首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Major element data and Rb, Sr and87Sr/86Sr analyses for seven spinel lherzolite xenoliths and their Recent host basalt from Victoria, Australia, are presented. The exotic nature of the xenoliths is indicated by a wide spread in87Sr/86Sr values (0.7035–0.7076) compared with the basalt (0.7041). Five of the lherzolites provide evidence of a thermal event in the mantle 650 m.y. ago. Equilibration temperatures calculated from the compositions of the lherzolite phases (ca. 1050°C) apparently relate to this event. Estimates of the local geothermal gradient suggest temperatures of less than 700°C in the source region before eruption of the lherzolites.Isotopic analyses of the lherzolite minerals show that orthopyroxene contains more radiogenic Sr than coexisting olivine and clinopyroxene in three of the xenoliths. The87Sr/86Sr relationships between clinopyroxene and orthopyroxene suggest that internal isotopic disequilibrium has existed in the source region for up to 550 m.y.  相似文献   

2.
Investigations of Rb-Sr systematics of basalts from the Afar depression (Ethiopia) indicate the presence of a heterogeneous mantle source region. The Sr isotopic compositions of the basalts from the Afar axial and transverse ranges identify source regions which are enriched in LIL elements and radiogenic Sr (axial ranges) and others which are relatively depleted (transverse ranges). Sr isotopic composition of basalts from the Red Sea, Gulf of Aden and Gulf of Tadjoura, which range from 0.70300 to 0.70340 are also reported and compared with the more radiogenic Afar region, which is characterized by87Sr/86Sr ranging from 0.70328 to 0.70410.Available geochemical and isotopic data suggest that a relation exists between magma composition and the advancement of the rifting process through progressive lithosphere attenuation leading to continental break-up. However, the petrogenetic process is not simple and probably implies a vertically zoned mantle beneath the Afar region. Sr isotopic evidence suggests that the vertically zoned mantle is more radiogenic and enriched in LIL elements in its upper part.  相似文献   

3.
The concentrations and isotopic compositions of strontium in interstitial waters from several DSDP sites, where sediments consist chiefly of carbonate oozes and chalks, are used as indicators of carbonate diagenesis by reference to a recently-produced curve showing detailed variations in the87Sr/86Sr ratio of seawater with time. Carbonate sediments of the Walvis Ridge show increases in interstitial Sr2+ concentrations in the upper carbonate-ooze sections with the highest concentrations near the ooze-chalk boundary where maximum rates of carbonate recrystallization occur. Below this, in situ production of Sr2+ diminishes and there is a diffusive flux of Sr to an underlying sink, presumably volcanogenic sediments or basalts, leading to Sr isotopic disequilibrium between carbonates and interstitial waters. In some other sites, however, there is no apparent Sr sink at depth and isotopic equilibrium is retained. Overall, diffusive smoothing of profiles exerts an important control on the87Sr/86Sr ratios, although lower ratios than contemporaneous seawater values in the carbonate oozes often correlate with zones of Mg2+ loss and reflect a combination of a flux of Sr2+ from the zone of maximum recrystallization rates together with a contribution from the in situ alteration of volcanic matter.  相似文献   

4.
The Deccan flows at Mahabaleshwar are divisible into a lower and an upper group, based on Nd and Sr isotopic ratios, which define two correlated trends. This distinction is supported by incompatible element ratios and bulk compositions. The data reflect contamination in a dynamic system of magmas from an LIL-depleted,εJUV ≥ +8 mantle by two different negative εJUV endmembers, one undoubtedly continental crust, the other either continental crust or enriched mantle. The depleted mantle source, anomalously high in (87Sr/86Sr), may have been in the subcontinental lithosphere or a region of rising Indian Ocean MORB mantle.  相似文献   

