首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
This study focused on typical injection layers of deep saline aquifers in the Shiqianfeng Formation used in the Carbon Capture and Sequestration Demonstration Projects in the Ordos Basin, Northwest China. The study employed experiments and numerical simulations to investigate the mechanism of CO2 mineral sequestration in these deep saline aquifers. The experimental results showed that the dissolved minerals are plagioclase, hematite, illite–smectite mixed layer clay and illite, whereas the precipitated minerals are quartz (at 55, and 70 °C) and kaolinite (at 70 °C). There are rare carbonate mineral precipitations at the experimental time scale, while the precipitation of quartz as a product of the dissolution of silicate minerals and some intermediate minerals rich in K and Mg that transform to clay minerals, reveals the possibility of carbonate precipitation at the longer time scale. These results are consistent with some results previously reported in the literature. We calibrated the kinetic parameters of mineral dissolution and precipitation by these experimental results and then simulated the CO2 mineral sequestration under deep saline aquifer conditions. The simulation results showed that the dissolved minerals are albite, anorthite and minor hematite, whereas the precipitated minerals are calcite, kaolinite and smectite at 55 and 70 °C. The geochemical reaction of illite is more complex. At 55 °C, illite is dissolved at the relatively lag time and transformed to dawsonite; at 70 °C, illite is precipitated in the early reaction period and then transformed to kaolinite. Based on this research, sequestrated CO2 minerals, which are mainly related to the temperature of deep saline aquifers in Shiqianfeng Fm., are calcite and dawsonite at lower temperature, and calcite at higher temperature. The simulation results also establish that calcite could precipitate over a time scale of thousands of years, and the higher the temperature the sooner such a process would occur due to increased reaction rates. These characteristics are conducive, not only to the earlier occurrence of mineral sequestration, but also increase the sequestration capacity of the same mineral components. For a sequestration period of 10,000 years, we determined that the mineral sequestration capacity is 0.786 kg/m3 at 55 °C, and 2.180 kg/m3 at 70 °C. Furthermore, the occurrence of mineral sequestration indirectly increases the solubility of CO2 in the early reaction period, but this decreases with the increase in temperature.  相似文献   

2.
The Upper Red Formation (URF) comprises over 1–5 km of late Miocene siliciclastic sediments in the Central Iran Basin. The formation is dominated by volcaniclastic conglomerates and arenites. The prevailing arid conditions during most of the basin's history resulted in deposition of predominantly organic‐poor, red sediments with gypsum and zeolites. This investigation concentrates on the mineralogy and geochemistry of the URF in the southern and northern margins of the basin where the formation was buried to depths of 2.4 and 6.6 km, respectively. Fine fraction mineral separates from the southern margin consist of nearly pure smectite and zeolites at a depth of 400 m and smectite with minor quartz and calcite at 1800 m. Shallow samples (1350 m) from the northern section are rich in smectite, illite/smectite with some discrete illite and chlorite. This assemblage is progressively replaced by discrete illite and chlorite with increasing burial depth so that only these two minerals are found at depths greater than 4300 m. The initial alteration process involved replacement of glass and volcanic lithics by smectite and zeolites in both margins of the basin. Increased depth of burial in the northern margin resulted in the progressive isochemical alteration of smectite to discrete illite and chlorite. Diagenesis of clay assemblages occurred essentially in a closed system. Solute products of glass hydrolysis reactions were retained in highly alkaline, saline ground waters from which zeolites, carbonates and oxides precipitated as cements. It is unlikely that these sediments were ever significantly leached by meteoric waters or by organic acids generated during burial diagenesis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The Wadi Badaa (WB) Upper Miocene clays, Cairo-Suez district, Egypt, represent materials for the ceramic production. The clay raw materials are composed mainly of smectite and kaolinite with minor quartz, calcite, and rare feldspar. The plasticity indices vary between 24 and 30%, suggesting that these clays are plastic raw materials. IR bands of the investigated clays were observed at 3695, 3619, 1032, 916, 794, 690, 534, 466, and 423 cm?1 for kaolinite; at 3436, 1635, 916, and 466 cm?1 for smectite; and at 1179, 1104, 794, 690, and 466 cm?1 for quartz. The <2 μm particle sizes of samples are relatively abundant in clays (~33%), which is adequate for uses of the ceramic products because of containing fine particle sizes. The studied WB clays contain 7.95 and 12.35% moisture water and interlayer water, respectively, with a maximum drying shrinkage of 7.87% at room temperature; therefore, the WB clays could be used in the ceramic manufacture.  相似文献   

