下水污染场地研究方面的经验,对一些主要的地下水污染修复技术进行了分析论述,提出了考虑污染物特征、场地水文地质条件的地下水污染修复技术的筛选过程和方法。  相似文献   

20.
Zheng  Gang  Li  Qinghan  Cheng  Xuesong  Liu  Xiaomin  Jia  Jianwei  Jiao  Ying  Ha  Da 《Hydrogeology Journal》2023,31(4):947-965

Artificial recharge is an effective remediation measure for controlling groundwater level and subsidence in many coastal cities in China. Hydraulic parameters estimated by pumping tests are often used in the design of both pumping and recharge systems. However, the hydraulic parameters in the recharge process have been found to differ from those in the pumping process and should be studied in greater detail. Eight single-well pumping and recharge tests were conducted within a confined aquifer in a soft soil area in the city of Tianjin, and the differences in wellbore storage influences and well losses between the recharge and pumping processes were examined. Furthermore, based on the Hantush and Jacob model, an algorithm combining the Levenberg–Marquardt algorithm (LMA) and genetic algorithm (GA) was employed for estimation of the hydraulic parameters. The results illustrated that the combined algorithm eliminating wellbore storage influences could provide hydraulic parameters from which the groundwater level variation could be accurately simulated. The hydraulic conductivity and specific storage values obtained in the pumping tests were higher than those obtained in the recharge tests. In addition to slight plugging of the recharge well, the specific storage differences could be explained by the compression and rebound deformation characteristics of sand in the confined aquifer. The specific storage estimated by pumping tests should be adjusted when applied in groundwater recharge calculation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号