5.
An assessment of local and regional isotopic equilibrium in the mantle   总被引:2,自引:0,他引:2  
The assumption of local equilibrium during partial melting is fundamental to the interpretation of isotope and trace element data for mantle-derived rocks. If disequilibrium melting is significant, the scale of the chemical and isotopic heterogeneity in the mantle indicated by the data could be as small as the grain size of the mantle rock, and the isotope data themselves are then of doubtful value to the understanding of mantle processes. To assess the scale of isotopic heterogeneity in a partially molten asthenosphere we review the Sr isotopic data of volcanic rocks from oceanic regions and the available experimental data on diffusion kinetics in minerals and melts similar to those existing in the mantle. Although diffusion data are scarce and afflicted with uncertainties, most of the diffusion coefficients for cations in mantle minerals at temperatures of 1000–1200°C appear to be greater than 10?13 cm2 s?1. Sr diffusion in liquid basalt is more rapid, with diffusion coefficients of D = 10?7 to 10?6cm2s?1 near 1300°C. Simple model calculations show that, with these D values, a fluid-free mantle can maintain a state of disequilibrium on a centimeter scale for periods of 108 to 109 years. The state of disequilibrium found in many mantle-derived xenoliths is thus easily explained. A partially molten mantle, on the other hand, will tend to equilibrate locally in less than 105 to 106 years. The analytical data on natural rocks likewise indicate that the inhomogeneities are both old (>FX1.5 b.y.) and regional in character and that the consistent isotopic difference between ocean island and ocean floor volcanics cannot be explained by small-scale heterogeneity of the source rock.  相似文献   

6.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

7.
Basalts from the Marquesas Archipelago display significant variations according to magmatic type in 143Nd/144Nd (0.512710–0.512925) and 87Sr/86Sr (0.70288–0.70561) suggesting heterogeneities at various scales in the mantle source, with respectively the highest and lowest values in tholeiites compared to alkali basalts. This relationship is the reverse from that observed in the Hawaiian islands. Systematic indications of magma mixing are recognized from the relationships between trace element and isotopic ratios. Tholeiites from Ua Pou Island which have unradiogenic Sr (about 0.7028) plot close to basalts from Tubuai and St. Helena, i.e. distinctly below the main mantle trend in the Nd vs. Sr isotopic diagram. It is suggested that the source of these tholeiites is ancient subducted lithosphere which has suffered previous extraction of liquid with island arc tholeiite composition. The trace element and isotopic data of the basalts from the other Marquesas Islands imply the contamination of an equivalent source by an enriched component. This latter has trace element characteristics of the upper crust.  相似文献   

8.
Fresh basaltic glasses have been analyzed for U&z.sbnd;Th disequilibrium systematics as part of an extensive study on the East Pacific Rise (EPR) at 12°45′N. These samples are well described in terms of major and trace elements as well as in Nd, Pb and Sr isotopes. Our results show significant heterogeneities in the mantle source at a small scale, and show heterogeneities at larger scales also when compared to other EPR data.U and Th concentration and isotopic data rule out fractional crystallization as a main process and support a mixing model in agreement with the marble cake model developed by Alle`gre and Turcotte and constrained by trace elements and Nd, Sr and Pb isotopes on the same samples by Prinzhofer et al.Based on the high ( 230Th/232Th ) isotopic ratios on recent tholeiites especially the Th/U values inferred for their sources clearly show that the upper mantle Th/U has decreased with time.  相似文献   

9.
U-series systematics as well as Sr isotopes were measured on young seamount lavas from the Pitcairn hotspot collected during the Polynaut cruise. The combined U-series and Sr isotope data reveal typical mixing relationships between two endmembers. One typical ‘plume’ endmember with radiogenic 87Sr/86Sr and relatively low 230Th/238U and a ‘lithosphere’ endmember with less radiogenic 87Sr/86Sr and relatively larger 230Th/238U. Remarkably, all the lavas, except for a few arguably older samples, are characterized by 226Ra deficits relative to 230Th. On the basis of water content and trace element systematics, we argue that this is due to melting in the presence of phlogopite, which is only stable at lithosphere temperatures. A melting model including the diffusive exchange of elements among phlogopite, garnet and melt is used to constrain melting conditions of the lithosphere. These unusual 226Ra–230Th signatures can be explained by relatively slow melting rates at low matrix porosity. Our model also demonstrates that the effective partitioning behavior is dependent on the melting rate. A simple thermal model for lithosphere heating and melting is in good agreement with predicted melting rates.  相似文献   