4.
The Oued Belif 48 and Koudiat El Halfa 5 borehole samples have been analysed in order to reveal the mineralogical composition of the Triassic successions and their burial history within the geological evolution of the Tethysian southern margin. Oued Belif 48 borehole belongs to Nefza district which is a part of the “Nappe zone” (Tellian unit, north-western Tunisia). Koudiat El Halfa 5 borehole crosses the Koudiat El Halfa diapir (north–west of the north–south axis, Central Atlas). In this paper, the burial degree of evaporitic Triassic samples was determined by the “illite crystallinity” index and by the evolution of the other phyllosilicates, essentially chlorite, talc and illite/chlorite and illite/smectite mixed layers. The studied samples of the two boreholes are characterized by the presence of abundant clay minerals. The <2-μm grain-size fraction of the samples is mostly composed of illite, chlorite and smectite and may contain a slight percentage of swelling layers (illite/smectite and illite/chlorite). The illite crystallinity value measured on ethylene glycol solvated oriented mounts of the Oued Belif 48 samples oscillates globally between 1 and 2.5 characterizing the epizonal zone with a range of 300–400 °C temperatures. The measures of Koudiat El Halfa 5 samples crystallinity index show a value ranging from 2 to 4, which indicates the anchizone and early epizone burial stage (temperatures around 200 °C). These data can be explained by Miocene magmatic activities characterizing the Triassic material of Nefza district and also by burial phenomena effects.  相似文献   

5.
In order to investigate changes caused in clay mineralogy and potassium (K) status by different land-use types, 42 soils samples (0–30 cm) were monitored and analyzed. Soil samples belonging to Reference Soil Groups of Cambisols and Vertisols were collected from three neighboring land uses involving cropland (under long-term continuous cultivation), grassland, and forestland. The soils reflected an alkaline and calcareous aspect as were characterized by high pH (mean of 7.1 to 7.5) and calcium carbonate equivalent (mean of 35 to 97 g?kg?1) in the three land-use types. X-ray diffraction patterns of the clay fraction showed that the soils were mainly composed of illite, smectite, chlorite, and kaolinite. Chlorite and kaolinite remained unweathered irrespective of land use and soil types, soil processes, and physicochemical attributes assessed. Some changes in the XRD diffractograms of illite and smectite (the intensity or the position of peaks) were observed in the cultivated soils compared to those of the adjoining grassland that may explain the dynamics of the K trapped in illite interlayer sites. Potassium issues reflected a heterogeneous response to changes in land-use types. In light of this, a pronounced variation in soluble K (4–22 mg?kg?1), exchangeable K (140–558 mg?kg?1), and non-exchangeable K (135–742 mg?kg?1) appeared among the land-use types for both Cambisols and Vertisols, corresponding to variability in clay content, nature and type of clay mineral (mainly illite and smectite), cation exchange capacity (CEC), and soil organic carbon (SOC). In general, the largest amounts of soluble K and exchangeable K were recorded in the forestland, whereas the highest contents of non-exchangeable K were found in the grassland for both Cambisols and Vertisols. Exchangeable K, available K, CEC, and clay contents in the soils with higher smectite values (25–50 %) were significantly different (P?≤?0.05) compared to those of the lower smectite values (10–25 %). This suggests that smectite is a major source for surface sorption of K in the studied soils.  相似文献   

6.
The composition of river water, sediments, and pore waters (down to 30 cm below the bed) of Las Catonas Stream was studied to analyze the distribution of trace elements in a peri-urban site. The Las Catonas Stream is one of the main tributaries of Reconquista River, a highly polluted water course in the Buenos Aires Province, Argentina. The semi-consolidated Quaternary sediments of the Luján Formation are the main source of sediments for Las Catonas Stream. The coarse-grained fraction in the sediments is mainly composed of tosca (calcretes), intraclasts, bone fragments, glass shards, quartz, and aggregates of fine-grained sediments together with considerably amounts of vegetal remains. The clay minerals are illite, illite–smectite, smectite, and kaolinite. For the clay-sized fraction, the external surface area values are mostly between 70 and 110 m2g?1, although the fraction at 15 cm below the bottom of the river shows a lower surface area of 12 m2g?1. The N2 adsorption–desorption isotherms at 77 K for this sample display a behavior indicative of non-porous or macroporous material, whereas the samples above and below present a typical behavior of mesoporous materials with pores between parallel plates (slit-shaped). As, Cr, Cu, and Cd concentrations increase down to 15 cm depth in the sediments, where the highest trace element and total organic carbon (TOC) concentrations were found, and then decrease toward the bottom of the core. Except for As, the levels of the other heavy metals show higher concentration in surficial waters than in pore waters. Distribution coefficients between the sediments, pore water, and surficial water phases indicate that As is released from the sediments to the pore and surficial waters. Cu content strongly correlates with TOC (mainly from vegetal remains), suggesting that this element is mainly bound to the organic phase.  相似文献   

7.
西藏羊八井地热田水热蚀变   总被引:5,自引:1,他引:5       下载免费PDF全文
朱梅湘  徐勇 《地质科学》1989,(2):162-175
本文对羊八井地热田钻扎ZK-201、ZK-301和ZK-308的岩心进行了较系统的蚀变矿物学、岩石学和流体包体研究。划分出6个蚀变矿物共生组合及蚀变分带,讨论了蚀变过程中岩石化学变化的特点,并推测了蚀变的温度和酸碱度条件。研究表明,热田曾处于极度的活动状态,最高温度达220-240℃,由于冷水的入侵,热田在目前钻探所及范围已冷却了50-70℃。蚀变矿物分布模式表明,目前热田流体主通道位于北部,热田进一步的开发应以寻找北部深部高温流体为主。  相似文献   

8.
兰州市取暖期可吸入颗粒物中单颗粒矿物组成特征   总被引:1,自引:1,他引:1  
为研究兰州市2005年冬季大气可吸入颗粒物(PM10)中单颗粒的矿物组成,用能谱扫描电镜识别和统计了兰州市区(东方红广场)和郊区(榆中县)两个采样点的单矿物颗粒。结果在市区样品中识别出方解石、伊/蒙混层、石英、斜长石、伊利石、石膏、绿泥石、高岭石、浊沸石和钾长石等21种矿物,前7种占统计总量的75%以上;郊区样品中识别出20种矿物,以方解石、石英、伊利石、绿泥石、斜长石和伊/蒙混层为主(占70%以上),与市区相比缺少钾石膏、金红石和水铝酸钙而增加了硫酸镁和磷灰石。总体来看,大气PM10中的矿物颗粒可分为粘土类、长石类、碳酸盐类、硫酸盐类、氧化物类和其他六类,以粘土类和碳酸盐类矿物为主(约占60%);冬季市区颗粒物表面的“硫化”现象较郊区严重;这些矿物颗粒主要来自地表土,人为排放和大气中二次化学反应生成的矿物的贡献较小。  相似文献   

9.
The paper presents the results of the study which influence the use of recycled waste expanded polystyrene foams (EPS), as a lightweight material used with river sand. In this study, thermally modified waste EPS have been used. The waste EPS were put in an oven at 130 °C through 15 min to obtain modified expanded polystyrene (MEPS). The influences of MEPS on compaction properties such as maximum dry density and optimum moisture content were investigated. For this purpose, five series of compaction tests were carried out. MEPS were added to river sand at 5, 10, 15, and 20 % by weight. The test results showed that addition of 20 % MEPS in sand reduces the density of mixture almost 50 %. MEPS can be an alternative light weight fill material for geotechnical applications.  相似文献   