10.
In order to understand the role of the subducted lithosphere in producing the geochemical characteristics of arc magmas, major- and trace-element along with Sr- and Nd-isotope compositions have been determined for Quaternary volcanic rocks from the Izu-Bonin intra-oceanic arc. 87Sr/86Sr and 143Nd/144Nd ratios decrease away from the volcanic front of this arc and lie on mixing lines between the assumed isotopic compositions of fluid phases mainly derived from the basalt layer of the subducted lithosphere and upper-mantle materials in the sub-arc wedge. This across-arc variation can be explained through a simple sequence of processes involving initial release of fluid phases from the subducted oceanic crust to produce hydrous peridotite at the base of the mantle wedge. This hydrous peridotite is dragged downward with the slab and releases a second-stage metasomatizing fluid beneath the volcanic arc. The higher concentrations of both Sr and Nd in the fluid beneath the volcanic front than those beneath the back-arc side may be a possible cause of the observed across-arc variation in Sr-Nd isotopic ratios. The difference in compositions of fluid phases is attributed to the different hydrous phases which decompose in the hydrous peridotite layer; amphibole beneath the volcanic front and phlogopite beneath the back-arc side of the volcanic arc. The mineralogically controlled fluid addition may also be responsible for the across-arc variation in Rb/K and Rb/Zr ratios, increasing away from the volcanic front.  相似文献   

11.
Seventeen whole-rock samples, generally taken at 25–50 m intervals from 5 to 560 m sub-basement in Hole 504B, drilled in 6.2 m.y. old crust, were analysed for87Sr/86Sr ratios, Sr and Rb concentrations, and18O/16O ratios. Sr isotope ratios for 8 samples from the upper 260 m of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the 330–560 m interval, 5 samples have a restricted range of 0.70255–0.70279, with a mean of 0.70266, the average value for fresh mid-ocean ridge basalts (MORB). In the 260–330 m interval, approximately intermediate Sr isotopic ratios are found.δ18O values (‰) range from 6.4 to 7.8 in the upper 260 m, 6.2–6.4 in the 270–320 m interval, and 5.8–6.2 in the 320–560 m interval. The values in the upper 260 m are typical for basalts which have undergone low-temperature seawater alteration, whereas the values for the 320–560 m interval correspond to MORB which have experienced essentially no oxygen isotopic alteration.The higher87Sr/86Sr and18O/16O ratios in the upper part of the hole can be interpreted as the result of a greater overall water/rock ratio in the upper part of the Hole 504B crust than in the lower part. Interaction of basalt with seawater(87Sr/86Sr=0.7091) increased basalt87Sr/86Sr ratios and produced smectitic alteration products which raised whole-rock δ18O values. Seawater circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below about 230 m sub-basement. These flows may have helped to seal off lower basalts from through-flowing seawater.  相似文献   