10.
Core U1359 collected from the continental rise off Wilkes Land, east Antarctica, is analyzed for the clay mineralogy and carbon content. The temporal variation of the clay mineralogical data shows a dominance of illite with chlorite, smectite and kaolinite in decreasing concentration. Clay mineral illite is negatively correlated with smectite which shows enrichment during 6.2–6.8, 5.5–5.8, 4.5 and 2.5 Ma. The mineralogical analyses on the silt size fraction (2–53 μm) of some selected samples were also carried out. The combined result of both the size fractions shows the presence of chlorite and illite in both size fractions, smectite and kaolinite only in clay size fraction (<2 μm) and similarity in the crystallinity and chemistry of illite in both fractions. Similar nature of illite in both fractions suggests negligible role of sorting probably due to the deposition from the waxing ice sheet. During times of ice growth, nearby cratonic east Antarctica shield provided biotite-rich sediments to the depositional site. On the other hand, the presence of smectite, only in the clay size fraction, suggests the effective role of sorting probably due to the deposition from distal source in ice retreat condition. During times of ice retreat, smectite-rich sediment derived from Ross Orogen is transported to the core site through surface or bottom water currents. Poor crystallinity of illite due to degradation further corroborates the ice retreat condition. The ice sheet proximal sediments of U1359 show that in the eastern part of Wilkes Land, the ‘warming’ was initiated during late Miocene.  相似文献   

11.
Oil-based drilling cuttings comprise a large and hazardous waste stream generated by oil and gas wells drilling operations. Oil-based cuttings are muddy materials with high contents of salts and hydrocarbons. Composting strategies have shown to be effective in the biodegradation of petroleum hydrocarbons, and it offers numerous advantages in comparison with other bioremediation methods. In order to assess the effectiveness of drilling cuttings bioremediation by composting with food and garden wastes, an experiment was conducted in 60-L reactors for 151 days. Four treatments were carried out: only oil-based cuttings, two proportions (in a volume basis) of organic wastes to drilling cuttings (33 and 75 %) and only organic wastes (as a traditional composting reference), with pine-tree woodchips as bulking agent. High degradation percentages of total hydrocarbons (≈82 %), n-alkanes (≈96 %) and the 16 USEPA-listed polycyclic aromatic hydrocarbons (≈93 %) were reached in the treatment with 75 % of organic wastes, and applying 33 % of organic wastes was not more effective than not applying organic wastes for the drilling cuttings hydrocarbons biodegradation. Furthermore, in the treatment with 75 % of organic wastes, alkanes half-life and polycyclic aromatic hydrocarbons half-life were about 10 times and four times lower, respectively, than those in the treatment with 33 % of organic wastes. Possibly, lower hydrocarbons and salts initial concentrations (i.e., lower toxicity), higher microbial counts, adequate nutrient proportions and water content supported a high biological activity with a consequent elevated biodegradation rate in the treatment with 75 % of organic wastes.  相似文献   

12.
Grain size and mineral composition of core sediments were used to investigate influences of various terrestrial and marine conditions, which have prevailed on the southwestern Black Sea shelf during the Holocene. Siliciclastic mud with small amounts of sand and gravel from nearby coastal hinterland is the principal sediment type, whereas sediments deposited near the shelf edge and the Istanbul Strait and off the Duru Lake (a paleo-river mouth) constitued large quantities of sand and gravel of both biogenic and terrigenic origin. Variable amounts of aragonite, 1 nmmicas, quartz, feldspars, calcite and dolomite constitute the dominant non-clay minerals in bulk sediments. The clay mineral assemblage in the 〈 2 μm fraction is made up of smectite, illite, kaolinite and chlorite. Aragonite and calcite are mainly derived from benthic accumulations, whereas feldspars (mainly plagioclase) and smectite reflect magmaticvolcanic provenance and the distribution of 1 nm-micas and chlorite correlate with nearby metamorphic sources onland. Nevertheless, grain size and mineral distribution generally indicate a combination of effects of wind and wave climate, longshore and offshore cyclonic currents, changing sea-level stands and nearby source rock and morphological conditions. It is also suggested that at least part of clay minerals could be derived from the northwesterly Danube River input.  相似文献   

13.
Wadi Queih basin hosts a ~2,500-m thick Neoproterozoic volcanoclastic successions that unconformably lie over the oldest Precambrian basement. These successions were deposited in alluvial fan, fluviatile, lacustrine, and aeolian depositional environments. Diagenetic minerals from these volcaniclastic successions were studied by X-ray diffractometry, scanning electron microscopy, and analytical electron microscopy. The diagenetic processes recognized include mechanical compaction, cementation, and dissolution. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite, illite, and chlorite with minor smectite occur as pore-filling and pore-lining cements. Chlorite coating grains helps to retain primary porosity by retarding the envelopment of quartz overgrowths. Clay minerals and their diagenetic assemblages has been distinguished between primary volcaniclastics directly produced by pyroclastic eruptions and epiclastic volcaniclastics derived from erosion of the pre-existing volcanic rocks. Phyllosilicates of the epiclastic rocks display wider compositional variations owing to wide variations in the mineralogical and chemical compositions of the parent material. Most of the phyllosilicates (kaolinite, illite, chlorite, mica, and smectite) are inherited minerals derived from the erosion of the volcanic basement complex, which had undergone hydrothermal alteration. Smectites of the epiclastic rocks are beidellite–montmorillonite derived from the altered volcanic materials of the sedimentary environment. Conversely, phyllosilicate minerals of the pyroclastic rocks are dominated by kaolinite, illite, and mica, which were formed by pedogenetic processes through the hydrothermal influence.  相似文献   

14.
Lower Cretaceous sandstones of the Qishn Formation have been studied by integrating sedimentological, petrological and petrophysical analyses from wells in the Masila oilfields of eastern Yemen. These analyses were used to define the origin, type of diagenesis and its relation to reservoir quality. The sandstones of the Qishn Formation are predominately quartz arenite to subarkose arenite with sublitharenite and quartz wackes displaying a range of porosities, averaging 22.33%. Permeability is likewise variable with an average of 2844.2 mD. Cementation coupled with compaction had an important effect on porosity destruction after sedimentation and burial. The widespread occurrence of early calcite cement suggests that the sandstones of the Qishn Formation lost significant primary porosity at an early stage of its diagenetic history. In addition to poikilotopic calcite, several different cements including kaolinite, illite, chlorite and minor illite–smectite occur as pore‐filling and pore‐lining cements, which were either accompanied by or followed the development of the early calcite cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar grains. The new data presented in this paper suggest the reservoir quality of Qishn sandstones is strongly linked to their diagenetic history; hence, the reservoir quality is reduced by clay minerals, calcite and silica cements but is enhanced by the dissolution of the unstable grains, in addition to partial or complete dissolution of calcite cements and unstable grains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The x-ray powder diffraction identification of clay minerals both in bulk samples and in separated clay fraction confirmed the presence of palygorskite in samples of cave sediments from Wadi Haqil (the western slopes of Musandam Mountains; Ras Al-Khaimah Emirate, UAE). Samples contain quartz, gypsum, smectite, kaolinite, calcite, and palygorskite, some of them chlorite, illite, feldspars, and goethite. Calcite dominates in most samples; smectite prevails in clay fraction. After heating, the 001 reflection of chlorite shifts to higher diffraction angles and its intensity decreases; these features indicate that the chlorite represent a Fe-dominant species. Unit-cell dimensions of major phases as refined by the Rietveld method are in agreement with literature data. Chemical composition of palygorskite was derived from unit-cell dimensions as follows: MgO content is 11–14 wt% and Al2O3 10–13 wt%. Clay mineralogy is only hard to ascertain from the scanning electron microscope (SEM) images even after being combined with the energy-dispersive spectrometer data. The SEM was also used to characterize gypsum grains; they often display flow deformation features. Studied cave sediments represent palygorskite-bearing weathering products and desert soils re-deposited from the cave surroundings by slope processes and wind and/or surface runoff. The mixture with other clay minerals, quartz, feldspars, etc. supports this interpretation. Fine-grained quartz fraction is probably wind-blown. Gypsum and calcite are the precipitates (crusts and/or cements), although gypsum can also be re-deposited from omnipresent gypsum-cemented surface sediments.  相似文献   