12.
Diverse87Sr/86Sr and143Nd/144Nd isotopic compositions among basalts from the Lau Basin (LBB), an active backarc basin in the southwest Pacific, indicate heterogeneity in the underlying mantle. Isotopic compositions display bimodal distributions which are related to geographic location. Type I LBB (87/Sr86Sr 0.70366;143Nd/144Nd 0.51297) include tholeiites from the central basin, Peggy Ridge, and Rochambeau Bank, while Type II basaltic and andesitic glasses from the northeastern portion of the basin, near Niua Fo'ou island, have higher87Sr/86Sr ( 0.7038) and lower 143Nd/144Nd ( 0.51288). Both depleted (e.g. N-MORB) and enriched (e.g. E-MORB) trace element abundances occur among Type I and Type II LBB.Covariation between trace element and isotopic ratios among Type I LBB is consistent with mixing between depleted mantle similar to the source for MORB and relatively enriched peridotite similar to the source for E-MORB. Relative to MORB, uniformly high87Sr/86Sr ( +0.0005) among all Type I LBB for given Nd isotopic compositions ( εNd = +8 to +12) may reflect a lithospheric component, such as ancient recycled altered ocean crust. Type II LBB have SrNd isotopic compositions which are gradational between enriched mantle similar to the source of OIB and a component with distinct Sr isotopic composition such as that observed in Samoan post-erosional basalts. Isotopic and geographic discontinuity between Type I and Type II LBB, and isotopic affinity of Type II and Niua Fo`ou island basalts with those from Samoa suggests that volcanism in the northeastern portion of the basin is tapping deeper mantle beneath the adjoining Pacific plate, as well as Indo-Australian mantle overlying the Pacific lithosphere that is subducted into the Tonga Trench.  相似文献   

13.
Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low87Sr/86Sr and high143Nd/144Nd ratios. The δ18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor.  相似文献   

14.
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The143Nd/144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the87Sr/86Sr ratios display a distinctly greater range (0.70328–0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform143Nd/144Nd ratios (ca. 0.5129) but varied87Sr/86Sr ratios in the range 0.70427–0.70528.The SrNd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the “MORB-type” volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs.It is shown that the anomalous source with a high87Sr/86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high87Sr/86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high87Sr/86Sr ratio.  相似文献   

15.
Andesites from the Peruvian Andes and the Banda arc of Indonesia are characterized by unusually high and variable 87Sr/86Sr ratios. The Banda arc samples, including two cordierite-bearing lavas from Ambon, show a clear positive correlation between 87Sr/86Sr and δ18O. The andesitic rocks have δ18O values that range from 5.6 to 9.2‰. Over that range in δ18O, 87Sr/86Sr increases from 0.7044 to 0.7095. The cordierite-bearing lavas have δ18O values of approximately 15‰ and 87Sr/86Sr ratios of approximately 0.717. The similarity between δ18O values and 87Sr/86Sr ratios in total rocks and separated plagioclase phenocrysts of the Banda arc samples indicates that the measured isotope ratios are primary and have not been affected by secondary, low-temperature post-eruptive alteration. The observed variation between O and Sr isotopic ratios can be modeled by two-component mixing in which one component is of mantle isotopic composition. As the crust beneath the Banda arc is probably oceanic, contamination of the manle component may have resulted from the subduction of either continentally-derived sediments or continental crust. Mixing calculations indicate that the contaminant could have an isotopic composition similar to that observed in the cordierite-bearing lavas.The Andean samples, despite petrographic evidence of freshness, exhibit whole-rock δ18O values significantly higher than those of corresponding plagioclase phenocryst separates, indicating extensive low-temperature post-eruptive alteration. The plagioclase mineral separates show a range of δ18O values between 6.9 and 7.9‰. The 87Sr/86Sr ratios of these same samples are, in most instances, not significantly different from those measured for the whole rock, thus signifying that the phenocrysts and groundmass were in isotopic equilibrium at the time of eruption. Unlike the lavas of the Banda arc, the Andean lavas show no strong positive correlation between 87Sr/86Sr ratios and δ18O values, but instead lower 87Sr/86Sr ratios appear to be associated with higher δ18O values. The δ18O and 87Sr/86Sr values of the Peruvian samples are both slightly higher than those of “normal” island arc volcanics.The small proportions of contaminant implied by the O isotope results seem to preclude continental crustal contamination as a primary cause of high 87Sr/86Sr ratios. The most plausible process that can explain both O and Sr isotope results is one in which sediments of continental origin are partially melted in the subduction zone. These melts rise into overlying mantle material and subsequently participate in the formation of calc-alkaline magmas.If the involvement of a sialic component in the genesis of andesitic magma occurs in the subduction zone, melting of that sialic material signifies temperatures of at least 750–800°C at the top of the subducted lithospheric slab at depths of approximately 150 km. The fact that contamination has apparently occurred in the Banda arc samples without producing any simple widespread correlations between Sr and O isotopic compositions on the one hand and major or trace element abundances on the other, shows that isotopic correlations, possibly including pseudo-isochrons, can be produced by mixing without producing trace element mixing correlations. Because O versus Sr isotope correlations are little affected by processes of partial melting of differentiation, they provide a direct means of testing whether Sr isotopic variations in volcanic rocks are of mantle origin or are due instead to mixing with sialic material.  相似文献   