16.
The Gulf of Papua inner mid-shelf clinothem and lowstand deposits in Pandora Trough record sediment source and routing through the last sea-level cycle on 20 kyr cycles. Clay mineralogy tracked dispersal of sediment from the two types of rivers (wide versus narrow floodplains) to constrain the contributions of river systems to the Gulf of Papua clinothem and Pandora Trough deposits. Fly River sediment has higher illite:smectite than clays from the small mountainous rivers (Bamu, Turama, Kikori and Purari rivers) that drain regions with more limestones. X-ray diffraction shows high illite:smectite proximal to the Fly River delta that decrease towards the north-east. Downcore mineralogy of inner mid-shelf cores reveals that the largest shifts in illite:smectite correspond to changes in sediment units. The relict clinothem emplaced on the Gulf of Papua shelf during Marine Isotope Stage 3 has lower illite:smectite than the Holocene clinothem that has been building since 2 ka and the Marine Isotope Stage 5a relict clinothem. In the inner mid-shelf, downcore decreases in illite:smectite during Marine Isotope Stage 3 suggest that this region received less clay from the Fly River and more contributions from small mountainous rivers. During Marine Isotope Stage 3, the exposed physiography and narrower shelf in this region may have deflected Fly River sediment more south-eastward, where it bypassed the inner shelf via the Kiwai, Purutu and Umuda valleys and was deposited in the Pandora Trough. The Fly River may have been more susceptible to valley incision because of its limited shelf accommodation and higher ratio of water to sediment discharge. Such bypass of the inner mid-shelf by Fly River sediment during the Marine Isotope Stage 2 sea-level lowstand is recorded in Pandora Trough deposits with high illite:smectite ratios. Inner mid-shelf clinothems with compositional shifts on the order of 20 kyr may be influenced by shelf physiography, accommodation and the variable incision by small and large rivers.  相似文献   

17.
Mineralogical and chemical investigations (<2μm clay separates) of shale samples from the Neogene-age Surma Group obtained from four wells (Habiganj-11, Shahbazpur-1, Titas-11, Titas-15) in the Bengal basin, Bangladesh, were carried out in order to reveal the clay mineral composition as reservoir exploration and exploitation requires a good understanding of the clay minerals. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-Ray fluorescence spectrometry (XRF). Mineralogically, the sub-surface Surma Group shales comprise predominantly quartz, plagioclase, illite, chlorite, kaolinite, with lesser amounts of K-feldspar, dolomite and smectite, and minor to trace amounts of calcite, siderite and pyrite. The chemical composition of the <2 μm clay separates also suggests an illite and chlorite-rich composition. With increasing burial depth, the Surma Group shales are enriched in illite. The gradual decreasing of the smectite clays with depth and ultimate disappearance at greater depths (≥ 3000 m) may have been responsible for the presence of the diagenetic illite. Based on the mineralogical composition it is most likely that the illite-chlorite associations together with quartz and feldspar were predominantly detrital in origin and thus reflect the presence of a rapidly-rising source terrain not subjected to intense weathering.  相似文献   

18.
There is convincing evidence from field data that smectite clay undergoes conversion primarily to illite and chlorite if it is fully water-saturated and heated. The conversion may take place through mixed-layer formation with increasing illite/smectite ratio at higher temperatures and pressures. This process requires dehydration of the interlamellar space, for which either an external pressure or drying are needed. An alternative mechanism that takes place without dehydration, is dissolution of smectite and neoformation of illite. Both processes imply reorganization of the smectite crystal lattice for which the activation energy is fairly high, meaning that the conversion is negligible at temperatures lower than about 60°C. At elevated temperatures the conversion rate is controlled by the access to potassium for either mechanism.

An ongoing detailed investigation of this subject has led to a tentative model for the smectite-to-illite conversion in natural sediments and in canister-embedding clay in high-level radioactive waste (HLW) repositories.  相似文献   


19.
Limestone beds of the Late Cretaceous Abiod formation (Campanian-Maastrichtian system) are fundamentally important for the economic growth of the raw material sector in Tunisia. However, little attention has been paid to the detailed physical and chemical properties of the Abiod limestone. Nine limestone samples collected from the Abiod formation outcropping in the areas of Bizerte, Gafsa and Gabes, Tunisia, as well as their separated clay fractions, were characterized using different techniques, such as XRF, XRD, FTIR and TG/DTA. XRF showed the chemical composition of the limestone in which calcium carbonate was the main constituent, and silica, iron and magnesium were the impurities. XRD also confirmed the presence of small amounts of clay minerals and quartz along with sharp peaks of calcite. FTIR spectra indicated that the limestone was mainly composed of CaCO3 in the form of calcite, as identified by its main characteristic absorption bands. These data were in agreement with XRD and XRF analysis data. The TG/DTA curves of the limestone samples, showing a close similarity to that of pure calcium carbonate, exhibited an endothermic peak between 600 and 760°C, with the maximum near 750°C. Moreover, FTIR spectra of clay fraction samples indicated high silica content in some samples. Especially the samples SD1 and SD2 collected in the northern area showed higher amounts of silica compared with those of AS1, AS2, CHB, ZNC, SND, MKM and GBS collected from southern districts. However, among the latter seven samples, one could recognize two groups based on the clay mineral investigations: (1) limestone with minor amounts of smectite and mixed layer minerals of smectite/illite (AS1 and 2, CHB, ZNC, SND and GBS) and (2) limestone with smectite, kaolinite and apatite (SND and MKM). Differences in these mineralogical and chemical characteristics should be considered when limestone from the Abiod formation is utilized as a medium for heavy metal removal from wastewater.  相似文献   

20.
The use of agricultural wastes as biosorbents is gaining importance in bioremediation of heavy metal-polluted water and soils, due to their effectiveness and low cost. This work assesses the Cd, Pb and Cu adsorption capacity of the raw materials used in the production of substrates for mushroom production (Agaricus bisporus and Pleurotus ostreatus) and the spent mushroom composted (SMC), based on the functional groups of their organic carbon. The raw materials studied included agricultural wastes (wheat straw, wheat and rice poultry litter, grape pomace) and inorganic substances (gypsum and calcareous sand). Organic carbon from wastes and their composting products were characterized by CP-MAS 13C NMR. Langmuir adsorption isotherms of metals were plotted for each raw material, composting step, spent A. bisporus and P. ostreatus substrates and the final SMC. The maximum adsorption capacities of SMC were 40.43, 15.16 and 36.2 mg g?1 for Cd, Pb and Cu, respectively. The composting process modified the adsorption properties of raw materials because of the enhanced adsorption of Cd and Cu and decreased adsorption capacity of Pb. CP-MAS 13C NMR and potentiometric titration were used to identify the functional groups of the organic carbon responsible for the metal adsorption. The content of cellulose was correlated with Pb adsorption (p < 0.001), alkyl and carboxyl carbon with Cd adsorption (p < 0.001), and N-alkyl (p < 0.001) and carboxyl (p < 0.010) groups with Cu adsorption. These results are valuable to develop new biosorbents based on agricultural wastes and demonstrate the high potential of SMC to adsorb heavy metals from polluted environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号