16.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

17.
Sr isotope geochemical studies (the 87Sr/86Sr and ?18O-87Sr/86Sr systems) on the wall rocks and ores from the Lemachang independent Ag deposit in northeastern Yunnan provide strong evidence that the ore-forming fluids had flown through radiogenetically Sr-enriched rocks or strata prior to their entry into the locus of ore precipitation, and water-rock interaction is the main mechanism of Ag ore precipitation. The radiogenetically Sr-enriched source region may be the Proterozoic basement (the Kunyang and Hekou groups). Moreover, the theoretical modeling of the Sr isotopic system indicates that the ore-forming fluids contain as much as 3×10?6 Sr with isotopic composition of Sr being 0.750 and that of oxygen 7.0‰. The ore-forming temperatures were estimated at 150-250℃ for the carbonate rock-type ores and at 200-260℃ for the clastic rock-type.  相似文献   

18.
Stable isotope ratios of S, O and Sr have been measured for active vent materials which were first found and sampled in April 1987 from the Mariana backarc spreading axis at 18°N. Chimneys consisted mostly of barite with a lesser proportion of sulfide minerals such as sphalerite, galena, chalcopyrite and pyrite. Theδ34S values of sphalerite and galena taken from several chimneys and various parts of a chimney showed a narrow range from 2.1 to 3.1‰, suggesting uniform conditions of fluid chemistry during chimney growth. The sulfur isotopic results imply a contribution of hydrogen sulfide reduced from seawater sulfate in the deep hydrothermal reaction zone, considering that fresh glasses of the Mariana Trough basalts haveδ34S= −0.6 ± 0.3‰. Sulfur isotopic compositions of hydrogen sulfide in the high temperature vent fluids (δ34S= 3.6–4.8‰) which are higher than those of the sulfide minerals suggest the secondary addition of hydrogen sulfide partially reduced from entrained seawater SO42− at a basal part of the chimneys. This interpretation is consistent with theδ34S values of barite (21–22‰) that are higher than those of seawater sulfate. The residence time of the entrained SO42− was an order of an hour on a basis of oxygen isotopic disequilibrium of barite. Strontium isotopic variations of barite and vent waters indicated that Sr in barite was mostly derived from the Mariana Trough basalts with a slight contribution from Sr in circulating sea-water, and that 10–20% mixing of seawater with ascending hydrothermal fluids induced precipitation of barite at the sea-floor.  相似文献   

19.
The equations for isotopic evolution in a deforming medium are derived and used to show that the local isotopic composition of the mantle depends primarily on the advection of heterogeneities by the flow field. Various examples of the role of advection are given using a two-scale model of mantle convection. The effect of small-scale flows, which have dimensions smaller than the plates themselves, is to convert any initially localized heterogeneity into thin spiral sheets. The isotopic properties of erupted lavas will depend on the relative size of the zone of partial melt to the spacing between such sheets. An idealized model for87Sr/86Sr variations from Pacific islands and the covariation of143Nd/144Nd-87Sr/86Sr is based on the combined effect of isotopic fluxes at subduction zones and advection by the return flow under the moving lithospheric plates.  相似文献   

20.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号